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Comparison Principles and Liouville Theorems
for Prescribed Mean Curvature Equations

in Unbounded Domains

JENN-FANG HWANG

1. - Introduction

The comparison principles of mean curvature equations in an unbounded
domain has been opened for a long time, the uniqueness of solutions of the
equations in such a domain is known only for some special cases.

Nitsche [8, p. 256] states "Let na be a sector in R 2, with angle 0  a  ?r,

let Q c na and let u be a solution of the minimal surface equation in n. Then
if u  constant on an it follows that u  constant in Q." Thus the uniqueness
for minimal surface equation in such a domain is known if the boundary data
is constant.

If n is an exterior domain, Osserman [10] proved that the solution of
minimal surfaces equation is unique in the class of bounded functions.

For capillary free surface equations, the uniqueness theorem in bounded
domains is guaranteed by a comparison principle of Concus and Finn [2, 3].
However, when the domain is unbounded, the uniqueness is still open even in
an infinite strip domain.

It was recently proved by Tam [14] that the solution of the capillary
free surface equation in the absence of gravity must be a cylinder, in case of
non-zero gravity, is the one-dimensional solution the unique solution? It is still

open.
The purpose of this paper is trying to answer these problems; indeed, we

have the following theorems.

1. Let n be a domain (bounded or unbounded) in R , then the solutions
of the generalized Dirichlet problem and the capillary free surface problem for
a prescribed mean curvature equation in n is unique in the class of bounded
functions.

2. Let n where na be as above, Nitsche raised a question "If u, v

are two solutions of the minimal surface equation in n and 
is u - v  M in Q also?"

Pervenuto alla Redazione il 26 Maggio 1986.
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We answer Nitsche’s problem by assuming that lul, Iv I are bounded on

an (Theorem 2.8).
3. We find a sufficient condition, depended on the geometric properties of

an unbounded domain 0, such that the solutions of the capillary free surface
equation in a gravitational field is unique (Theorem 2.9).

The comparison principles discussed in §2 will be generalized to nonlinear
nonuniformly elliptic equations in §3 and §4, some Liouville theorems in R 2
for nonlinear nonuniformly elliptic equations are obtained in §5, which extends
part of the results of Meier [6] from uniformly elliptic to nonuniformly elliptic
equations, and gives a new proof (analytically) of Liouville theorem for mean
curvature equation which was proved (geometrically) by Cheng and Yau
[1].

2. - Comparison principles for mean curvature equations in unbounded
domains

Throughout the whole article, n will be a connected region (bounded or
unbounded) in 3/B and for any function u E 01 (11), T u will denote the vector

Du 12 , , where Du is the gradient vector of u./1 + Du )2
The extension of comparison principles of bounded domain to unbounded

domain are based on the following inequality.

LEMMA 2.1. For any functions u and v in C 1 ~ ~ ~ , we have

and

PROOF. Let

then we have
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and

The other assertions follow immediately, and the Lemma is proved.
For every R &#x3E; 0, let BR - r R -

N N N

and = the n -1 dimensional Hausdorff measure of fiR . With these
notations, the comparison principles for prescribed mean curvature equations can
be stated as in the following theorems.

THEOREM 2.2. Let = E a decomposition of a11 such that
is of class 01 and for every u, v E n n let

= max u - v. Suppose that
Cl R

(i) div T u &#x3E; div 

(ii) u  v on Ell

(iii) T u ~ v ~ T v ~ v on E p

where v be the unit outer normal of MB.
00

(iv) if M (R1 ) &#x3E; 0 for some R, &#x3E; 0 then f 2 dR = 00.Ri 

Then if we have u (x) - v(x)+positive constant or u(x)  v (x) .
Otherwise,  v (x) in 11.

As an immediate consequence of Theorem 2.2, we have the following
uniqueness theorem 

THEOREM 2.3. Let fl c ~ 2 , ~ a , u and v be as in Theorem 2.2,
suppose that

(i) div Tu = div T v in fl

(ii) u = v on £"

(iii) Tu~v=Tv~v on EO

(iv) max lu - vi = as R --+ oo.
0 R

Then if we have u(x) =- v(x)+constant, otherwise = v(x).
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REMARK. (1) Theorem 2.2 generalizes the comparison principles of Concus
and Finn [2, 3]. The main point in our theorem is to characterize the relation
between the growth of the difference of the functions and the growth of the
"width" of the domain.

(2) The growth condition (iv) of Theorem 2.3 cannot be improved too
much. For considering the domain 11 = { ( x, y) ~ x2 + y2 &#x3E; 1 } , I we see that the
Dirichlet problem of minimal surface equation with zero boundary data has
two solutions u = 0 and the catenoid v = cos h-1 ~x2 + y2 ) . Noting that
lu - vi = cos h-1 R = O (log ~i) as R - oo.

PROOF OF THEOREM 2.2. If { x v (x) &#x3E; 0) is non-empty, there
exists e &#x3E; 0 so that 11’ = nlu(x) - &#x3E; e} is non-empty and an’ ~1 11 is
smooth (Sard’s Theorem). For any R &#x3E; 0, set

By the definition of we see that an’ n an c ~,8 and F£ c Using the
divergence theorem, we have

Noting that u - v - E &#x3E; 0 and (Tu - Tv) . v  0 on 
r,,, u - v - E &#x3E; 0 and div Tu - div T v &#x3E; 0 in fl’, we obtain
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and

Since (Du - Dv) . (Tu - Tv) &#x3E; 0, by Fubini Theorem, we have

for 0, and

Thus

R

Since k(R) = f h(r)dr and h(r) &#x3E; 0, we have k(0) = 0, k(R) increases as R
o

increases and k’(R) = h(R) for almost all R.
If there exists some R2 &#x3E; 0 such that k(R2) &#x3E; 0 then for R &#x3E; R2,
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exists almost everywhere and almost everywhere. Thus

This is impossible since - 1 is bounded in [R2, oc) and therefore we mustk
have k(R) == 0 for every R &#x3E; 0. Since (Du - Dv) . (Tu - Tv) &#x3E; 0, we have

( D u - D v ) ~ (Tu - Tv) = 0 in 0’ and by Lemma 2.1, we conclude that D u = D v
in fl’. ,

There are two cases:

(a) afll n 11 is empty, by the connectedness of Q we have f2’ = f2 and
hence u = v+constant in 0.

(b) an’ n n is non-empty, then u - i;+~ in 0’ and, by definition, fli must
be empty. This is impossible and we conclude that u ( x) :5 v(x) for all x in n.

If ~,8 = supposing { x v(x) &#x3E; 0} is non-empty, the above

arguments yield u(x) - v(x) - positive constant, otherwise u(x)  v(x).
If E p ~ al1, since u(x) in either in (a) or (b), we have

u(x)  v(x) in 0.
This completes the proof of the theorem.

THEOREM 2.4. If the hypothesis (i) in Theorem 2.2 is replaced by

(i’ ) div T u &#x3E; div Tv for all x such that

then u(x)  v(x) in 11.

PROOF. The proof is identical to that of Theorem 2.2. Even in case (a)
u = v+constant, we have div Tu = div T v and conclude that u  v by (i’).

REMARK. If div T u = Ku, div T v = xv for some constant K &#x3E; 0, then

(i’) still holds. In virtue of /Tul  1, Concus and Finn [2, 3] point out that the
boundary situation for the comparison principles of prescribed mean curvature
equations can be weakened. Theorem 2.2 and Theorem 2.4 can be improved by
the concept of Concus and Finn.
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Let Ma+MB be a decomposition of al1 such that MB is of
class C 1 and £° can be covered, from within fl, by a sequence of smooth
surfaces {A}, each of which meets al1 in a set of zero (n - 1 ) - dimensional
Hausdorff measure, and such that A - Eo and the area of A tends to zero. Let
fiR, BR, fR and be as above, and let QRIR = for R &#x3E; R’ &#x3E; 0,
a revised comparison principle can be stated as follows.

THEOREM 2.5. Let u, v E C2 ~ ~ ~ . Suppose that

(i) div T u &#x3E; div T v in 11

(ii) lim sup u - v] S 0 for any approach from within 11

(iii) (Tu - Tv) - v  0 almost everywhere on ~,8 as a limit from points
I

(iv) MRo (R) = Tax u - v )  oo for some positive constant Ro and every
ll,R 0 R

R &#x3E; Ro.

(v) If MRo (R1 ) &#x3E; 0 for some R1 &#x3E; Ro, then

can be chosen such C ~o, we have u ( x) - v(x)+positive
constant or u(x)  v(x). Otherwise, u(x)  v(x).

PROOF. The proof is essentially identical to that of Theorem 2.2 with a
modification by [2, Theorem 6]. We give here only a sketch of the proof.

If ~ x E S~ ~ u ( x ) - v ( x ) &#x3E; 0 } is bounded or empty, then the theorem is an
immediate consequence of [2, Theorem 6], so it suffices to assume the set is

unbounded, hence there exists some constant R2 &#x3E; R1 such that MRo (R2) &#x3E; 0.

We may choose constants E and M2 such that 0  E   M2 and
the set 0153 = {:c E Olu(x) - v(x) &#x3E; e} - x e nR2Iu(x) - v(x)&#x3E;M2} is non-

-empty; by Sard’s theorem we may also assume that n 0 is smooth.
For every R &#x3E; R2 , ~’ n BR, n aBR, r~ ==
al1R n an, {x e = E} - (FR U and let rM2 ==

~ x E = M2 } - ( r R U r~). Noting that rM2 c BR2 and that it
is independent of R, using the divergence theorem we have
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Since I Tu I  1 and 1, by using the same argument as [2, p.
193-195], we obtain

the remainder of the proof is now identical to that of Theorem 2.2.
A parallel theorem of Theorem 2.4 can be stated as follows.

THEOREM 2.6. If the hypothesis (i) in Theorem 2.5 is replaced by

(i’ ) div T u &#x3E; div Tv for all x e n such that

Then u(x) S v (x) for all x in n.

REMARK 2.7. ( 1 ~ The hypothesis (iv) in Theorem 2.2 and Theorem 2.4
can be replaced by

If n = 2, since  2 7r R, it can furtherly be replaced by

Note that (iv") only makes assumption on the growth of the difference between
the functions and it is independent of the growth of the "width" of the domain.

(2) The hypothesis (v) in Theorem 2.5 and Theorem 2.6 can be replaced
by

(v’) as R -.t 00.

By the above theorems, we have the following uniqueness theorem for
minimal surface equation in R~, which generalizes the uniqueness theorem of
Nitsche [8] from constant boundary data to arbitrary bounded continuous data.

THEOREM 2.8. Let n c na, where na is a sector domain in with

angle 0  a  7T, let an = EO + El, where El and Ell be as in Theorem 2.5,
and let u, v E C2(n). Suppose that

(i) div T u = div T v = 

(ii) lim sup u - v = 0 for any from within fl.

(iii) lim sup lul  M and lim sup I v  M for any approach to from
within n, where M is a constant.

Then u ~ v.

PROOF. By [8, p. 256] we have lul  M and lvl  M in n, the uniqueness
then follows from Theorem 2.5.

We also have the following uniqueness theorem for capillary free surfaces.
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THEOREM 2.9. Let fi be an unbounded domain in with piecewise
smooth boundary, let u, v E and let be as in Theorem 2.5.

Suppose that

(i) div T u = Ku and div T v = Kv in n, where K; is a positive constant.

(ii) (Tu - Tv) - v = 0 almost everywhere on al1 as a limit from points of
fl, where v is the outer normal of afl.

(iii) There exists some Ro &#x3E; 0 such that 6 (R) = max I the image of a
ball of radius r moving in the interior of 0 covers &#x3E; o.

Then u - v.

PROOF. For r &#x3E; 0, let Vr be the solution of the equation

It follows from [13, Corollary of Theorem 7] that 0  Y,.  constant ~-~, . For
R &#x3E; Ro, 6 (R) is a decreasing function of R, we have

thus

as R - oo, and the theorem follows from Theorem 2.6 and Remark 2.7.

As a simple application of Theorem 2.9, we have the following Corollary,
which shows that the one-dimensional solution of capillary free surfaces in a
gravitational field over an infinite strip is the only solution.

COROLLARY 2.10. Let 11 be an infinite strip or a sector domain in R2,
then the solution of the capillary free surface in a gravitational field is unique.

3. - Comparison principles for non-uniformly elliptic equations in
unbounded domains

Let n be a domain in we consider the equation in divergence form:
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where ~1 __ ( A 1, ~ .. , fi x R - R , f : f2 x R - R and

... ~ ?’L.

Suppose that A satisfies the following structural conditions:
There exists a positive constant A such that

for all x E n and all

for all x E n and all w, 
We will write Aw instead of A ( x, w, Dw) if there is no ambiguity.
Now we have

THEOREM 3.1. Let 11, ~a, E,8, u, v, M(R) be as in Theorem
2.2. Suppose that

(i) A satisfies conditions (3.1 ) and (3.2).

(v) if for some R1 &#x3E; 0, we have M(Ri) &#x3E; 0, then

Then, if we have u(x) =- v(x)+positive constant or u(x) S v(x).
Otherwise, u(x)  v(x).

PROOF. The proof is identical to that of Theorem 2.2.

THEOREM 3.2. If the hypothesis (ii) of Theorem 3.1 is replaced by
(ii’ ) div A u &#x3E; div Av for all x E n such that ( u - v ) ( x ) &#x3E; 0. Then

u(x) S v (x) in 11.

If IA(x, w, p) I  constant, then the boundary conditions of Theorem 3.1
and 3.2 can be weakened also.

THEOREM 3.3. Let 11, ~o, u and v be as in
Theorem 2.5. Suppose that

(i) A satisfies conditions (3.1 ) and (3.2)

(ii) A ( x, w, p)  constant for every ( x, w, p) x ~3 x R n

(iii) div Au &#x3E; div Av in 11

(iv) lim sup ( u - v)  0 for any approach from within 0.
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(v) (Au - Av) - v S 0 a.e. on ~,8 as a limit from points of 0.

(vi) there exists some Ro &#x3E; 0 such that (R) = ~max u - v  oo for
GROR

every R &#x3E; Ro.

(vii) if for some R1 &#x3E; Ro, we have MRo (R1) &#x3E; 0, then

can be chosen so c ~o, we have u(x) - v(x)+positive
constant or u (x) S v(x). Otherwise, u(x)  v(x).

PROOF. The proof is identical to that of Theorem 2.5.

THEOREM 3.4. If the hypothesis (iii) of Theorem 3.3 is replaced by

(iii’ ) div Au &#x3E; div Av for all x E 11 such that ( u - v ) ( x) &#x3E; 0. Then

u(x) S v (x) in fl.

REMARK 3.5. Let DR (x 1, x,,) I x 1  R) and 11 be a domain
such that 11 n DR is compact for every R &#x3E; 0. Let fiR == 11 n DR, 

N N N

n = the (n - I) -dimensional Hausdorff measure of f R. Then
we have the same results as Theorem 3.1 - 3.4.

4. - Examples for the structural conditions (3.1) and (3.2)

EXAMPLE 4.1. Let 11 be a domain in 1ft n and let Ai : (x, p) - R for every
( x, p ) E n x JR. n, i = 1, ... , n. Suppose that Ai &#x3E; 0(Xj p z X R n, i n. Suppose that Ai (E C 1 (fl X p n) and apj sj &#x3E; 0

for We are going to find a sufficient condition which

implies (3.1) and (3.2).

Let Fi(p,x,A) = t = 1,...... , n. Since det[aFi/apj] =apj
0 and 0, by implicit function theorem, we(9p3.

can solve p = p ( x, A) so that for i = 

Fix q, q’ E Rn and let E = A(x, q), E’ = A (x, q’). Then q = p (x, E), q’ =

p (x, E’).
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If &#x3E;- 2 for every g E R n then (A (x, q) - A (x, q’)) - (q - q’) ;:::3 a ( ~ ~’Y ~ ~ ( ( ~ q) (x~ q )) (q ~
A )E - E’I2 = ,B IA(x, q) - A(x, q’) 12 . But ,B 1s"12 for every s E Rn if and

1 ls|2 
aAj 

nonly if 0  :5 A for every s E R n - { 0 } and we find a sufficient
condition which implies (3.1 ). It is easy to see that (3.2) is true under this
condition also.

REMARK. In Example 4.1, A = (Ai), E = (Ei), E’ = ( ,E~ ) , p = 

EXAMPLE 4.2. Consider the variation problem

where Then the Euler equation is expressed as

A sufficient condition which implies (3.1 ) and (3.2) is
for every

EXAMPLE 4.3. Consider the prescribed mean curvature equation

Since we have that (3.1 ) and (3.2) hold.
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5. - Liouville Theorems over R 2

Let A = (~1,~2) where Ai : x R 

i = 1, 2. In this chapter, we generalize Meier’s structural conditions [6] as

follows: There exists some positive constant A such that

for every ) I

(5.2) = 0 if and only if p == 0

for every ( x, w ) X R.

REMARK. ( 1 ) If A satisfies (3.1), (3.2) and A ( x, 0, DO) = 0, then A satisfies
(5.1 ) and (5.2) also.

(2) If A satisfies (3.1 ) and (3.2), then A ( x, w, p) + D F ( x) satisfies (3 .1 )
and (3.2) also, but A(x, 0, Do) + DF(x) # 0 in general.

THEOREM 5.1. Let u E C2 (Ik~ 2 ) . Suppose that

(i) A satisfies conditions (5.1 ) and (5.2)

(ii) div Au &#x3E; 0 in I~ 2

(iii) max u _ as R - oo.
BR

Then u is a constant.

PROOF. The proof is identical to that of Theorem 2.2 for the case ~,8 = al1.
The following theorem is essentially a generalization of [6, Theorem 2].

THEOREM 5.2. Let u E C2 (IR 2) and let a be a positive constant. Suppose
that

(i) A satisfies conditions (5.1) and (5.2)

(ii) div Au 

(iii) = M  00
R

Then u is a constant.

PROOF. Suppose u is not a constant, there exists 0  E  A such that
the set n’ = x E fllu(x) ) &#x3E; M - e) is non-empty and an’ is smooth (Sard’s
Theorem).

Let nR == n’ n BR, FR = anR n (9B, and 17’ R = al1R - FR for every
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l~ &#x3E; 0. By divergence theorem, we have

The remainder of the proof is identical to that of Theorem 2.2.
Let f e 02 (R 2 x R x JR 2). Suppose that

where p is a constant less than A.
The following theorem is essentially a generalization of [6, Theorem 4].

THEOREM 5.3. Let u E Suppose that

(i) A satisfies conditions (5.1) and (5.2)
(ii) f satisfies condition (5.3)
(iii) div Au = f
(iv) max u  O ( log R ) as l~ -~ 00.

BR

Then u is a constant.

In particular, we have

COROLLARY 5.4. (Cheng and Yau [ 1, Corollary 2 of Theorem 2])
Let u E C2 (IR. 2). Suppose that

(i) div T u  0 in R 2

(ii) u &#x3E; constant 

Then u is a constant.
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