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Time-Delay Operators in Semiclassical Limit,
Finite Range Potentials

XUE PING WANG

1. Introduction

In this paper we consider the semi-classical approximation of time-delay
operators in quantum scattering theory. Let us recall briefly some related aspects
of scattering theory. Let V be a C°° real function on R~ so that for some e &#x3E; 0

and all a one has:

_ For ,h &#x3E; 0 a small parameter proportional to Planck constant, set:

where Define the unitary
groups and Uh (t) as:

Then the wave operators

in .

exist and are complete, that is to say, the ranges of 0+ (h) and 0- (h) are both
identical with the continuous spectral subspace of Hh. The scattering operator
S(h) is defined by: is a unitary operator in

We denote by the spectral
representation for one has:

where S’ ( a, h) is a multiplication operator in A with values in B ( P) . Under
suitable assumptions on the potential V, one knows that is continuously

Pervenuto alla Redazione il 7 Aprile 1986 e in forma definitiva il 25 Luglio 1987.
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differentiable in A E (See Jensen [14]). Then the Eisenbud-Wigner time-
delay operator T(h) is defined by:

for f E For fixed h &#x3E; 0, the existence of T(h) as self-adjoint
operator in has been studied in [14]. Various expressions for T(h) have
been obtained (see [8], [15], [16] and [23]). For a more extensive review of
time-delay in scattering theory, we refer to Martin [18]. However, we would
like to mention the definition of time-delay put forward by Narnhofer [22]: the
operator T(h), which we will call modified time-delay operator, is defined by:

if the limit exists. Here A(h) = h (x - V, + x) / 2i is the generator of analytic
dilation group with parameter h and  ., . &#x3E; is the scalar product in L 2 (R n).

Recall also the definition of classical time-delay. Consider the trajectory
for the Hamiltonian

A scattering trajectory is the solution of

and SR = Ixl I = R}. For a scattering trajectory (x(t, xo, ~o), ~(t, xo, ~o)),
denote by t- (R) (t+ (R)) the time at which the particle enters (leaves resp.)
SR. The sojourn time TR of the trajectory in the region BR is given by ,
TR = t+ (R) - t- (R). We denote by TR the sojourn time in BR for the free
particle with the same initial data (xo, ~0). Then we can define the classical
time-delay r by:

For the potential V satisfying ( 1.1 ), we can easily check that:

where
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The main purpose of this paper is to study the asymptotic behaviour
of T(h) and when h tends to 0. The study of time delay operator is

closely related to that of the scattering matrix. We notice that there is a large
literature on the semi-classical approximation of scattering quantities, such as
scattering amplitude ([3], [4], [41]), scattering phase ([30], [31]) and scattering
matrix ([40]). For classical wave scattering by an obstacle, there are also papers
concerning the relations between time-delay, sojourn time and scattering matrix
(see [7], [17] and [24], for instance). Seeing the definition (1.2) for T(h), one
might think it easy to get the semiclassical result for T(h) using the known
results for scattering matrix S(A, h). But it is not the case, for the known
results for are of complicated forms (see Yajima [40]), it is difficult to
establish the connection between quantum and classical time-delay. The method
we will use is based on the results of [38], roughly speaking, the results on
the correspondence between quantum and classical dynamics (see also [2], [ 11 ],
[33], [34]). To show that a direct study of time-delay operator is preferable,
let us indicate the following fact: if V satisfies the assumption (1.1), 
can be approximated only by Fourier integral operators. But if B is a pseudo-

.. 

differential operator, we can approximate by pseudo-differential
operators when t is fixed. This makes our work easier.

In this paper, our general assumptions on V are:

(A) V is a C°° real function with compact support;

(B) (non-trapping condition) there exists an open set J c R+ such that for
any interval I c c J and for any R &#x3E; 0, there exist positive constants C
and to :

and where is the solution of (1.4)
with initial conditions z(0) = = r.

The main results of this paper may be summed up as follows: let
be the Weyl operator exp( (

take a function E Co (J) and = 1 in a neighbourhood of
define f h by

Then for modified time-delay operator T(h), one has:

For Eisenbud-Wigner time-delay operator T(h), we set fh =

’if; (H/j)Wh (xo, 03BEo) f where is Co function and equal to 1 in a neighbourhood
, Then one has, for
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where is the classical wave operator (see Reed-Simon [26]). We also
obtain a semi-classical expansion for modified time-delay operator in terms
of pseudo-differential operators in class Ti (for the definition, see section

2). Notice that is the classical time-delay for scattering trajectory
( x ( t; xo , ~o ) , ~ ( t, xo , ~0)) ~o ) is that for a scattering trajectory
(.i(t, xo, ~o), ~(t, xo, ~o)) which behaves like (xo + t~o, ~o) as t --~ -oo. Since

= po ( xo ~ ~o ) ~ (1.7) and (1.8) show the difference between 
and T(h) : the modified time-delay operator is the quantization of two times the
classical time-delay function T while the Eisenbud-Wigner time-delay operator
is the quantization of r o or in other word, the quantization of time-delay
function applied to incoming‘ data.

The organisation of this paper is as follows. In section 2, we establish
some results which are important to this work.

We introduce also a class of pseudo-differential operators with symbols in
T;:;. This class of pseudo-differential ~ operators appears naturally in the study of
time-delay operators. It seems interesting to study the composition and continuity
properties of these operators. But we have not had time to do this. In section 3,
some properties of classical time-delay are studied. Since the function r is only
constructed for each fixed (x, ~) in phase space, global control over the increase
of r seems difficult. We only arrive at showing that if V is of compact support
and if we localise r in some nontrapping energy interval, the truncated classical
time-delay is in class TO. In section 4, we prove the semi-classical expansion
for modified time-delay operator. We use a semi-classical version of Egorov’s
theorem (see [38]) and the results on the local energy decay for wave functions
in weighted L2 -spaces ([42]). The difficulty we encounter here is that usually
we have to work out estimates uniform with respect to the large parameter t

and the small parameter h. We believe that the remainder estimates obtained
here are not the best possible and can be improved by studying the continuity
of pseudo-differential operators with symbol in the class In section 5 we

prove (1.7). As a matter of fact, the uniform continuity of time-delay operators
localized in non-trapping energy interval enables us to only prove (1.7) for a
dense subset of functions in L2 . In section 6, we prove (1.8).

The proof is similar to that for (1.7). But since we are only concerned
with the first term in the semi-classical limit, it suffices to give approximations
uniform in h and  for some N large enough. Once
these approximations are obtained, we use the Weyl operator Wh (zo , po) to get
classical limit as in section 5 (see also [ 11 ], [33] and [38]).

Finally we should remark that the proof of our results is rather technical
and could be considerably simplified if one had a nice result on the continuity of
pseudo-differential operators with symbol in the exotic class mentioned above.
In this connection, a recent work of Bony-Lemer [44] might be useful.

An abstract of this work has been presented in [39] and [43].
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2. Some preliminaires

Assume V to be a C°° real valued function on R" satifying (1.1) for some
e &#x3E; 0. Let J be a non-trapping interval defined by (B). Let and 
be the unitary groups associated with Hh and Ho respectively (see §-1 ).

Let A(h) be the generator of analytic dilation group with parameter
h : A(h) = h(x ~ ~~ + V,, - x)/2i. Then we have the following estimates which
are useful in the study of time-delay operators by time-dependent method.

THEOREM 2.1. Under the above assumptions, let CPl and (P2 be 
functions and supp (P2 c J. Then there is C &#x3E; 0 so that for every tt, 0  p  1,
one has

uniformly in r, s E R and h E ~0, 1~.
The proof of Theorem 2.1 is rather technical and will be given in Appendix.
Introduce the space

for all lal +  m}, equipped with the norm ]) I 

It is known that Uh (t) is a continuous mapping of S (JRn) onto and may
be extended to a bounded operator on Bm(h) (see [6] and [38]):

uniformly in h E ~0, 1]. Thus as operators from S to S, one has:

where

is a bounded operator
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More precisely, one has:

where gl(S) = 2sg’(s) and R1(h), 0  h  1, is uniformly bounded as operators
of L2.., (h) to some p &#x3E; 1. Here L2.8(h) is the completion of S(IRn)
in the norm II . II (8 ).h:

PROOF. Notice that since g E we can define g(Hh) =
(211)-l f exp(isHh)g(s)ds where 9 is the Fourier transform of g. Using a

commutator relation similar to (2.5) and the results on functional calculus (see
[10] and [28]), one gets (2.6).

Under the assumptions of theorem 2.1, one knows that for every o &#x3E; 1/2,

uniformly in A in any compact of J (see Robert-Tamura [31]). By (2.7) one
can easily prove the following result.

PROPOSITION 2.3. Let Sp be a C°° function with compact support in J.
Then there is C &#x3E; 0 so that:

uniformly in hE] 0, 1], here  ., . &#x3E; is the scalar product in 

PROOF. By (2.7) and the results on smooth perturbations (Theorem XIII.25
and Theorem XIII.30 [27]), one gets:

for f E L2(IRn), uniformly in h E ]0, 1]. Since = e-ih-"’-tHh, the proposition
follows from the Cauchy-Schwarz inequality.

The following result is important in this work.

THEOREM 2.4. Let V be a short-range potential satisfying ( 1.1 ) and (B).
Let 0 E COO (J). Then for every s &#x3E; 0, one has:

uniformly in h E ]0, 1] and t E R.
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Theorem 2.4 is proved in [42]. Comparing with the free evolution, we see
that the decay rate obtained in Theorem 2.4 is the best possible. By commutator
techniques we are able to show that for every Jj, 0  a  1,

The estimates (2.8) and (2.9) are uniform in h E ~0, 11.
From Theorem 2.1, we get the following.

COROLLARY 2.5. Let denote the wave operators. Then for cp E

Co (J), one has:

uniformly in h E ]0,1]. For every p &#x3E; 1, there is p &#x3E; 1 so that:

Using (2.9), one gets also:

COROLLARY 2.6. For every p &#x3E; 1/2, one has:

uniformly in h E ]0,1] and A in compact subset of J. Here R(z, h) = (Hh-z)-1
for z ~03C3(Hh) 

Notice that (2.12) may be compared with the known results of uniform
resolvent bounds (see [30] and [31]). For fixed h &#x3E; 0, (2.12) is proved in [21].

Recall also the following expression for Eisenbud-Wigner time-delay
operator T(h). Let Fh be a spectral representation of Hoh, that is to say, Fh
is a unitary mapping of into L2(~, L2(Sn-1)) so that = À.
Then for all Ii E so that Fhli E Col (R+; L2(sn-l)), i = 1, 2, one has:

PROPOSITION 2.7. Let

supp pi. Set:
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PROOF. By the definition of wave operators and scattering operator, it is

easy to check that (2.15) and (2.16) are true in weak topology of L2 (IRn ) .
In order to show (2.15) and (2.16) are true in L2-norm we use the following

estimates:

These estimates may be proved by the same method as that used for proving
theorem 2.1. (cf. Appendix).

For a symbol a(~, ~~ we denote by the associated

pseudo-differential operators defined by:

Sometimes we note also oph a instead of 

DEFINITION 2.8. Let p, 6 E ~0,1~ and s, r We denote by class of
C°° functions on JR2n which satisfy:

for all multi-indices a,,8 E We note also:

In comparing with the usual classes of symbols, we see that the class 
is worse in that we lose the control over the increase of symbol each time we
derivate it. But the study of such symbols is of interest in itself. For example
if f E Coo (R) with bounded derivatives, the principal symbol of f ( A ( h) ) may
be regarded as in To, 0

For a E we can define an operator -
P.61

COO (lR7) by formula (2.17). If p, d  1, we can easily check that

is continuous from to In general case, we

have the following result.
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LEMMA 2.9. There exists a constant k depending only on n such that if
a E Tp, 0  P:5 1, is a continuous operator from 
into and one has:

Lemma 2.9 is an easy consequence of L2-continuity result of h-pseudo-
differential operators ([28]). We omit the proof.

3. Properties of classical time-delay

The classical time-delay is closely related to the classical particle scattering.
Suppose condition (1.1) to be satisfied. Let 01 and §i denote the interacting
and free dynamics respectively. Then we can define the wave operators fiT by:

for

fi% are C°° canonical maps. (See [26], [32]). Let Eb be the set of all bounded
trajectories in ~2n .

We put G = Ran fif n Ran Then G is the set of all points
e for which there are (y-, rJ-) and y+ , r~+ ) E so that 

behaves like ( y_ + t’1-, rJ-) at -00 and like ( y+ at +00. If we write
= (~(~2/~)~(~2/~))) there exists a constant &#x3E; 0

such that:

for It I large enough. We note: d(x, ~) = ~ ~. The classical time-delay r defined
in (1.6) may be written as:

Notice that r is invariant by

LEMMA 3.1. Let G±
formation defined by:

The proof of the lemma is quite easy and we omit it.
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LEMMA 3.2. Let E C be an open set so that

for any R &#x3E; 0, there are C and to &#x3E; 0 so that

for (y, r~) E E with I y  R. Then one has:

for (y, rJ) E E with Iyl  R.

PROOF. For (y, E E, we can write

(3.3) follows from (3.4) by an elementary argument.
Now introduce the functions r± by:

By definition,
one gets easily:

Using lemma 3.2,

LEMMA 3.3. Under the assumptions of lemma 3.2, r± are C°° functions
of (y, E E. For R &#x3E; 0, one has:

for E E with Iyl  R.
It is not clear how to control the increase of T:f: (y, rJ) for large y, since

one has no knowledge on the behaviour of 01 (y, r) in large t and y. However

if the potential V is of compact support, we do have some control over the
increase of r± (y, j?) in (y, r~). This is sufficient for the present paper, for in the
following we will always assume V of compact support.
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More precisely, one has:

LEMMA 3.4. In addition to the assumptions of lemma 3.2, suppose V to
be of compact support. Then one has: .

and

PROOF. Take Ro &#x3E; 0 so that supp V c  Ro}. Put Rl = Ro + 1. By
lemma 3.3, (3.5) is true for (y, r) E E with Iyl  Ri. Now define W c by
W = i(y,?7) E E; y I &#x3E; 2 Let W, and W2 be two subsets of W defined
by: 

--- ~ , . -- .. , , . - -- -

For will behave just as the
free dynamics 0’ 0 (y, r) . Thus for For

W2, one sees easily 0 and there exists a unique To so that
7)/ &#x3E; Ri for I t I I and I = Rl’ To is determined by the

equation:

Since we must have and we get:

To is a C°° functions in W2 and we have:

(y, r) E W2 and a,,8 E Nn. Now, one has:

where yo = and ~± (yo, i?) = Thus = T ( yo , r~ ) .t-+m

Since Iyo 12 = Ri , from lemmas 3.2, 3.3 and the estimate (3.8), we conclude
that: 

~ - - I ,

The lemma is proved.
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From now on, we will always assume that conditions (A) and (B) be
satisfied. We remark that condition (B) is equivalent to the usual non-trapping
condition used in the literature. (See [30], [35]).

PROPOSITION 3.5. Suppose conditions (A) and (B) to be satisfied. Let ~p
be a COO function on II~ with compact support in J. Put:

Then rl, is in Tf, that is to say, we have the estimates on r,:

where N &#x3E; 0 is arbitrary.

PROOF. By lemma 3.3, r, is a C°° function on JR2n and the estimates
(3.10) follow from lemma 3.4.

Using the non-trapping condition (B), one sees easily that c

support of r, is contained in we can define the function which
is C°° and supported in G_ :

= By the method used in the proof of Lemma 3.4, one
can show that (3.10) is also true for r, o n~.

4. Semi-classical expansion of modified time-delay operator

Suppose conditions (A) and (B) to be satisfied. We will consider the

asymptotic behaviour of modified time-delay operator (see Narnhofer [22],
[23]) defined by:

By proposition 2.7, (4.1) is well defined for f, g E D(A(h)) so that there

Put as before h) = In order to obtain a semi-
classical expansion for T(h), we will study the asymptotic behavior of 
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with respect to t and h. For this purpose, we have to in the

non-trapping interval. Let X be a C°° function on with compact support in
J. as:

1 on the support of x. Put:
is an operator of symbol x . ç .

is a pseudo-differential operator with Weyl symbol

where

It is clear that the symbol g( x, ç; t, h) satisfies:

and the support of g(., ., t, h) is contained in supp Xo for all t and h. Now let

R(t, h) be defined by:

LEMMA 4.1. With the above notations, R(t, h) (A(h) + is a bounded

operator in and one has:

uniformly with respect to t E ~ , that is to say, for every N &#x3E; 0, one has:

PROOF. Using the commutator relation (2.5), one sees that
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uniformly in t E R and h E ]0,1]. We write also:

Noticing that X and 1 - x 1 are of disjoint support, we obtain:

here we have used lemmas 2.2 and 2.4. Notice that by results on functional
calculus (see [10], [28] and [29]), one has: 

’

(4.5) follows from (4.6) and (4.7).
By lemma 4.1, we are reduced to study the asymptotic behavior of operator

Uh(t)*G(t, h)Uh(t) with respect to t and h. Applying a semi-classical version
of Egorov theorem (see [38]), we get:

PROPOSITION 4.2. As continuous operators of into one has:

for j = 0, 1, 2 and N where may be calculated and R3N (t, h) may be
extended to a bounded operator on L2(Rn) : shp 11 RiN (t, h) ||  +ao , j 

= 0,1, 2,
h

for every t E R .
Our main technical result in this section is to get some uniform estimates

on the remainders with respect to t E R .

THEOREM 4.3. Under conditions (A) and (B) there is k E N depending
only on n such that for every N &#x3E; 0, one has

uniformly in t c and h E ~0, 1~.
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PROOF. We only prove (4.9) for j = 0. The other cases can be treated in
the same way. Let:

Let 01 be the hamiltonian flow associated with p
Since Uh(t) is continuous from to we have:

where

Here we have denoted by oph a the operator with Weyl symbol a, { ~, ~ } the

Poisson bracket. By an easy calculus we get an expansion for the symbol
b (t, s; h) of B (t, s; h) :

with

Since the symbols in consideration are not in the usual classes, we have to be
careful with the remainder estimates.

LEMMA 4.4. Under the assumptions of Theorem 4.3, for every M &#x3E; 0,
one has:

for ç) eR2n, uniformly in t, s E R.

PROOF. Put ~t = (y(t),r~(t)). Then we can write

By Lemma 3.3 we get for every R &#x3E; 0:
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for ( x, ~) E with Ixl (  R, uniformly in reR. For Ixl &#x3E; R, we use the
argument of Lemma 3.4. Take R &#x3E; 0 so that supp V c If y ( t; x, ç) does
not enter into BR, ~t ( x, ~) - ~o ( x, ~’) . It is clear that the result is true for

(x, ~) in such region. If y(t ; x, ~) enters into BR at some time T, we can use
the translation in time

with T = T(x, ~) determined by Ix + Tçl = R. See Lemma 3.4. Then Lemma
4.4 follows from (4.10) as in the proof of Lemma 3.4.

Return now to the proof of Theorem 4.3. Let R &#x3E; 0 so that the support
for V is contained in BR_1. Take 0 E Co (Rn) so that = 1 on BR. Put:

91 (t, s) is a compact support in ( x, ~) E R2n. By Lemma 4.4,

uniformly in t, seR. 1 on the support of V the symbol of
has the same expansion as

Hence we get an expression for the remainder

where is a symbol satisfying:

for every M &#x3E; 0, uniformly in t, s E R and h E ]0,1]. Take p E which
is equal to 0 on the ball BR - 1 and to 1 outside BR. Then for every &#x3E; 0,
we have

where h) is an operator defined by
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Since V and p are of disjoint support, we have:

Let rM (t, s ; h) be defined by:

where fM(t, 8; h) is the symbol of RM (t, s; h) . Then on the support of

Taking notice that 1,

for (x, y) E supp r~ ( ~, ~, ~; t, s; h), by Lemma 4.4, we obtain:

uniformly in t, s E R and h 6 ]0 1]. By Lemma 2.9, there exists k depending
only on n such that for every N &#x3E; 0:

uniformly in t, s E R and h E ~ ]0,1]. In the same way, we can prove:

On the other hand,, we can prove by induction that for every j &#x3E; 0:

for t e R, uniformly in h E ~ ]0,1]. Applying (4.12) and Theorem 2.4, we get
for j = 1~ + 3:

uniformly in t E R and h E ]0,1]. By (4.10), we have:
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with satisfying:

The constant k depends only on n.
Recall that satisfies

uniformly in t, s E R. Applying Egorov’s Theorem, we get:

where

By the non-trapping condition (B), we deduce from (4.14) that for every
M &#x3E; 1,

for (x, ç) E with x ~  ~t uniformly in s, r, t in R. Put:

By the argument used in the proof of Lemma 4.4, we can get from (4.16) that

uniformly in t, r in R and (x, ~) E R2n. This shows that f (t, r) has the same
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properties as g ( ~t - 9 , t) . Now repeating the arguments used before, we get:

where Cjk (t, r) is given by:

and RjN (t, h) satisfies:

uniformly in t E R and h e 0,1 ~ . k’ is an integer depending only on n.

Consequently we have proved by (4.13) and (4.15) that:

where satisfies the same estimate as

(see (4.13)). Notice that Cjk (t, r) satisfies also (4.14) with r instead of
s. We can use an induction to prove that for every N &#x3E; 0,

with RN (t, h) satisfying the same estimate as Rl (t, h). This finishes the proof
for Theorem 4.3.
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We can give an expression for bk (t), k = 0,1, ~ ~ ~. Put:

for j &#x3E; m. Then we have:

1.

LEMMA 4.5. For every j &#x3E; 0, the, limits = lim exist in
t --+ :i: 00

and the class T~. In particular,

PROOF. We only prove that lim exists in and the limiting
t &#x3E;+00

functions are in the class TI. Notice that this result for j = 0 has been proved
in Lemma 3.4. Since p o ( t ) = b o ( t ) , (4.18) follows from (4.17) and Lemma 3.4.
For j &#x3E; 1, V being of compact support, by condition (B), we have:

for 2  m  j . These estimates are uniform in (t, t 1, ~ ~ ~ j tm ) and (x, ~) E R2n .
For fixed tl, t2,"’, tm, we can prove that lim exists in

t&#x3E;+00

since g(4)t,t) is so. From (4.17) we deduce that bk (t) converges in
By the methods used in the proof of Theorem 4.3, we can show

that the limits are in the class Tf. This proves Lemma 4.5.
Define p; E T~ by
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According to Lemma 2.9, the operator pT (hl /2 x, D ) is uniformly continuous
from to L2.-k(h) for some k depending only on n. Now we are able
to prove the main result of this section.

THEOREM 4.6. Untler assumptions (A) and (B), let x, X I E COO ( J) so

that x 1 = 1 on supp x . Then the modified time-delay operator T(h) defined in
(4.1) admits a complete semi-classical expansion in terms of pseudo-differential
operators:

with the estimate on the remainder:

where k depends only on n. For j &#x3E; 0, pj belongs to the class Tf. In particular,
po = r, r being the classical time-delay function defined in §3.

PROOF. With the notations of Proposition 2.4, we have for f E S (R n):

Applying Lemma 4.1 and (4.10), one gets an expansion for T(t, h) :

with the estimate:

(4.19) follows by taking the limits in (4.20).

5. - Classical limit for modified time-delay operator

The semi-classical expansion for modified time-delay operator given in §4
is not so satisfying in that the expansion depends on the truncating function
x, even the principal term. However it gives clearly a correspondence between
quantum and classical time-delay. Using this result we can find the classical
limit for modified time-delay operator 
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Suppose assumptions (A) and (B) to be satisfied. Let ( xo, ~o ) E 
J. The function X used in §4 is chosen to be of compact support

in J and to be equal to 1 in some neighbourhood of p(zo , £o) .
Introduce the Weyl operator by:

(see [11], [33] and [38]). Then Wh (xo, ço) is a pseudo-differential operator with
symbol x - xo - ~)). For every temperate weighted symbol b, one
has:

where ( xo , ~o ) and x are chosen as above. In this section, we will prove the
following result.

THEOREM 5.1. Under assumptions (A) and (B), with the above notations,
one has:

for any I, 9 E 

REMARK 5.2. Notice that r(xo, ~o) is the classical time-delay for a scat-
tering trajectory (x(t), ~(t)) passing through (xo, ~o), (5.3) shows that the

modified time-delay operator T(h) introduced in [22] is a quantization of 2r.
Before proving theorem 5.1, we need some preparations.

LEMMA 5.3. For 0 E Coo(R), continuous of L2~8(h) into L2. 8 (h)
for every s E R and one has:

PROOF. It suffices to use the results on functional calculus for h-pseudo-
differential operators (see [10], [29]).

LEMMA 5.4. For s &#x3E; 0, 0 ~ p  1, let b be a symbol in class Then
there is an integer k depending only on n, so that for E L2’ ~ +k , one has
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PROOF. Notice that for every s E R, is uniformly
continuous in L2=e (h). By lemma 2.9, there is an integer k = k(n) so that

is uniformly continuous of L2~9+k (h)
into L2.-8-k(h). Thus by an argument of density, it suffices to prove the lemma
for f, g E Then it is an easy consequence of (5.2). Lemma 5.4 is proved.

PROOF. It is sufficient to use results on functional calculus for h-pseudo-
differential operators which say that is a pseudo-differential operator
with h-principal symbol cp 0 p. The result follows from (5.2).

The following result enables us to only prove Theorem 5.1 for a dense
subset of functions in L2 (IRn )..

is uniformly bounded on

PROOF. For f, g E define by f, = and gl = 1/;(Hh)g,
where 0 ecol (J) is a function so that 0 (s) = on the support of X. By the
definition of T(h), 

°

where By a simple calculus, we get

where V = 2V + x VV. Applying Theorem 2.4, we have:
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This is Lavine’s formula for time-delay. By Proposition 2.3, we deduce from
(5.4) that is uniformly bounded on L2 .

PROOF OF THEOREM 5.1. Making use of Lemma 5.6, one sees that it
suffices to prove (5.3) for f, g E S (JRn). Then it is an easy consequence of
Theorem 4.3, Lemmas 5.3, 5.4 and 5.5.

6. - Classical limit for time delay operator T(h)

In this section, we study the classical limit of Eisenbud-Wigner time-delay
operator T ( h) . Since the method used here is similar to that used for modified
time-delay operator T (h), we shall be brief in the details.

Let and X 2 be in such that Xi = 1 on the support of 
for j = 1, 2. Here we take X o = X. Put:

we put:- - 

, _, 
- - 

, ,

, Then by proposition 2.7, one has:

As is seen in §4, (

operator, which we denote
is a pseudo-differential

may be written as:

with given by (4.3). We define So (t, h) by:

By Theorem 2.1 and the result on functional calculus ([10], [29]), we
obtain:

for h E ]0,1], uniformly in t E R.

one has:
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PROOF. We first notice that by the expression of (see (4.3)), we can
prove:

uniformly in h e 0, 1 ~ and t E R. As a consequence, it suffices to prove (6.5)
for So (t, h) defined by (6.3) with G(t, h) replaced by go (h 1/2 x, hl/2 D; t). As
in §4, we have the formula:

where R(t, r, h) is a symbol admitting an asymptotic 
Here can be computed as in (4.13). In

particular, by the assumptions, we see that satisfies for every M &#x3E; 0:

This shows that oph c3 (t, r) is continuous from

every s &#x3E; 0 and

uniformly in t, r E R and h e ]0 1]. By Theorem 2.1, for every p &#x3E; 1/2, there
exists p &#x3E; 1/2 such that:

uniformly in t, r in R and h E ]0,1]. Here we have set W(t,r;h) =
For the remainder dN(t, r; h), we can apply the ar-

gument used in the proof of Theorem 4.3 to show that there is an integer k



26

dependending only on n. such that:

uniformly in t E R and h E For fixed N’, take N &#x3E; kN’ + 1. Then we

get Lemma 6.2 for It  h-N from (6.8) and (6.9).

LEMMA 6.2. Under the assumptions (A) and (B), let p be in COO (J).
Then p(Ho )T(h) is uniformly bounded on 

Lemma 6.2 follows easily from Lemma 5.6 by noticing that T(h) and
T(h) are related by: T(h) = Now we can state the main
result of this section.

THEOREM 6.3. Under the assumptions (A) and (B), let (xo, ~o) E so

that po (ço) E J. Take X E Co ( J) and X = 1 in some neighbourhood of po (~0).
For f, g E L2 (IRn) define fh and gh by

Then one has:

where is the classical incoming wave operator.

According to Lemma 6.2, we need only to prove Theorem 6.3 for

f, g E S We divide the proof into several steps. Put:

LEMMA 6.4. For all f, g E S ( Rn ) , N &#x3E; 0, there exists C &#x3E; 0 such that:
I

uniformly in ~t~  h-N, h E ~0, 1~. Here fh and gh are defined in Theorem 6.3.
Lemma 6.4 can be proved by the same argument used in Lemma

6.1. We omit the details here. Now we can apply (5.2) to approximate
 &#x3E;.

LEMMA 6.5. For f, g E we have

uniformly.in t E R and h E ]0,1].
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PROOF. Let R &#x3E; 0 so that supp V is contained in the ball BR. For

(x, ~) E R2n with lxl  R and ~~~2/2 E J, there is T = T(x, ~) &#x3E; 0 such that:

for It &#x3E; T. Then it is easy to check that for (x, ~) in such a region:

uniformly in t e R. By the method used in the proof of Lemma 4.4, we get

for (x, ç) E and t E This shows that uniformly
continuous from L2’k(h) to L 2. -,k (h) for some k = k(n). Now Lemma 6.5
follows from (5.2).

We observe that x2(lçoI2/2) = 1 and

Now we can finish the proof of Theorem 6.3.

PROOF OF THEOREM 6.3. By Lemma 6.2, it is sufficient to prove (6.10)
for f, g E Applying (2.22), one gets:

be defined at the

beginning of this section.
and we have:

By Theorem 2.1, there exists v &#x3E; 1 so that:

where C &#x3E; 0 depends on f and g but is independent of h E ~ ]0,1] and t &#x3E; 0.

Taking N’ &#x3E; 1 large enough, we deduce from (6.14) that
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uniformly in h E ~ 0, 1 ~ and t &#x3E; h - ~’ . By Lemmas 6.1 and 6.4, we get

uniformly in Lemma 6.5 shows that

for h E ]0,1] and t E R. Consequently from (6.15), we get:

for h E ]0,1] and h -N’  t  Notice that p(lço 12/2) = 2/lço 12.
Applying Lemma 3.1 and (6.13), taking the limit h - 0 in (6.16), which

implies t ~ +oo, we get

r being the classical time-delay function. This proves Theorem 6.3.
Notice that the remainder estimates obtained in this paper are closely

related to the continuity of h-pseudo-differential operators with symbol in TI.
We believe that by improving Theorem 2.1 or Lemma 2.9, one could get better
results. The methods developed here could also be applied to general short

range potentials. The main difficulty therein is to establish a result similar to
Proposition 3.5 for classical wave operators and time-delay. Unfortunately there
are few litteratures in this direction (see however [13] and [32]).

REMARK 6.7. We denote: (yo, no) = il," (xo, ~0). Then by the definition
of classical wave operators (see [27]), no) behaves asymptotically as

~0) when t tends to -oo. "0 (xo, ç) is the classical time-delay for
the scattering trajectory (x(t, yo, no), ç(t, yo, x(t, yo, = xo + + 0(1).
~ (t, yo, no) = ço + o ( 1 ) as t tends to - oo. Since* po (go) = p (yo, comparing
with theorem 5.1, we can say that the Eisenbud-Wigner time-delay operator
T(h) is the quantization of classical time-delay function applied to incoming
data, while the modified time-delay operator is the direct quantization of two
times the classical time-delay function.

REMARK 6.8. It is interesting to notice .that in the proof of theorem 6.3,
we have in fact obatined that:

where d(x, ~) = x ~ ~ and Sel is the classical scattering transform (see [26]).
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More generally, we can show that if ,b is a bounded symbol on JR.2n, under
the conditions of theorem 6.3, we have:

for f, g E where f h and gh are the same as those in theorem 6.3.
(6.17) may be considered as the classical limit for scattering operator S (h),
which gives a close relationship between quantum scattering operator and
classical scattering transform. (6.17) can also be compared with the known

. 

results on semi-classical approximation of scattering operator (see [40]).

Appendix

In this appendix, we will give the details of the proof of theorem 2.1. We
will use commutator techniques. Let us prove first (2.8) and (2.9).

PROOF OF (2.8) AND (2.9). Using (2.5) and proposition 2.3, we can easily
get (2.8) just as in the case of h &#x3E; 0 fixed (see Jensen [15]). In particular, the
uniformity in h in (2.8) follows from that in Proposition 2.3. To prove (2.9),
we apply A (h) to (2.5):

where is valid as operators from 

function so that supp T c J and

From lemma 2.2 and (2.8), it follows that in the norm of operators on
on has:

for t ~ 0, (A.2) is uniform with respect to h E ]0, ]. Using the assumption
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(1.1), for 1  p  1 + e, one has:

Using (2.8), we obtain that:

Thus it follows from (A.2) that:

This proves (2.9) by interpolation.
We notice that if e &#x3E; 1, we can show that (A.3) is also true for p = 2.

Thus we get:

uniformly in h E ~0, 1~.
PROOF OF THEOREM 2.1. We put:

one has:

where

From (2.9), it follows that for every p &#x3E; 1/2, one has:

In order to get (2.1 ), we take 0 E Co ( J) , ~ - 1 on supp CP2 and we
write:

From lemma 2.2, (2.9) and (A.6), one gets:
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This proves (2.1). Applying A(h) to (A.5) and using (A.7), one has:

We write (A.8) as

with the obvious definitions for s; h). Using lemma 2.2, lemma 2.4 and
(2.1), we can estimate the s; h)’s as follows:

where f is defined by Using (2.1 ) and (2.6), one has:

By the assumption (1.1), for p = 1-~- e, one has:

Just as in the proof of (2.9), one has:

All these estimates are uniform with respect to h E ~0, lj. Since Is -
bounded for r, s G R and s (s - r) I min

it follows from (A.8) that
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uniformly in h E ]0,1]. Since p &#x3E; 1, this proves (2.2). Hence theorem 2.1 is

proved.
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