
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

GABRIELLA TARANTELLO
Subharmonic solutions for hamiltonian systems via
aZp pseudoindex theory

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 15,
no 3 (1988), p. 357-409
<http://www.numdam.org/item?id=ASNSP_1988_4_15_3_357_0>

© Scuola Normale Superiore, Pisa, 1988, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1988_4_15_3_357_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Subharmonic Solutions for Hamiltonian Systems
via a Zp Pseudoindex Theory

GABRIELLA TARANTELLO

0. - Introduction

Let the Hamiltonian 1l E ~’ 1 be of the form:

where z = (ZI, - - ’ , Z2N) C R2N, t ~ R, Q is a 2N x 2N symmetric matrix and
H is T-periodic in the t-variable (. denotes the usual scalar product in 

We call subharmonics the periodic solutions of the Hamiltonian system:

with period an integral multiple of T.
One of the first results on subharmonic solutions for Hamiltonian systems

was obtained by Birkhoff-Lewis [5]. They show that if zero is an equilibrium
and suitable assumptions are satisfied, then near zero there exists a sequence of
subharmonics with arbitrarily large minimal period. See also [14]. Subsequently,
by means of variational methods the problem has been studied from a global
point of view. Hence somewhat global versions of the Birkhoff-Lewis result
were obtained in various situations. See [6], [7], [13] and [16].

Here we ask the more precise question whether for any given integer p &#x3E; 1

there exist subharmonics with minimal period pT, and how many of them it is
reasonable to expect as p - +oo.

A partial answer in this direction was given in [13] where the matrix
Q m 0 and H is convex (in the z-variable) with subquadratic growth both at
the origin and at infinity.
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Using the Z p-symmetry of the problem (with respect to jT-phase shift,
j = 0, 1, - - - , p - 1), it is shown in [ 13 ] that for any prime integer p sufficiently
large, there exists an integer kp &#x3E; 1, such that the Hamiltonian system
(0.2) admits at least distinct subharmonics with minimal period pT, and
I~p -~ +co as p - 

This result is here extended for Hamiltonians as in (o.1 ), where H might
have superquadratic or subquadratic growth at infinity and in the first case
need not be convex.

Similar results are obtained concerning subharmonics for second order

systems of O.D.E.

Again, the idea is to exploit the Zp group symmetry of the problem.
We introduce an appropriate Z p pseudoindex theory, partly inspired by the one
described in [4] for the group 81, and more generally by [2].

Needless to say, it is because of the "huge" Zp-fixed point set that the
theories in [2] and [4] fail to apply directly. In order to handle this, one needs
a more appropriate use for the 7 p-Borsuk-Ulam theorem (cf. [12]). It would
be interesting to see the pseudoindex theory introduced here applied to other
situations.

While this work was being completed, the author learned from Benci that
he and Fortunato [19] have recently obtained a Birkhoff-Lewis type result for
a rather general class of Hamiltonian systems.
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The author is happy to express her gratitude to L. Nirenberg for useful
suggestions and continuous support.

1. - Statement of the results

We seek solutions of the following problem:

where p &#x3E; 1 is integer. &#x3E;

As already discussed in [5] and subsequently in [16] (in the variational
framework), there is a natural hypothesis that the matrix Q needs to satisfy so
that ( 1 ) p admits solutions.

Namely, we shall require that the eigenvalue problem:

admits 2N purely imaginary eigenvalues including possibly zero.
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Notice that if (A, ç) is an eigenpair for (Q1) so it is (~, ~). Thus if we
denote by çj) i = 1, -, 2N the eigenpairs of (Q1), there exist real numbers

such that

and

Moreover we may assume that the eigenvectors Ç1"", Ç2N are normalized as
follows:

with

and

for some &#x3E; 0 with /~ = JJi+N i == 1, ~ ~ ~ , N. Here (-,.) denotes the usual
hermitian product on C~ 2N .

We shall start by discussing solutions of ( 1)p is case H has superquadratic
growth at infinity. More precisely, let H satisfy the following:

(H2) there exists a &#x3E; 2 such that:

b) there exists R &#x3E; 0 such that H(z,t) &#x3E; 0 for every )z ) &#x3E; R.

(H3) there exist 7 E (2, 1) and 01 &#x3E; 0 such that

(H4) there exists C2 &#x3E; 0 such that

(Ho) If z(t) is periodic with minimal period qT, q rational, and Hz (z(t), t)
is periodic with minimal period qT, then necessarily q 
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REMARKS. (1) The hypothesis (H2) guarantees superquadratic growth of
H at oo. In fact one can show that for any r &#x3E; 0 there exists a(T) &#x3E; 0 such
that

and a(r) provided a  1 (see (1.5) below).
1-1

We shall specify later the value of T suitable for our purposes.

(2) The hypothesis ( ~I3 ) together with ( H2 ) give an upper bound on the
growth of H, that is

and

Notice that comparing (1.4) and (1.5), one necessarily has 2 ~

(3) The hypothesis (H4) shall be needed to estimate (from below) the
L1-norm of H(z(t), t) in terms of its L°°-norm whenever z = z(t) is a solution

of (1) P .
Notice that this is always the case when H(z, t) = a(t)H(z). At first the

author was only able to treat this situation.
L. Niremberg suggested the more general hypothesis (H4).
(4) The hypothesis (Ho) already introduced in [13] is a generic one, and

emphasizes the essential time dependence of H.
In order to state the results we need to introduce some notation. Set:

Further assume that:
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This readily implies that

Let us now fix the constant To so that:

()) Q ]) denotes the norm of the matrix Q in the usual sense); and set

Define

and set

where : biggest integer  (3).
Notice that (Q2) implies 0  1 whenever Wi # 0, while rj = 0 if

wi = o.
In this case we prove:

THEOREM 1. Let Q satisfy (Q1), (Q2) and H satisfy (Ho) - (H4). For
any prime integer p &#x3E; 1 satisfying

there exist at least kN distinct solutions of (1)p with minimal period pT. 0

From Theorem 1 immediately follows:

COROLLARY 1. Let Q - 0 and H satisfy (Ho) - (H4). For any prime
integer p &#x3E; 1 satisfying:

for some integer k &#x3E; 1, there exist at least kN distinct solutions of (I)v with
minimal period pT. Ca
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One can even deduce a slight generalization of the result in [ 10] concerning
autonomous Hamiltonian systems.

for some To and ao &#x3E; 0 satisfying

and

Then the Hamiltonian system Ji (t) = Hz (z (t) ) admits at least N distinct
periodic solutions with minimal period T. 0

More on the minimal period problem for autonomous Hamiltonian systems
can be found in [8] and [11].

Now consider the case where the Hamiltonian is given by =

’Qz - z + H(z, t) and H has subquadratic growth at infinity.
More precisely assume:

( H1 ) * H ( ~, t) is convex, H (z, ~ ) is T-periodic, Hx E X R, R 2N), and
Vt E R, 

(H2 ) * There exist positive constants ~,6~ ~=1,2 and 1  a  7  2 such

that:
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Set

In this case we prove the following generalization of Theorem 1 in [13].

THEOREM 2. Let Q satisfy (Q1) and H satisfy (H1)*, (H2)*, and (Ha).
For any prime integer p &#x3E; 1 satisfying:

for some integer k &#x3E; 1, there exist at least kN distinct solutions of (1)p with
minimal period pT. D

Next we shall be concerned with subharmonic solutions for nonautonomous
second order systems of O.D.E.

Namely let the potential V be of the form:

with x = ( x 1, ~ ~ ~ , xn ) Q n x n symmetric matrix and

for every 
We seek solutions for the problem:

Since the quadratic term is most naturally thought of as the kinetic

energy for the given mechanical system, we shall assume:

~ is a n x n positive semidefinite symmetric matrix.

Denote by 0  2 -  w n the eigenvalues of Q.
We start by discussing the case where V has superquadratic growth at

infinity. As in the Hamiltonian case assume:

~a &#x3E; 2 such that 0  V (x, t)  Vz, Vt; ~I~ &#x3E; 0 : V(x,) &#x3E; 0

b’ x such R.
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and C1 &#x3E; 0 such that

(Yo ) The same as ( Ho ) with Hz replaced by Vx .

Set

and fix To E R such that:

Hence by (Tl2 ) there exists such that

Finally set

In this case we prove:

THEOREM 3. Let Q satisfy (Q3) and V satisfy (Vo) - (V3). For any prime
integer p &#x3E; 1 such that

there exist at least kn distinct solutions of (2)p with minimal period pT. 0

REMARK. As above, from Theorem 3, one can derive corollaries concerning
the case Q = 0 (i.e. /3y = nT 8T = 1, rj = 0) and the autonomous case.12 ’

To our knowledge, in the superquadratic case the only result concerning
subharmonics (with prescribed minimal period) for second order systems of
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O.D.E. is given in [3]. However, the point of view in [3] is rather different
from ours; there a solution for (2)p with minimal period pT is obtained only
provided Tw.7. is sufficiently small.p 2 7r y

We conclude this paragraph by describing in the subquadratic case the
analogue of Theorem 2.

To this end set:

01 
-

Moreover denote by (V1)* and (v2 ) * the corresponding assumptions (.Hi)*
and (H2 ) * for V and define:

We have:

THEOREM 4. Let Q satisfy (Q3) and V satisfy (Vo ) , (V1)* and (V2)*. For
any prime integer p &#x3E; 1 such that

problem (2)p admits at least kn distinct solutions with minimal period pT. [I

In particular Theorem 4 generalizes Theorem 2 in [13].
We have already noticed how problems ( 1 ) p and 2 ) p are Zp symmetric.

Namely, for any solution z ( t ) of ( 1 ) p (or (2)p), we have that 
1, ~ ~ ~ , p - 1 is a solution as well.

We specify however that the solutions claimed in Theorems 1-2-3-4 are
"Z p-distinct" in the sense that one can not be obtained from the other by a
j T -phase shift.

Although highly non-generic, it might still happen that, in any case, such
solutions describe the same geometric orbit.

But one can easily check that this is certainly not the case if, for example,
H is of the form:
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and satisfies:

(Ho)+ If z ,~ const. is pT periodic and Hz (z(t), t -~- c) = Hz(z(t),t) for some
c E R then necessarily c = j T, j E Z.

In particular this guarantees that if we replace the assumption ( Ho ) with
( Ho ) + in theorem 3, and 4, then the solutions there claimed are indeed

geometrically distinct.
As is well known, solutions of ( 1 ) p and (2)p are the critical points of

some suitable functional in a suitable space. Naturally such a functional inherits
the Z p symmetry. This motivates the next section where we prove existence of
multiple critical points for functionals invariant under a Z p group action.

2. - A critical point theory for Z p invariant functionals

The Ljustemik-Schnirelman theory for even functionals (cf. [17]) has
started a series of theories intended to obtain multiple critical points for

symmetric functionals. We only mention the case of S 1-symmetric functionals
(under time shift) commonly arising in autonomous oscillation problems.

However, while the L.S.-theory applies naturally to bounded functionals
(from above or below), one usually deals with unbounded ones. Hence in recent
years a great effort has been devoted to combine symmetry and unboundedness.
In this direction one has the relative index introduced in [9] and [4], and the
pseudoindex of [2]. But such theories all require strong assumptions on the
fixed point set F for the given group action. So for example in [4] one needs
F finite dimensional, while in [2] F has to be contained in a "good" subspace.

Neither of these results can be applied to our situation where the fixed
point set is "big", consisting namely of all the T-periodic functions.

It is our task here to define appropriate index theories under no restrictions
on the size of F, which are suitable for our purposes. Although our discussion
will be restricted to the group Z p (needed for the applications), we emphasize
that by minor changes one can treat more general groups with a Borsuk-Ulam
type theorem available. To start let us recall the definition for the Zp index
map (cf. [13]).

Let E be a complex Hilbert space and

be a norm preserving operator that generates a Z p group action on E; i.e.
there exists an orthonormal basis { uk , of E and integers mk such that

ilmkT uk = e p Uk-
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DEFINITION. (i) The subset A c E is called T-invariant if TA = A,

(ii) the continuous map h : E -~ E is called T-equivariant if h(Tu) =
Th(u).

Set

is invariant and closed}

and define the Z p index map:

as follows: for A E ~, ip (A) = k if 1~ is the smallest nonnegative integer such
that there exists a continuous map

and integer m~ ~ 0 relatively prime to p, 1  j  k, such that

Set

ip (A) = +oo if no such map exists

and

The index map ip satisfies the following properties:

(2.1 ) if r : A --+ B is a continuous equivariant map then:

(2.3) if G E E is compact and 6 &#x3E; 0 is small enough then

and

Furthermore let f E 01 (E, JR) be a T-invariant functional, i.e.
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and assume that f satisfies the Palais-Smale (P.S.) condition. Recall that f is
said to satisfy the (P.S.) condition in the interval [a, b] c R, if any sequence

satisfying: ,

and

admits a convergent subsequence.
Set

and

We have A~ , Kc E E and K, is compact.
The link between index theory and critical values of invariant functionals

is contained in the following:

PROPOSITION 2.1. Let f E C1 (E, R) be aT-invariant functional and let
a  b EJR. If f satisfies the (P.S.) condition in [a, b) and dc E [a, b) we have
K~ _ ~ then

PROOF. Set co = max{c ~ [a, b] : ip(A,) = If Co  b then by
the deformation lemma (cf. [17] and [13] for the Zp-version of it) we have

0
’ 

Furthermore, Proposition 2.1 even indicates how to get critical values for
bounded functionals. Indeed, if for example f is bounded from below, then

is a critical value for f. If f is not bounded from below, (2.4) might only give
Ck = -00.

The idea, in such situation, is to define a more suitable (relative, pseudo)
index map (depending on the functional), such that when replaced in (2.4) gives
finite 

From now on, we shall take E to be a complex Hilbert space with
hermitian product denoted by , &#x3E;.

In addition we take the functional f of the form:

where:

L is a bounded, selfadjoint, T-equivariant operator,
and Q’ : E --~ E is compact.
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Denote by F the fixed point set for the given Z p action on E, i.e.

so F is a closed subspace of E.
We start by defining a Z p-index relative to a given subspace of E. Inspired

by [4] we proceed as follows.
Given E- a closed T-invariant subspace of E with LE- - E-, set

F- - E- n F.

DEFINITION. We call the relative Z p-index with respect to E- the map:

defined as follows:
if k is the smallest nonnegative integer such that there exists

a continuous map:

satisfying:

where

p~- : E --&#x3E; E- is the usual orthogonal projection:

a : E - R is a continuous bounded, T-invariant functional (i.e. 3M &#x3E; 0 :

la(u)1 s M Vu e E and a(Tu~ = a(u) Vu E E);

K : E --; E- is compact, T-equivariant map.

(2.5.3) (Equivariancy) (a) h1 (Tu) = Th 1 (u)
(b) There exist integers 0 j - 1,..., k relatively

prime to p such that:

(2.5.4) For every u E A n F-, a(u) - 0, K(u) = 0 (so u and by
(2.5.3)-(b) necessarily h2 (u) = 0).
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REMARK. Intuitively measures how "big" is the component of A in
E+ = (E’)~-. Moreover Tp = ip if E- - {0}.

Next, we define the class of maps y : E ~ E under which the relative
index map is invariant (i.e. Tp o y = Tp).

DEFINITION. A continuous map y : E - E is called admissible if

(2.6.1) y is a diffeomorphism;
(2.6.2) y(u) = ea(u)Lu + K(u) where:

a : E -&#x3E; R is a continuous T-invariant bounded functional;
K : E -~ E is a continuous T-equivariant compact map;

(2.6.3) both y and y-1 map bounded sets in bounded sets and
(2.6.4) for every u E F - , a ( u) = 0, K ( u) = 0.

REMARK. Since L is T-equivariant, by (2.6.2) it follows that y is T-

equivariant.
Set

1 == (y : E ---~ E : y is admissible}.
Hence I d E 1 and y E 1 if and only if E 1. The main properties of Tp are
summarized in the following:

PROPOSITION 2.2. (a) (Monotonicity): dy E 1, VA E E we have:

(b) (Subadditivity): VA, B E E

(c) If 1 then A f1 (E-)1. =f 0.
PROOF. (a) We just need to show Tp(A)  Tp(y(A)). Assume Tp(y(A)) =

k  +oo (if k = +oo the inequality is trivial). Hence there exists a continuous
map 

-

satisfying (2.5.
Define

by

We claim that h satisfies (2.5.1)-(2.5.4). Indeed one easily checks (2.5.1 ) while
(2.5.3) follows from the fact that y is T-equivariant. In order to prove (2.5.2)
and (2.5.4) notice that
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and y ( u ) = with a and ,Q T-invariant, bounded functionals and
~ and K* compact operators into E- and E respectively. Therefore

that is

where T-invariant bounded functional and

is a compact map.

(b) Since the claim is trivial for -+- o0 or ip(B) = +oo, let us

assume that Tp (A) - k and ip(B) = i. By definition, there exist continuous

maps:

satisfying (2.5.1)-(2.5.4) and

satisfying

: B for some integers 0

relatively prime to p, j = 1, ~ ~ ~ , L.
Since B n F - = 0 (otherwise ip (B) = ~oo), there exists a continuous map

7 : E - C~ such that liB = f and 0.

Moreover, the map / = (Î1, ... , it) given by

satisfies fj(Tu) = and f, 0. On the other hand,
hi : A --+ E- is given by

with a and K as in (2.5.2).

Call a a bounded extension of a on E, and set

So a is a bounded T-invariant functional on E. Similarly construct
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a. continuous compact, T-equivariant extension of K and

a continuous extension of h2, satisfying the same equivariant property of h2.
Set h1 (u) = eâ(u)Lu + ff (u) and define:

by

Easily one checks that g satisfies (2.5.1)-(2.5.3). Finally (2.5.4) follows since
for every u e A u B n F- necessarily u E A, so 11(u) = a(u) = 0 and
k (u) = K (u) = 0.

(c) Suppose An (.E~‘ ) 1 = 0, that is 0 f/. pE- A. The continuous map:

satisfies (2.5.1)-(2.5.4) and therefore Tp (A) = 0, a contradiction!

We shall use the following notation:

p &#x3E; 0.
If E is a complex Hilbert space, we have:

where F is the fixed point set and the subspace E3 satisfies:
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In case E is a real Hilbert space with a Z p group acting on it, then

applying the above decomposition to its complex extension E = E + i E one
concludes the following for E:

and the subspaces Ey now satisfies

(a) dimp Ej = 2i, E~ T-invariant;

(b) there exists an homeomorphism ~p3 : E~ 2013~ C’
such that Ty : C ’ -~ C ’ with 
is a unitary representation of a Zp group

(2.7)~ ~ action on C:j given by:

~~i~"~j)=~~-~ir--~~~~]
for some integer m:j18 9 ~ 0 relatively prime to p,

8 # 1, ... , j.

REMARK. We have o T = T3 o 
DEFINITION. A subspace D c E is called k-nice if D satisfies (2.7)~ in

case E is a complex Hilbert space or (2.7)~ in case E is a real Hilbert space.
We state here the Z p version of the Borsuk-Ulam Theorem needed in the

sequel.
Theorem (see [12]): Let n be an open bounded

neighborhood of the origin n = b + 2a, with coordinates

z = ~ x, z ~ ~ , x = ~ ~ 1 ~ ... ~ ~ b ~ E ~ b ~ ~=(~1, ... ~ z~ ~ E ~ d . Let T be the unitary
representation of the Zp group action on given by

for some integers ~~ ~ 0 relatively prime to p, j = 1, _~ ~ , a. Assume Q to be
invariant with respect to such action (i.e. ‘dz e 0, Tz 

Let f an -&#x3E; Rb X C l be a continuous map f 
with Ij e R , j = 1, ~ ~ ~ , b, and Ib+8 E C, s = 1, ... , l, satisfying the following
equivariant properties:

(1) ’dz e for some 0

relatively prime to p, j = 1, ... , l
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0

We are now ready to prove the following:

PROPOSITION 2.3.: Set E+ = (E-) -’ and let Et c E+ be a k-nice

T-invariant subspace.
For &#x3E; 0 and for any y E 1 we have:

PROOF. Let cpk : and 0 integers relatively prime to p for
j=1,....,k such that A

Define the continuous map:

b’z- E E- and zk E Et. Since 0 _&#x3E; zk = 0 and y(z) = 0 =&#x3E;
z = 0, we have (0, 0) ~ h(E- EÐ Et n Moreover, h obviously satisfies
(2.5.2)-(2.5.4), thus 1’p(E- e y ( Sp ) ) = i  k. Arguing by contradiction,
assume that

t  k.

Hence there exists a continuous map:

where a is a bounded T-invariant functional, and K is a T-equivariant compact
map into ,~ r . Moreover

for some integer kj = 0 relatively prime to p, j = 1,....l , and

We suppose dim E- = +oo and dim F- = +00, since the finite dimensional
case follows by even easier arguments.

00 co

Decompose: E- = (B E,-: (D F- and F- = ED where E7 c E§~~ is
~ ~~~

3.-nice and F 7- c dimp F,7 = j.
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Denote by pE- : E - .E3 and pF- : .~ --~ F~ the canonical

orthogonal projection on .E- and Fg respectively, and by ~p9 : E8 -+ cc 8

the homeomorphism such that

for every ( Ç1, . , . , Ç8) with rn e , ~ ~ 0 integers relatively prime to

P,J==1, -,5.
Define

as follows:

We claim that = 0 for some us E n To this end

identify with R 11 and define

Hence n8 defines a bounded neighborhood of the origin in R 8 
and

Furthermore 08 is symmetric with respect to the Z p group action on IR. 8 
generated by the unitary operator:

where z, = ( z 1. i , ~ .. ~ z 1. e ) ~C’ and z~ = ( z2 . i , ~ .. ~ z2 . ~ ) 
Define the continuous map: 

’ ’

where still we identify with R 8.

Obviously hs vanishes in Ek n y(Sp) if and only if f vanishes
on ans.
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In addition f enjoys the following equivariant properties:

Furthermore

Finally, for every u e E F9 n y(Sp) we have

Thus applying the Zp-Borsuk-Ulam Theorem, we conclude that 0 ~ and

therefore that there exists u 9 E F7 n y ( S p ) such that = 0.

That is

u9 + t~ with ui E F8- end E~ and u+ E E+
Since IIu811 I is uniformly bounded, for some subsequence, that we still call

U8 we have:

and

Hence by (2.8) we get:
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On the other hand, since Et is finite dimensional, we can certainly assume
that ut E In conclusion:

and consequently h (u) = (0, 0). This is clearly impossible since, by definition,
(0, h(E- EÐ Et n y(Sp)). 0

REMARK 2.1. In the preceding proof the property (2.5.2) of Tp enters only
for the final convergence argument. Therefore for a finite dimensional subspace
E-, the relative index can be defined independent of the functional. In particular
in this case one does not need to require (*).

REMARK 2.2. In the previous proposition we can replace Sp, p &#x3E; 0, with
the boundary of any bounded T-invariant neighborhood of the origin.

To any relative index map, one can associate a pseudoindex map:

as follows.
Fix p &#x3E; 0 and define

for any given A E E.
We summarize in the following proposition the main properties of 

PROPOSITION 2.4.

(a) If Ek is a k-nice subspace of E+, then

(b) (Monotonicity) Vy E 7 1"; ( y ( A~ ) = 1"; (A).
(c) (Subadditivity) Tp (A u B)  1"; (A) + ip (B); A, B E ~.

(d) If 1"; (A) &#x3E; 1 then A n Sp n E+ 54 ~.

PROOF. (a) follows immediately from proposition 2.3; and (d) from

proposition 2.2.(c).
To prove (b) just notice that for any 0 E 7

and

By similar considerations and the subadditivity of Tp one obtains (c). D
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REMARK. Propositions 2.3 and 2.4.(a) show that the relative index theory as
well as the pseudoindex theory introduced above are indeed consistent. Namely
that there exist invariant subsets with arbitrarily large relative (psuedo) indices.

Our next goal is to show that for functionals as in (*) one can construct
a deformation map within the family 1.

We learned the following version of the deformation theorem from

Zhengfang Zhou. It is however a slight modification of Benci’s (cf. [2]). We
give the proof here for completeness.

DEFORMATION THEOREM. Let f E 

satisfying (*) and the (P.S.) condition at the value c E II~ such that

1-1 [c - Eo, c + EO] n F - = 0 for some Eo &#x3E; 0. Then for any neighborhood N of
~f~ there exist 0  E  Eo, and y E 7 such that for every 0  E  E we have:

-. -" , --,

and if K, = § =&#x3E; y(AC+f) c AC-f.

PROOF. Since f satisfies the (P.S.) condition at the value c, we have K,
compact. Let 6 &#x3E; 0 be such that

where, we recall N6 (K~) _ {u E E : dist(u, Kc)  6 1. There exist E &#x3E; 0 and

fi &#x3E; 0 such that

and we can always assume that

Recall the following

LEMMA (Benci [2]): Let K : E -+ E be a T-equivariant compact operator.
For any ’1 &#x3E; 0, there exists k : E ---~ E a T-equivariant compact operator such
that:

(a) k is locally Lipschitz continuous,

Hence take
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and let b : E --~ E be T-equivariant compact, locally Lipschitz continuous
operator such that

Set

We have:

for every u E S.
Set

thus:

Moreover Vu E S

that is

So we obtain:

i.e.

E - 0,1 ~ be a T-invariant, Lipschitz continuous functional such that
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Set

The initial value problem:

admits a unique solution y(t, u) defined for all t E R. In addition for any fixed
t e R

- - " , , ,

is a T-equivariant diffeomorphism, and both map bounded sets in

bounded sets. Indeed by (2.10) we have:

Set y ( u) = y (Z, u). By standard arguments using (2.11) and the fact that E
satisfies (2.9) one shows that necessarily:

Furthermore, to prove that y has the required form, set

otherwise

and let

Therefore y(t, u) satisfies the integral equation:

Thus if we set
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we have that a is a continuous T-invariant functional such that la(u)1 
16 - Ki is a T-equivariant compact operator and9B2 Z; K is a T-equivariant compact operator and

Finally Vu e F ! we have that u g f -1 ~ c - + E ~ , this implies V(u) = 0,
therefore y(t, it) = u, which gives a ( u ) = 0 = 0. D

We can now apply the theory developed so far to find (multiple) critical
points for T-invariant functionals.

Notice that, since f’ is T-equivariant, if u(t) is a critical point for f, so
it is Tj u for j = ~, ~ ~ ~ , p - 1.

DEFINITION. We say that U 1, U2 E E are Z p-distinct if

Set

THEOREM 2.1. Let f E be a T-invariant functional satisfying
(*). Assume that there exist invariant subspaces E- and Ek satisfying

(2.12) Et c E+ - (E-)-L is k-nice and LE- = E-

and such that for some constants co  coo and p &#x3E; 0 we have

If f satisfies the (P.S.) condition in [co, then there exist at least
k Z p-distinct critical points U 1, - - - , Uk E E of f such that

PROOF. Define the numbers

so c 1  C2  ...  ck . Moreover every A 6 E with &#x3E; 1 satisfies
A n E+ n S p ~ ~ . Hence by (~2) we obtain c 1 &#x3E; co.
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Since E~-) = k, by (/i) follows that ck  Coo. Therefore

We claim that cj is a critical value for f, = 1, . , . , k. More generally
we shall prove that if c j = Cj+1 ==...= = c for some r &#x3E; 0 then

r + 1. Arguing by contradiction, assume that  r. Hence for
S &#x3E; 0 small enough we have =  r.

By the deformation theorem, we can then find ~ &#x3E; 0 and y E 1 such that

Moreover, by definition, there exists a subset .A E E such that A c AC+’f/2 and
,rp* (A) &#x3E; j + r. On the other hand the subset B = satisfies
B c AC-’f/2 and

which is clearly impossible since c = C j. In addition, from ( f4), it follows
that KCJ n Fo = ø, Vj = 1,..., k. Therefore if Cj == ... = C

with r &#x3E; 1, then necessarily K, must contain infinitely many Zp-distinct critical
points of f (see [ 13) for details). The proof is therefore concluded. 0

REMARK 2.3. By Remark 2.2. one can replace Sp with the boundary of
any bounded T-invariant neighborhood of the origin.

By the proof of Theorem 2.1 and Remark 2.1 follows:

COROLLARY 2.1. If the subspace E- in Theorem 2.1 is finite dimensional,
then the conclusion of Theorem 2.1 follows without the assumption that f
satisfies ( * ) . 0

Since the hypothesis ( f4) of Theorem 2.1 is used to guarantee multiplicity
we have:

COROLLARY 2.2. Let all the assumptions of Theorem 2.1 hold but ( f 4 ) .
Then f admits, at least, a critical value in [co, u

Similarly one obtains:

THEOREM 2.2. Let f E C1 (E, If~ ) be a T-invariant functional satisfying
(*). Assume that there exist invariant subspaces E- and Ek satisfying (2.12)
and constants c o  Coo, p &#x3E; 0 such that



383

If f satisfies (f3) and ( f4) and the (P.S.) condition in [co, then there exist
at least k Zp-distinct critical points, u1, ..., uk, of f such that co  
coo, Vj = 1, ..., k.

PROOF: It is completely analogous to the previous one, only now define:

Since &#x3E; 1 implies by (/2)* we have c i &#x3E; co. Moreover

Tp ( E- E9 Et n Sp) = k, so by ( f 1 ) * we get c k  D

REMARK 2.4. The analogues of Corollary 2.1 and 2.2 and Remark 2.3
hold with respect to Theorem 2.2.

To understand what motivated Theorems 2.1 and 2.2 observe that

and similarly

Hence all the effort was to generalize (2.4) to unbounded functionals.
It is clear that one could extend the given arguments to other groups. We

only mention its possible exstension to the group S 1 where a index theory is

already available (see [ 1 ] ).
Let

be a unitary representation of S 1 in E, with fixed point set

In this case we say that the subspace Ek c E is k-nice if

(i) dimc Ek = k (or dimp Ek = 2k in case E is a real Hilbert space);
(ii) Ek is S1 invariant, i.e. TOEK = Ek, V6 E ~0, 2~r~;
(iii) there exists a homeomorphism p : C k such that o To o ~p-1,
0 E ~ [0,27r], is a unitary representation of 81 in C k and b’ ( ~1, ... , Çk) 

for some integers m~ ~ 0, j = 1, ... k.
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Therefore by the Peter-Weyl theorem (cf. [18]) we have

with Ei a j -nice invariant subspace of E and Ej C Ei+1. ·
Furthermore, one has the Borsuk-Ulam Theorem for the group 81 (see

[15]).
As above it is then possible to define a 81 relative index and consequently

a 81 pseudoindex; and so to prove the following improvement of Benci’s results
(cf. [2]):

THEOREM 2.3 : Let f E C’1 (E, R) be a S1-invariant functional satisfying (* ).
Assume that there exist S1-invariant subspaces E- and E+ = E- ) 1
and constants c o  such that either (2.12), f 1 ) - (f4) or (2.12)
(/1)*’ (f2)*, (f3), (f4) hold.

If f satisfies the (P.S.) condition on then there exist at least k

81-distinctC) critical points u 1, """, Uk of f such that

We leave the details to the reader.

3. - The superquadratic case

Solutions of (1)p are the critical points for the functional:

with z E H1~2 Here E - HI /2 ] denotes the real
Hilbert space given by the functions

with = c~ such that

) Recall that in this case Ui, u2 E E are called distinct if Te u 1 # u2 , b8 E [0, 
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Naturally one defines

however we shall consider an equivalent norm on E more suitable for our

purposes.
Following [16] we set

where ~~ , j = 1, ..., 2 N is the basis of eingenvectors of ( 1.1 ) satisfying (1.2) and
(1.3), as defined in section 1.

For any z E E, we can write

Easy computation shows that:

Set

and

M n ,

Notice that Eo might be empty, and in any case it has (real) dimension at most
2N. Moreover, the subspaces E+, E- and Eo are mutually orthogonal and
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For z E E, write z = z+ + z - -f- zo with z ± E E~ and zo E Eo, we shall consider
the following equivalent norm on E:

and denote by  , &#x3E; the corresponding scalar product.

LEMMA 3.1. Let z = z(t) be a critical point for 4P. We have:

PROOF: (a) Since Ji - Qz = we get:

with a &#x3E; 2 and .H ( z, t ) &#x3E; 0, 
(b) We have

Therefore Hz(z(t), t) . z(t) = 0, Vt and consequently by ( H2 ) we get
H(z(t), t) = 0 b’t.

REMARK: Since wj 2’: 0, Vj = 1, ..., N, z (t) = const. is necessarily contained
in Eo ED E-.

PROPOSITION 3.1: Under the assumptions of Theorem 1, if z V Eo EÐ E-
is a T-periodic critical point for -1) then:

- - - - 1

PROOF. Write z (t) = zo + z + (t) + z - (t) where

and by (Q2):
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Since z V Eo + E- we have z+ =,4 0 which implies J: H ~z ( s ) , s) ds &#x3E; 0.

Easy computations show that:

this gives:

and

where we set z 1 = z + + z - .
Furthermore we have:

that is: O

and therefore:

We now estimate from below the L1-norm of H(z(t), t) in terms of its L "0

norm.
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Indeed for any t E [0, T], we have

Hence using (3.2) and (3.3), we obtain:

Thus

and by (3.5)

Finally, by (3.1 ) we conclude:
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COROLLARY 3.1. Let p &#x3E; 1 be a prime integer. If z(t) is a critical point
for (D and

then z(t) has minimal period pT.
PROOF. &#x3E; 0, then z ( t ) ~ const.
Assume that z has minimal period 1. By the assumption t )

necessarily k E N. Since p is prime, either k = 1 or k = p. But proposition 3.1
rules out the second possibility. D

This reduces the problem to finding critical points for 4) satisfying (3.8).
The functional (D inherits the Z p symmetry of problem ( 1 ) p . In fact define

the unitary operator: ,

T. E. E

we have that T generates a Zp group action on E and obviously:

Hence, to apply Theorem 2.1 we provide the required estimate on ~.

LEMMA 3.2. There exist positive constants p and co such that for every

PROOF. Let z E E+. We have:

Since E c--· [0, pT], there exists a constant C &#x3E; 0 such that

Therefore

Now take p &#x3E; 0 small enough so that
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Define the integers:

= largest integer

For any kEN consider the subspace:

where

Obviously E- end Eo and Ek c E+ are T invariant. Furthermore we have:
LEMMA 3.3. For every z E Ek

with p given in (1.6).

PROOF. Let

We have

Thus,
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Since a &#x3E; 2, the right hand side of (3.10) admits an absolute maximum brax
that one easily computes to be:

However, for the inequality

to hold, it is necessary and sufficient that

Thus we conclude:

PROPOSITION 3.2: Let p &#x3E; 1 be a prime integer such that (3.11 ) holds for
some integer k &#x3E; 1.

Then for any z E E- 0153 Eo 0153 we have

Furthermore

LEMMA 3.4: Let p be a prime integer. The subspace Ek is kN -nice

provided p  rT .p T

PROOF: Clearly dimREk+ = 2kN. Moreover given the homeomorphism:

with

define

We have:

So we are done if we show that mp ~- ~ is not a multiple of p, Vj = 1,..., N,
and Vt = 1, ...,1~. Arguing by contradiction, assume that m~ + t = sp for
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some :

But 1
I ~ ~, therefore 1 which is clearly

aosuru. LJ

We are finally ready to give:

THE PROOF OF THEOREM 1. In virtue of Corollary 3.1 we have only
to show that Theorem 2.1 applies to Q. Certainly Q satisfies (*) since

~(z) = ~  Lz, z &#x3E; -Sp(z) with L given by:

and

In addition Propositions 3.1 and 3.2 guarantee respectively ( f4 ) and (/i); Lemma
3.2 and 3.3 imply ( f2) and (2.12) and finally ( f3) holds since 0.

So to conclude we have to show that (D satisfies the (P.S.) condition in 
More generally we prove that any sequence (zn ) E E such c &#x3E; 0

and

admits a convergent subsequence.
Write zn with zj E .E~ and z° E Eo. For n large we have

which gives ~ and by (1.4)

for some positive constants di, and d2.
By (H2) we have:
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that is:

It follows that

In addition,

(3.12)

and
I

with d5, d6 &#x3E; 0 constants and 1 + -y  2. Thus, from (3.12) it follows that
is uniformly bounded, that is, Ilzn II is uniformly bounded. Now by

standard compactness arguments it is easy to show that zn admits a convergent
subsequence, using ( ~2 ) . The proof is therefore concluded. D

4. - The sub quadratic case.

We shall prove Theorem 2 under the stronger assumption that ~ ( ~, t) is

strictly convex. By the same trick used in [13] one then obtains the proof for
H ( ~, t) convex. In this case, to find solutions of ( 1) p we shall use the dual
approach as introduced in [6] and subsequently extended in [4] and [11].

Hence let H* be the Legendre transform of H with respect to the z-

variable, namely

Therefore H * E x [0,T]) and the following reciprocity formulae hold:

In addition, since H satisfies (Hl ) * and ( H2 ) * we have:
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H* (0, t) = 0 Vt and H* (u, t) &#x3E; 0 Vu E IR.2N, Vt E [0, where

In the Banach space

define K : E* --· E* to be the inverse of the linear operator
its unique extension in H 1 ~ 2 ), namely:

The linear operator K is self-adjoint and compact, moreover for any

we have:

Therefore in E* is well defined the functional:

and 4&#x3E; * 
Moreover if u is a critical point for 4&#x3E;*, there exists

such that K u + uo = t). Hence

is a solution of (1)p.
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Thus we are reduced to finding critical points for ~* . Under the given
assumptions, the functional ~* enjoys the following properties.

PROPOSITION 4.1.

(a) There exists a constants ap &#x3E; 0 (depending on p) such that

(b) If u E E* has period T, then

(c) If u = const. is a critical point for then

PROOF. (a) Given v I we have:

(b) Let u E E* have period T, that is:
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As above, we have:

and therefore

(c) If u E E* is constant, we have:

and hence

Thus

that is, «1&#x3E;* (u) = o. 1:1

COROLLARY 4.1: Let p &#x3E; 1 be a prime integer. If u E E* is a critical
point for -0* and

Then z (t) = t) is a solution for (1)p with minimal period pT.
PROOF. Since u is a critical point for (D*, there exists uo E E* such that

In addition, z(t) # constant. In fact, z(t) = const =&#x3E; u(t) = const =&#x3E; ~*(u) _
0, contradicting (4.2).
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Hence z(t) has either minimal period T or pT . Arguing by contradiction,
assume z(t) to have minimal period T and hence u(t) = Hz(z(t), t) has period
T and satisfies (4.2).

This is impossible by proposition 4.1. D

In order to see that the inequality (4.2) holds somewhere in E*, define
the subspace:

for some integer k &#x3E; 1.

For any u E Ek we have:

and

Therefore

Since a* &#x3E; 2, the right hand side of (4.4), as a function of p = K u. u ) 1 / 2 ,
achieves its absolute minimum at
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with a value of:

On the other hand, for the inequality

to hold, it is necessary and sufficient that

i.e.

with dT given in ( 1.11 ).
Setting

we conclude:

PROPOSITION 4.2. Let p &#x3E; 1 satisfy k k + 1 ~ dy for some k e N+. Then

for every u E rk . D

As in the previous section, we have that the norm preserving operator

generates a Zp group action on E* = -0* (u), Vu E E*.
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k 
Moreover Ek as defined in (4.3) is T-invariant and it is kN-nice provided

~  rT and p &#x3E; 1 is prime.

PROOF OF THEOREM 2. First of all, notice that 4»* satisfies the (P.S.)
condition everywhere. This follows as in [13] with obvious modifications.

Now take E" = { 0 ~ , Ek = Ek , co = - a p and

In virtue of Remark 2.4, one easily checks that, with this choice, Theorem
2.2 applies to ~* . The conclusion then follows by Corollary 4.1. 0

5. - Second order systems of O.D.E.

Since the arguments here are rather similar to the Hamiltonian ones, we
shall only sketch the proofs, emphasizing simply the possible modifications.

The Superquadratic case

Solutions of 2 ) p are the critical points for the functional:

with x E H 1 [R ] = X. Let (Ç1’" . , çn) be a basis in R I such that

with ( Set

Hence, for any, x E X we can write:

with aj.m e C and = 
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Define the subspaces:

so that X = X+ e Xo. Notice that now X - is finite dimensional.

Furthermore for x(t) X we have:

Thus it is natural to consider the following equivalent norm on X: =

A(x+) - A(x-) + where

Exactly as for Lemma 3.1 we have:

LEMMA 5.1. Let x = x (t) be the critical point for I. We have:

(a) I ( x ) &#x3E; 0 and

(b) if x E Xo + X - then I(x) = 0. 0

As the analogue of Proposition 3.1 we get:

PROPOSITION 5.1. Under the assumptions of Theorem 3, if x - 
Xo EÐ X - is a T-periodic critical point for I, then

with fiT defined in ( 1.13).

PROOF. Let us write x(t) = x+ (t) + x, (t) with x+ E X+, Xl E Xo EB X-,
which implies oJ
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Easy computations show that:

Furthermore:

that is,

T

Thus we derive a lower bound for f V (x, t) as follows:
o

that is

This readily implies (5.1).
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COROLLARY 5.1. Let p &#x3E; 1 prime. If x = x(t) is a critical point for I
such that

then x(t) has minimal period pT. 0

Once more Corollary 5.1 together with the fact that I is T-invariant
(T : x(t) - x(t + T)) reduces the proof of Theorem 3 to a suitable application
of Theorem 2.1.

In fact, in analogy with Lemma 3.2 we have:

LEMMA 5.1. There exist constants p &#x3E; 0 and 6 &#x3E; 0 such that for every
x E X+ n S,

Furthermore, following the footsteps of section 3, define the integers

and for any k E N+ consider the subspace:

where

LEMMA 5.2. Let k be such that i  For any x E Xk we have:p

with ST as defined in ( 1.15).

PROOF. Let x i

We have:
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that is,

Li

Clearly X- EÐ Xo and Xk are ’T-invariant. In addition, comparing the
right hand side of (5.5) with the right hand side of (5.3) and using the same
arguments of Lemma 3.4, we conclude:

LEMMA 5.3. Let p &#x3E; 1 be a prime integer such that k  eT for some
k E ~ + . Then for any x E Xo EÐ X - (D Xk , we have

and xt is kn-nice. D

Finally, since the (P.S.) condition for I in the interval ( 0, +00) follows
exactly as for the functional Q of section 3, we conclude the proof of Theorem
3 by applying Theorem 2.1 (or better, Corollary 2.1 ) with Et = xt, E~ =
X’ EÐ Xo, c o == 8 &#x3E; 0 (defined in Lemma 5.1 ) and

The sub quadratic case

In analogy with the subquadratic Hamiltonian case, we shall approach
problem (2)p by means of the duality method. Here too we will be only
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concerned with the case V (., t) strictly convex, since the convex case then

follows as in [13].
Hence define V*(.,t) to be the Legendre transform of V(.,t), i.e.

y --. V ( x, t) ) .
xER n

We have

with 1*, a*, a¡, i = 1, 2, given in (4.0) and

Furthermore, in the Banach space: 
’ 

,

f 1

d2
define - K to be the inverse of the operator d 2 + Q (i.e. its unique extension onP dc q

The linear operator K is therefore compact and self-adjoint.
Moreover, for every

we have:

Thus on X* is well defined the functional:

and I* e C  ( X* , R ) .
In addition, if y(t) is a critical point for 1*, then x(t) = Vy* (y(t), t) is a

solution for (2)p.
We have:
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PROPOSITION 5.2. (a) There exists a constant ap &#x3E; 0 such that

(b) If y = y(t) E X* is T-periodic, then

with AT given in (1.17).
(c) If y(t) = const. is a critical point for I*, then I* (y) = 0.

PROOF. (a) and (c) follow exactly as for proposition 4.1.

(b) Let y(t) E X* be T-periodic, i.e.

We have

Hence, as for Corollary 4.1, we deduce:

COROLLARY 5.2. If y (t) is a critical point for I * and
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with p &#x3E; 1 prime integer, then x(t) = Vy*(y(t),t) is a solution of (2)p with
minimal period pT. 0

The estimates from above for I* are obtained as follows. For any integer
k &#x3E; 1, consider

We have:

On the other hand:

and straightforward calculations show that:

Hence if we let the integers p &#x3E; 1 and k &#x3E; 1 satisfy:

we obtain:

where we recall ; i Therefore:
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and the right hand side of the above inequality, as a function of p =

achieves its absolute minimum for

given by

Furthermore for the inequality

to hold, it is necessary and sufficient that

Setting

we conclude:
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PROPOSITION 5.3. Let p &#x3E; 1 be a prime integer such that (5.7) and (5.8)
hold for some k &#x3E; 1.

Then for any y E rk we have:

At this point, the same arguments as for Theorem 2, allow us to conclude
Theorem 4. The details are left to the reader.
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