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Dynamical Systems with Newtonian
Type Potentials 

MARCO DEGIOVANNI - FABIO GIANNONI

1. - Introduction

The study of periodic solutions to a conservative dynamical system

has been faced by several authors in the last years, mostly when the function V
is defined in all We refer the reader to the survey paper [16] and references
therein.

The case of potentials of Newtonian type (namely has

brought to consider also the case in which V is defined only in an open subset
n of Rn and goes to oo at the points of 9n (case of singular potentials).

As known, also in this case problem (1.1) has a variational structure. The
solutions can be regarded as critical points of a functional f (the Lagrangian
integral) defined in an open subset of a functional space. Further details are
contained in the next section.

Singular potentials have been mainly studied under the so called strong
force assumption (introduced in [10]), which is verified, for instance, by

if and only if a &#x3E; 2. This hypothesis implies that f (q) goes to
infinity whenever q approaches In [6, 10], because of the assumptions on 11
and V, solutions are found by a minimization technique. In [12] hypotheses are
made in order to apply a linking argument. Minimax techniques are involved
also in [2, 7, 13].

Another type of singular potential, in which strong force assumption does
not occur, is the so called potential well [1, 3]. In this case f ( q) may remain
bounded, even if q approaches Nevertheless it is possible to find solutions
with values in 11, because of the assumptions on V and grad V.

Work carried out within a research programme partially supported by Ministero della
Pubblica Istruzione (40% - 1985).

Pervenuto alla Redazione il 2 Luglio 1987 e in forma definitiva il 24 Novembre 1987.
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Our aim is to study the case in which V is defined in a neighbourhood of
the origin and goes to - 00 at the origin. However we do not make strong force
assumption, as we want to obtain results including the -1/ I x I a
for every a &#x3E; 1. Therefore it may happen that f ( q ) remains bounded, when q
approaches the origin. Nevertheless we look for solutions which do not cross
the origin.

Roughly speaking, we assume that V is subjected to a double estimate of
the form 

/ a ’ / a ’

for some functions 00 and 1/;1. Given T &#x3E; 0, it is possible to define (see (2.7)
and (2.8)) two extended real numbers 190 (1/;0, T) and 191 y 1, T). The first one

gives a lower estimate of the Lagrangian integral on the curves which meet the
singularity. The second one gives an upper estimate of the Lagrangian integral
on the circular trajectories of minimal period T and speed of constant modulus,
which lie on a suitable sphere centred at the origin.

In the main theorems ((2.14), (2.19) and (2.28)) we prove that there exists
a T-periodic solution of (1.1) which does not cross the singularity, provided that
~ ~ ~ ~ 1, Several properties of 190 and 191 are given, which allow
to verify the condition ~91 ( ~ 1, T )  ~90 ( ~o , T ) in some perturbative situations

((2.25), (2.26), (2.31) and (2.32)).
In the last section we prove some sharper results under the assumption

that V is even.
Some results of the present paper were announced in [8, 9].

2. - Periodic solutions for some singular potentials

Throughout this section

V :n~]-oo,0]

will denote a function of class 01 on the open subset n of &#x3E; 2), and T
a strictly positive real number. Our aim is to study the existence of T-periodic
curves q : 1t ~ 11 of class C2 such that:

As well known, this problem has a variational structure. First of all, by
the change of variable = q(Tt), we are reduced to the study of 1-periodic
curves q : of class C2 such that:
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and let f : A - R be defined by

Then A is an open subset of the real Hilbert space H, the Lagran-
gian integral f is a functional of class C’ on A and, if q E A we have that

grad f(q) = 0 if and only if q is the restriction to [0,1] of a solution to (2.2).
Since we are mainly interested in the case 11 == let us set also

Xo = t E ~0,1~ with q(t) = 0}.
First of all it is useful to premise some considerations concerning the case

of radial potentials and, in particular, the 
lxl

For the following result the reader is referred to [ 11 ] .

(2.3) LEMMA. Let T &#x3E; 0 and 1 ~ ~ ]0, be the unique solution
of class C’ of the problem

Then we have

(2.4) PROPOSITION. Let 0 :]0, +aa[ - [0, be a non-decreasing, non-
constant, convex function. Then we have
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PROOF. Let R be the number minimizing the expression in the right hand
side.

Since the expression in the left hand side is finite for some -1 (for instance
_Y(t) = (t(1 - t))2/1 ) and is non-decreasing, by Rellich’s theorem and Fatou’s
lemma we get the existence of some minimizing 7. Such a minimum -1 is

I /i . B

unique, because -2 1 f(?11)2 dt is strictly convex on H)(0, 1) and 0 j dt/n) is
o Bo ’ /

convex on Ha (0, 1) : n &#x3E; 0).
We claim that &#x3E; 0 for all t EJO, 1[. Indeed, by contradiction, let us

suppose that = 0 for some t in ]0,1[. Let a [ and b e]t, 1~ [ be such
that 7(a) = &#x3E; 0. Then the function r, defined by r~(t) = 
in the interval [a, b~ ] and r (t) = -1 (t) elsewhere, is another minimum which is
different from 7.

Now let us suppose 0 of class C1. Then

I E C2(]0,1[) and I" + y (x) = 0 in ]0,1[, where x = .f 1 dt/y . 7 Moreover, , byu o 
’l

uniqueness we have also 7’ 2 - 0.
Then, by (2.3) we get

Therefore = (2~c~’ (x) ) 2~3, namely ~’ (x) _ ~, which implies by (2.5)
that x = 1 / ,R . 

"

Finally we obtain

In the general case 0 can be approximated in a non-decreasing way by
a sequence of functions Oh which are also of class C’ (see, for instance, [4]).
By the previous step the thesis is true for 



471

Let 1h, Rh and 7, R be the minima corresponding to Oh and 0. It is
sufficient to prove that

We prove the first relation. The second one is similar. Since

we have to prove that

Since ~h &#x3E; 0, up to a subsequence, converges to some r weakly
in Ho . Let us remark that (0h) converges to 0 uniformly on compact subsets
of ]0, -~-oo ~, because 0 and Oh are convex and non-decreasing. By Rellich’s
theorem and Fatou’s lemma we get

We point out that, in the particular case 1/J (s) = s, (2.4) is contained also
in [11].

Now we wish to give some comparison results concerning radial potentials
of the form V (x) = -1/J ((1/|x|). with 0 satisfying the assumptions of (2.4). (1/|x|)
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(2.6) PROPOSITION. Let T &#x3E; 0 and ~ : ~ 0, +aa[ - [0, ~-oo ~ as in (2.4).
Then we have

(both sides may assume the value 

PROOF. The inequality &#x3E; is obvious. On the other hand, since 0 does
not depend explicitly on t, it does not matter to minimize in the right hand
side for q E Xo or q E HJ (0, 1; ~n ) . In the second case we have also

lql E 1), lql &#x3E; 0 and

proving the opposite inequality..

If T &#x3E; 0 and ~ : 0,+oo[2013~ [0, ~ oo ~ is non-decreasing, non-constant and
convex, we set

with the convention y(+oo) = +oo (t9o may assume also the value +oo).
Let us point out that, if the Lagrangian integral f is associated with the

potential V (x) = -1/J C I 1 I 1, , then(1/|x|)

is just the maximum of f among circular trajectories of minimal period 1 and

speed of constant modulus, which lie on the sphere of radius R centred at the
origin. The number (}1 (0, T) is determined by choosing the more convenient
radius R. On the other hand, as we have seen in (2.6), t9o (0, T) is the greatest
lower bound of the Lagrangian integral on the trajectories which meet the origin.
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Roughly speaking, our main purpose is to show that, if V E C1(:~3"~{0})
is subjected to the double estimate

and

for some T &#x3E; 0, then there exists a T-periodic solution q of (2.1) with values
in 

More precisely, the double estimate on V is needed only 
where p (T ) can be determinated in the following way:

for every s &#x3E; 0 let r(s) &#x3E; 0 be such that

Then p :]0,+oo 2013~ ]0,+oo[ is any non-decreasing function, with

lim p(s) = 0, such that, for every s &#x3E; 0
s-0

This last specification allows to consider also potentials V which are

defined only near the origin.
Since the assumption v1 (y1, T)  190 T) seems to be rather implicit,

we list some properties of 190 and 191 which are helpful in verifying such a
hypothesis.

For instance, it turns out that 191 (1/;, T)  190 ( 1/;, T) for all T, if 1/; ( s ) = s a ,
with a &#x3E; 1, and strict inequality is stable under small perturbations of 0.

(2.10) PROPOSITION. Let T, Th &#x3E; 0 and 1/;, Oh :10, + 00 [0, +oo[ [ (h e tl)
be non-decreasing, non-constant and convex.

Then the following facts hold:

i) t9l (0, T) !~- t9o (0, T);
ii) if ~91 ( ~ , T) = t9o (0, T), we have that

and y(s) - bs is constant on  ( 12bT2 1/3 , , + oo and y(s) - bs is Constant on [( yh2/2bT2) +00 ;
iii) if lim Th = T and lim Oh(8) = 0(s) pointwise in s, we have

h h
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iv) if we have

v) if lim inf S &#x3E; 0, we have t9o (0, T) = +00;
,8-+00 s

vi) if 0 is positively homogeneous of some degree a &#x3E; 1, then ~90 ( ~, ~ ) and
31 ~~, ~) are positively homogeneous of 
PROOF. Let us prove i) and ii). If t9o (0, T) = +00, the result is true.

Otherwise let 7 E H J (0, 1), 1 &#x3E; 0 minimizing

By Jensen’s inequality and (2.4) we have

Moreover, if equality holds, and y
minimizes also

Then y is smooth in a nei hbourhood of 
1 
dt and as in the roof ofThen 0 is smooth in a neighbourhood and, as in the proof of

0

(2.4), it turns out that y : :]0,1[ -&#x3E; 0, +oo[ is of class C2, 7" + bT2/a2 = 0 and
1

l’ 1 = 0. By (2.3) we get 
ly2

2

Now let (Th) converge to T and let (0h) pointwise converge to 0. By
weak convergence and Fatou’s lemma we get

On the other hand, since 0 and Oh are convex and non-decreasing, it
turns out that pointwise convergence implies uniform convergence on bounded
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subsets of ]0, + oo 1. Moreover lim Oh (5) = + 00 uniformly with respect to h.
~ 

8-++00
Then it is easy to conclude that

proving iii).
Since t9o and t9l are obtained minimizing linear functions of 1/;, they are

concave with respect to 1/;. The remaining part of iv) is obvious.

Since every 1 in Hj (0, 1) is Hölder continuous of exponent 2 , we get v).
Now suppose that 0 is positively homogeneous of degree a &#x3E; 1. An

explicit calculation shows that t9l is positively homogeneous of degree

4/(a+2). * By the change of variable -y = 
T a’+2 r, we get also that 190 (y, .) is

(a + 2)
positively homogeneous of degree proving vi)..a + 2

At this point we need a topological lemma which can be interpretated as
an adaptation to our case of the technique involved in Lustemik-Fet theorem
(see, for instance, [14]). A similar adaptation can be found also in [13].

Let us set

Of course A n Xo = 0.

(2.11) LEMMA. Let n &#x3E; 3, R, p &#x3E; 0 and let 4 : Dn-2 -~ HBXo be the
continuous map defined by

Then there do not exist any neighbourhood U of in Dn-2 and
any continuous map N : Dn-2 x [0, 11 - HBXo such that

PROOF. By contradiction, we could define a continuous map
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by

where  1 and

Let us remark that

Therefore (see, for instance, [17]) we have

Moreover we have

Therefore

On the other hand, by the definition of A, we have

hence

which is absurd..

In the following lemma we state a simple extension of well known results
about deformation techniques (see, for instance, [5, 15, 17]).

(2.12) DEFINITION. Let Y be a real Hilbert space, A an open subset of Y
R a function of class C 1. If c E R, the function g is said to verify

the Palais-Smale condition at level c, if for every sequence in A with

lïrgrad = 0, lim g(uh) = c, there exists a subsequence converging
h h

to an element of A.
If we set c~.
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(2.13) LEMMA. Let Y be a real Hilbert space, A an open subset of Y
and g : A - R a function of class 01. Let -oo  6  m  +00 be such that

i) VuE A, 6  g(u)  m =:&#x3E;. grad 9 ( u) =I 0;
ii) V c E [8, m[, the function g verifies the Palais-Smale condition at level c

and gC is closed in Y.
Then g’ is a strong deformation retract of g"2.

Now we can give the main results in this section. We recall that t9o, 61
and p are defined in (2.7), (2.8) and (2.9), respectively.

(2.14) THEOREM. Let n &#x3E; 3, V E C1 with

and let 00, ol : ~ 4, ~ oo ~ -~ ~ [0, +oo[ be non-constant and convex, with

lim 1/;i(S) = 0.8--+0s-0 

Then for every T &#x3E; 0 satisfying

there exists a T-periodic solution qT of (2.1) with qT (t) :~4 0 for all t and the

following further properties:

i) if (Th) is a sequence satisfying (2.16), (2.17) and lim Th = 0, then
h

ii) if V x E V(x)  0 and if (Th) is a sequence satisfying (2.16),
(2.17) and lim Th = +oo, then

h

PROOF. - -oo. Since -V is non-negative and lower

semicontinuous, by Rellich’s theorem and Fatou’s lemma we have that the

Lagrangian integral f : H --&#x3E; is sequentially weakly lower
semicontinuous. Moreover it is of class 01 on the open set .H ~Xo .

For every s &#x3E; 0 let r ( s ) &#x3E; 0 be such that

Now let T &#x3E; 0 satisfying (2.16) and (2.17) and let m = ~91 ( ~ 1, T).
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We claim that for all q E Xo, f (q) &#x3E; m. Indeed, if  p (T), by
(2.6), (2.7), (2.16) and (2.17) we deduce f (q) &#x3E; T) &#x3E; m. Otherwise

so that f (q) &#x3E; 2(p(T))2 &#x3E; m.

In particular, by lower semicontinuity of f, we deduce that, for every

m[, {q E H~Xo : f (q)  c} is closed in H.

Now we claim that for every c m[, the functional f : H)Xo - R
verifies the Palais-Smale condition at level c. Let (qh) be a sequence in HBXo

. 

with lim grad f (qh) = 0, lim f (qh) = c. Of course (qh) is bounded in L2. We
. h h 

h

claim that (qh) is bounded in L°° , otherwise by (2.15)

Then we should find a sequence (eh) ~ 0 such that

If we choose il (t) = qh (t) - qh (0) and we remark that i? E Hj, we obtain

Combining this fact with (2.18), we get that lim = 0, which is absurd.
h

Therefore (qh) is bounded in L°°.

Up to a subsequence, (qh) converges to some q E H in the weak topology
of H and in the strong topology of L°°. Since f (q)  c  m, we have q E HBXo.
Now it is standard to show that (qh) converges to q also in the strong topology
of H, proving the Palais-Smale condition at level c.

Now let 6(T) = T2~o(r(T)-1) = 2(r(T))2. First of all we remark that,
since Oo (r (T) - 1) &#x3E; 0 1 (p (T) - 1) ~! we have r(T)  p(T).

We claim that f 6 ~T ~ c A. Indeed, if q E f 6 ~T ~ and q is not constant, it
must be &#x3E; r(T), otherwise by (2.16)
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On the other hand

so that q E A.

Now we claim that there exists q E HBXo such that grad f (q) = 0, 6(T) 
.f ~4) ~ ~1 ~~Gm T). 

_

Let R &#x3E; 0 be such that

Of course R  p(T). We can define a continuous map e : D’~ - 2 -; HBXo by

Then, for every x in D"’~ we  p(T), hence

Since A, it must be 6(T)  m. Moreover, for every x 

Therefore, by (2.11), f s ~T ~ cannot be a strong deformation retract of 
otherwise, if JC : x [0, 1] - fmBxo were the corresponding map, we
could define N : Dn-2 x ~0,1~ - HBXo by ~(~,5) = K (0 (x), s), against the
thesis of (2.11).

By (2.13) we conclude that there exists q E HBXo with grad f ( q ) = 0,
. 

Now let (Th I) -; 0 with Th satisfying (2.16), (2.17) and let qh be given
by the previous argument. We have to prove that lim qh = 0 in L’.

h
I

First of all, since f |qh|  2dt  v1(y1,Th) we deduce
2 0 h -

Therefore it is sufficient to show that
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Since we have

Then

which gives the result by (2.15), as lim r ( Th ) = 0.
h

Finally, suppose that  0, for every x E RnB { 0 } . Let (Th) &#x3E; 

and assume that each Th satisfies (2.16) and (2.17). Let qh be as in the previous
argument. Then

which implies

Hence

In the two-dimensional case, we can prove the same result, showing also
the minimality of the period, under weaker assumptions. The argument is similar
to that used in [ 10] in the case of strong forces.

(2.19) THEOREM. Let V E 01 (If{2B {a}) and let 1/;1 : ] 0, +co( - [ 0, 1
be non-constant and convex, with lim Oi (s) = 0.s-0

Then, for every T &#x3E; 0 satisfying

there exists aT-periodic solution qT of (2.1) with qT (t) =,4 0 for all t, minimal

period T and the following further properties:
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i) if (Th) is a sequence satisfying (2.20), (2.21) and lim Th = 0, then
h

ii) if for all x E R~B{0}, V(x)  0 and if (Th) is a sequence satisfying (2.20),
(2.21) and lim Th = +00, then

h

PROOF. Let f, r be as in the proof of (2.14).
Let T &#x3E; 0 satisfying (2.20) and (2.21), let m = ~1(~1, T) and let 6 (T)

be as in the proof of (2.14). Also in this case it turns out that and

f ( q ) &#x3E; m for every q E Xo.
Let X, - Iq E HBXo : q is not contractible in R~B{0}}. Then X, is open

and closed in HBXo endowed with L"O-topology. In particular, X~1 is open in

H.

We claim that

and the infimum is achieved.

Indeed, let .R &#x3E; 0 be as in the proof of (2.14) and let -

(R cos sin 2xt). Of course q E XI. Since R  p(T), by (2.20) we
deduce that f (q)  m, proving the second inequality in (2.22). Since f ~~T ~ c A
and A n X, = 0, if we show that the infimum is achieved, we get also the first
inequality in (2.22).

Now, if inf f = m, q is just a minimum point. Otherwise, let inf f  m
Xi Xi

and let (qh) be a minimizing sequence.
Since Xi c HBA, we have

Therefore, up to a subsequence, (qh) converges to some q E H in the weak topo-
logy of H and in the strong topology of L°°. Since f (q)  lim inf f (qh)  m,
we have q E HBXo. Then q E Xl and the infimum is achieved. *

We also claim that there does not exist with k &#x3E; 2 and

q(t) = q (t - k ) , for every t E [ k , 1] . This means that q is the restriction

to [0,1] of a solution to (2.2) of minimal period 1.

Indeed, by contradiction, we could define q1 E HBXo by = 9 ~ k I ~
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Then q1 E Xi , in particular q1 is not constant, and

so that k = 1.
Now let (Th) be a sequence of strictly positive numbers satisfying (2.20)

and (2.21).
If (Th) - 0, we have lim v1(y1,Th) = 0. On the other hand, by (2.22)

h
and (2.23) we deduce

so that (gyj -~ 0 in 
Finally, if V(x)  0, for every x E R~B{0}, and -~ +00, as in the

proof of (2.14), it turns out that

(2.24) REMARK. Theorems (2.14) and (2.19) can be applied to the parti-
cular case V ( x ) 6 in Rn B { 0 } , ( n &#x3E; 2, 6 &#x3E; 0, a &#x3E; 1 ) , for any T &#x3E; 0 . Itcular case V (x) T7, in R7 0}, (n &#x3E;- 2, b &#x3E; 0, ci &#x3E;- 1), for any T &#x3E; 0. It

x

is sufficient to choose = y1(s) = b s a and to remark that, by (2.10)i
61 (0, T)  30 (~,, T) for every T &#x3E; 0.

Of course this case can also be treated in an elementary way, looking for
circular solutions centred at the origin.

(2.25) COROLLARY. L~ ~ :]0,-t-oo[ -~ 0, +ool be a non-constant, convex
function with = 0.

8-+0
Let us assume that 0 is not linear on ] 0, 
Then there exists To &#x3E; 0 such that, for every To, there exists 6 &#x3E; 0

such that, for evef y T E + e] ] and for every V E C 1 (~n ~ ~ 0 ~ ~ , n &#x3E; 2,
with

there exists a T-periodic solution q of (2.1 ) with q (t) :/= 0 for every t.

Moreover, if n = 2, such a solution has minimal period T.

PROOF. By (2. 1 O)ii there exists To &#x3E; 0 such that t91(1/;, T1)  t90(1/;, T1)
for every T1 &#x3E; To.

By (2.10)iii there exists e &#x3E; 0 such that:
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Now we can apply (2.14) (or (2.19), if n = 2). m

(2.26) COROLLARY. Let ~ : ~ 0, [0, be a non-constant convex

function with lim 0 (s) = 0.
s&#x3E;0

Let us assume that 0 is not eventually linear, as s - +00.
Then, for every T1 &#x3E; 0, there exists s &#x3E; 0 such that for every

T E [T1 - e, Z’1 ~- e] and for every V E 01(JRnB{0}), n &#x3E; 2, with

there exists aT-periodic solution q of (2.1) with q(t) ~ 0 for every t.

Moreover, if n = 2 such a solution has minimal period T.

PROOF. By (2. 1 O)ii we have t9i (0, Tl ) ~ t9o (0, T1) for every T1 &#x3E; 0. Now
we go on as in the proof of (2.25)..

(2.27) REMARK. We point out that (2.25) and (2.26) allow to treat some
non-radial potential energies V with

By (2.14) and (2.19) we can also deduce some results in the case in which
V is defined only in a neighbourhood of the origin.

(2.28) THEOREM. Let n &#x3E; 2, r &#x3E; 0, V E Cl (.B(0, r)B{0}) and let

~a , ~ i : ~ ~, +aa[ - [0, -~- oo ~ be non-decreasing, non-constant and convex.
Let us assume that

there exists To &#x3E; 0 : V T t91(1/;1, T)  t90(1/;0, T).

Then there exists T1 &#x3E; 0 such that for every T E 10, Tl~ ] there exists a

T-periodic solution qT of (2.1) with 0  I  r for every t and

Moreover, if n = 2, qT has minimal period T’.

PROOF. Let us remark that, if d E R and ~i ( 8) = d for every
sufficiently large s, then t9i (0i, T) = t9i (0i, for every sufficiently small
T. Therefore we can assume without loss of generality that V e CI(R!1B10)),
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Let p be the function defined in (2.9). _

We can find T &#x3E; 0 such that T  To and p(T)  r for all T e]0, T]. Then
for every T in 0, T~ we can apply (2.14) ((2.19) resp.), obtaining some curves
qT. By (2.14)i ((2.19)i resp.) we get that for a sufficiently small T1 &#x3E; 0 it is

0   r for every t, whenever 0  T  Ti. Moreover, if n = 2, qT has

minimal period T by (2.19). ·
Now for every a &#x3E; 1 let us define

where y (s)=sa.

(2.30) REMARK. The real extended function p : 
lower semicontinuous. Moreover we have

i) ~(1)=1;
ii) for all 1  ~p(a~  +00;

iii) for all a &#x3E; 2, p(a) _ -f-oo.

PROOF. It is a consequence of (2.4), (2.10)i, (2.10)ii, (2.10)iii and (2.10)v .
.

(2.31) COROLLARY. Let n &#x3E; 2, r &#x3E; 0 and V E C~(B(0,r)B{0}). Let us
assume that there exist a &#x3E; 1, b &#x3E; 0 such that

Then the thesis of (2.28) holds.

PROOF. Let = If a  2, = If a &#x3E; 2, let

0 1 : 10, + oc I - [0,-t-oo[ I be any non-decreasing, non-constant, convex function
such that 

~ ,

Let T &#x3E; 0. If a &#x3E; 2, we T)  +00 == v0 (00, T). Otherwise by
(2.10)i ~, , (2.10)vi i and (2.29) we have

Then, by (2.10)~ and (2.10)~, z , we deduce

Now we can apply (2.28). ·
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(2.32) COROLLARY. Let n &#x3E; 2, r &#x3E; 0 and let V E C’(B(O, r)B10}) be of
the form

1

with b &#x3E; 0, a &#x3E; 1 and W E C1 (B(0, r)B{0}) such that

Then the thesis of (2.28) holds.

PROOF. By (2.30) we have p (a) &#x3E; 1. Let e &#x3E; 0 with (1 - e)cp(a) - 1 &#x3E; 0.

By decreasing r, we can suppose that

namely

Now we can apply (2.31 )..

(2.33) REMARK. We point out that we do not know whether or not (2.32)
holds true in the case a = 1.

3. - The even case

Further results concerning Newtonian potentials can be obtained under an
eveness assumption on the potential energy V. Under strong force hypothesis,
results for even singular potentials have been obtained also in [6].

Throughout this section

will denote a function of class C’ defined in an open subset 11 of ~n with
r~ &#x3E; 2. We recall that p denotes the function defined in (2.29).

(3.1) THEOREM. Let V E C’1 (L~n ~ ~0~ ) be such that

i) for every x E V (-~~ - 
ii) there exist a &#x3E; 1, b &#x3E; 0 such that,
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Then for every T &#x3E; 0 there exists a T-periodic solution qT of (2.1) which
does not cross the origin and has minimal period T. Moreover qT is symmetric
with respect to the origin (that is qT (t + 2 ) _ -qT(t)) and

Furthermore, if ii) is substituted by the stronger assumption
ii)’ there exist a &#x3E; 1, b &#x3E; 0, /-z E 1, 2 a ~ ( rx ) ~ I such that,

then we have also

PROOF. Let H9 - t - 2 ,1 , set

- 

1 2) 1 12 11,
V ( 0 ) _ - oo and let f : H9 -R u be the Lagrangian integral associated
with V. Of course f is of class C’ on the open (in H8) set H8 ~Xo .

We need the following results.

(3.2) LEMMA. Since V is even, we have grad f (q) E H8 for every

q E HsBX0.
PROOF. Let 27 E H be defined by

Since grad V is odd, a simple change of variable shows that = grad f (q),
hence 

Because of the previous lemma, to get a solution of (2.1), it is sufficient

to find a critical point of the functional I, H s BX 0 .
(3.3) LEMMA. We have that inf is achieved at a non-constant curve.

PROOF. Because of symmetry, the length of a curve is such
1 1

that J Iq’/dt &#x3E; I for all s ; therefore we have f Iq’I2dt &#x3E; a

o 0

minimizing sequence for f in He is bounded in LOO, hence in H. By a standard
argument we have that such a sequence has a subsequence weakly converging
in H9 to a minimum point.

Let us observe that any minimum point for II H s is non-constant, because
the only constant curve in He is the origin and f ( 0 ) = +aa..
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(3.4) LEMMA. Every minimum point for flHs is the restriction to [0,1] of
a curve having minimal period 1.

PROOF. Let q be a minimum point. By contradiction, we should find

such that k &#x3E; 2 and q(t) = q (t - i) for all t e [ k , 1] . Let, for
(t) (t-1/k) [1/k,1]

every t E [0, 1], 4(t) = q ( k ) . Of course q E H. Since q is not the constant

0, k must be odd; therefore q E H.9 and q is not constant.
But

and this is absurd, because q is a minimum point..

(3.5) LEMMA. Let 1R (t) - (R cos 21rt)e1 + (R sin where R &#x3E; 0

and I ej) = Then, there exists R &#x3E; 0 such that

PROOF. By ii) we have

By the change of variable 1(t) = 7(2t) and (2.10)vi, we deduce

where 0(s) = bsa.
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Let R &#x3E; 0 be such that

By ii) and (2.10)~ we have

Combining (2.29) with (3.6) and (3.7), we get the thesis. ·
Let us return to the proof of (3.1 ). By (3.3) and (3.5) there exists a

minimum point qT for 8 
which does not cross the origin. By (3.2) qT is a

critical point of f on HBXo. Moreover, by (3.4) qT is the restriction to ~0, 1~
of a curve of minimal period 1.

Since

where 7R (t t we have

1

If we remember that f &#x3E; 16 we get
o

Now let us assume ii)’ .
As in the proof of (3.5), (3.7), we have

= 
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Let us set for every T &#x3E; 0 and for every p &#x3E; 0,

Then for every ’.

Moreover, as in the proof of (3.5), we have for every T &#x3E; 0,

By (3.10) and (3.11), we can find p 1 &#x3E; 0 such that

Let us remark that, by the change of variable , we get

Combining (3.8) with (3.12) and (3.13), we obtain

Therefore for every t, hence
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(3.14) COROLLARY. Let A be a symmetric matrix in ~n with eigenvalues
0  .À1  ... and with a &#x3E; 1. Let us assume that

 

Then for every T &#x3E; 0 there exists aT-periodic solution qT of (2.1 ) which
does not cross the origin and has minimal period T. Moreover

PROOF. Since

we have

Since we can apply (3.1 )..

(3.15) COROLLARY. Let E be a measurable subset of b &#x3E; 0 and let
V E be defined by

Let us suppose that

i) for all x E E, - x E E;

ii) there exist r and R such that R3  2r3 and

Then there exists To &#x3E; 0 such that, for every T &#x3E; To, there exists a T-
periodic solution qT of (2.1), having minimal period T, such that qT (t) E 
for all t.

Moreover 
°

I I

PROOF. By i) we have
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Moreover, by ii), for every

Let V E C1(Ld3~{0}) be such that

for all a

Since we apply (3.1 ) and we remember that

(3.16) COROLLARY. Let

where

Then, there exists To &#x3E; 0 such that, for every T &#x3E; To there exists a

T-periodic solution qT of (2.1 ), having minimal period T, such that qT (t) I &#x3E; R
.for all t.

Moreover

PROOF. Let R such that

for every

Now we go on as in the proof of (3.15)..
Also in the even case, we can give a result whenever V is defined only

in a neighbourhood of the origin.



492

(3.17) THEOREM. Let V E C’ (B(0, r)B{0}) , r &#x3E; 0, be such that

i) for every x E B(0, r~~{0~, V(-X) = V (z) ;
ii) there exist a &#x3E; 1 and b &#x3E; 0 such that

Then there exists To &#x3E; 0 such that, for every T To], there exists a T-
periodic solution qT of (2.1), having minimal period T, such that 0  IqT(t)1  r

for every t and 
-- ...1

PROOF. Let 0  p  r and V E C1(i:s~n~{0}~ such that for every
~ E B(0,p)B{0}, V (x) = V (x), for every x E ;~Zn~{0}, V (-x) = V ( x) and

Now we apply (3.1 ) and we remember that

(3.18) COROLLARY. Let

where a &#x3E; 1, b &#x3E; 0, W r &#x3E; 0, W(-x) and

Then there exists To &#x3E; 0 such that, for every T To], there exists a T-
periodic solution qT of (2.1 ), having minimal period T, such that 0  qT (t)  r

for every t and
1. · 11 11 -

PROOF. We have 2" ~o (a) &#x3E; 1. Let e &#x3E; 0 be such that (1-e) 2" &#x3E; 0.

By decreasing r we can suppose that

namely

Now we can apply (3.17). ·
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