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On a Maximum Principle for Weak Solutions
of the Stationary Stokes System

J. NAUMANN

1. - Introduction. Statement of the Result

Let n c be a bounded domain. We consider the homogeneous
stationary Stokes system with unit viscosity:

here u = {u¡, U2, us} and p represent the velocity field of the flow, and the
undetermined pressure, respectively ( V p = 1&#x3E; ) .

By an we denote the boundary of n. Without any further reference,
throughout the whole paper we suppose that an E C2 (cf. e.g. [8] for the

definition). System ( 1.1 ), (1.2) will be completed by the boundary condition

where f is a given vector field on an.
We introduce some notations used in what follows. Let D c l~ 3

be any bounded domain with Lipschitz boundary 8D (cf. e.g. [8]). Then
Hk (D) - W2k (D) (k = 1, 2, ~ ~ ~) ) denotes the usual Sobolev space of all functions
in L2(D) having their generalized derivatives up to order k (including) in L2(D).
Further, let 

-

and

Pervenuto alla Redazione il 19 Gennaio 1987 e in forma definitiva il 27 Giugno 1988.
1) ~ ~ _ ~- (with respect to a Cartesian frame; =l,2,3).
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In order to define the notion of weak solution
be given such that

( n = ~ ~ 1, n2 , ~3 } = outward unit normal along 
The function u E Hl (n; R 3) is called a weak solution of ( 1.1 )-( 1.3) if

It is well-known that the above conditions on f guarantee the existence
and uniqueness of a weak solution of (1.1)-(1.3) (cf. e.g. [6]). Furthermore,
(1.4) implies the existence of an element p E such that

(cf. [5], [7], [11]). In addition, there holds u E [COO (n)]3 and p E Coo (n) (for
all p E p) (cf. [6], [7]).

The aim of the present paper its to prove a global Loo-bound on the
Euclidean norm of the weak solution of ( 1.1 )-( 1.3) in terms of f. We follow
an idea of Cannarsa [4] and make essential use of results by Giaquinta, Modica
[5] and Solonnikov, Scadilov [11]. Moreover, our approach gives an additional
information on p near the boundary 9n (p according to (1.4’); cf. (3.2) below).

For any e E R 3, let

The main result of our paper is the following

THEOREM. Let f E H1(n;R3). Let div f = 0 a.e. in n, and let there exist
an 0  Ro  diam n such that

~ Cf. e.g. [8] for a discussion of the spaces or+m). In what

follows, we do not make, however, any explicit use of these spaces. Throughout repeated Latin
subscripts imply summation over 1.2.3.
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Let u E Hl (n; JR 3) be the weak solution of (1.1)-(1.3). Then

where the constant c depends on geometric properties of an only.

The paper is organized as follows. Section 2 is devoted to the proof
of an inequality on the weak solution of the Stokes system in a semi-ball.
This inequality is of an independent interest; it relies essentially on the square
integrability of the second order derivatives of the solution near the base of the
semi-ball, which we are going to prove in the appendix. The proof of our main
theorem is then given in the third and fourth section.

Acknowledgement. - Part of this paper has been written while the author was

visiting the Dipartimento di Matematica, Universita di Pisa (May 1986). The author wishes
to express his gratitude to that institute for the generous hospitality. He is also very indebted
to S. Campanato for some useful remarks on a first draft of this paper. Furthermore, the
numerous enlightening discussions with V.A. Solonnikov are greatly acknowledged.

2. - The Stokes System in a Semi-Ball

Let

Suppose we are given a function w E H 1 (B: ; JR 3) satisfying

By the Lax-Milgram lemma, there exists a uniquely determined function
such that
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As above, (2.2) implies the existence of an element q E Z~(J3/)/R such
that, for any q e q,

In addition, there holds

where

and co is an absolute constant. Indeed, B+ being star-shaped with respect to
any interior point of it, there exists a ~ E BJ (B:; R 3) such that

(cf. [1]). By a homothetical argument, the constant co can be easily seen to be
independent of r. Now, letting X = ~ in (2.2’) gives (2.5).

The proof of our main result is based on the estimate (2.6) below.

PROPOSITION (Campanato type estimate). Let U E HI (B:; R 3) satisfy
(2.2)-(2.4). Then

with c = const independent of both p and r.

REMARK. Estimates of the type (2.6) in place of (~) 2; more
general, with (~) when is the underlying space] have been firstly proved
in [2] for weak solutions of homogeneous linear elliptic equations with constant
coefficients (cf. [3] for a detailed discussion of estimates of this type).

We note that estimate (2.6) can be proved when the third order
derivatives of U are in L2 near the boundary 8B: n { x3 = 0} and appropriate
estimates on these derivatives are available (cf. (2.8) below). However, (2.6) is
sufficient for our later purposes.

PROOF OF THE PROPOSITION. We begin by observing that
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l = 1, 2, 3; c = const independent of r). The proof of (2.7) and (2.8) will
be given in the appendix.

Estimate (2.6) is now easily deduced from (2.8). Indeed, let 0  p  4.
By Holder’s inequality and Sobolev’s imbedding theorem, 

4’

where the constant c is independent of both p and r 3). This can be readily
seen by a homothetical argument. Thus, by (2.8),

This inequality is trivial for ~  p  r. Whence (2.6).

3. - Proof of the Theorem

We begin by proving the following statement which is of an independent
interest:

Let f e HI (n; R 3) with div f = 0 a.e. in 0, and let u e Hl (n; R 3) be the
weak solution of (!.!)-(1.3). Suppose there exist constants 0  Ro  diam n
and 0  A  2 such that

Then there exists an 0  Ro and a constant c &#x3E; 0 which both -depend

3) By c we denote different positive constants possibly changing their numerical value from
line to line.
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on A and on geomet,ric properties of a ~ only, such that

REMARK. Let x e n and

(1.4’). Then

where

and c = const independent of x and r.
Indeed, there exists an p E such that

with an absolute constant co (cf. [11, [10]). Let X = f} a.e. in and X = 0
a.e. in nBBr(a:). Then X E Hol (f]; R 3), and (1.4’) implies

Let ~ E I = r. Clearly, Br(x) c B2r(Ç) n 0, and (3.2)
follows by combining (3.1) (with A = A2 (from (1.8)) and A = 1) and the latter
estimate.

We divide the proof of (3.1 ) into four steps.

1 ° Let ~ E an be arbitrary. We introduce Cartesian coordinates y =
by

where the direction of the negative y3 -axis coincides with the direction of the
outward normal (with respect to n) at ~, and A = is an orthogonal matrix
(with aij depending on ~).

Our assumption 8Q E C2 guarantees the existence of a &#x3E; &#x3E; 0

and a function F = F(e) E = ~ - a, ~ ~ x ~ - Q, ~ ~ ) such that
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Now, for all ~ E the reals Q = are uniformly bounded from below by
a fixed positive constant, while the constants M (possibly depending on ~) are
uniformly bounded from above by a fixed constant. This can be established by
the aid of the compactness of an. Thus, in all that follows, both a and M are
assumed to be independent of ~ 

Set U = u - f a.e. in n. Then from (1.4) we get

Next, for any 0  r  u let

The orthogonality of A implies Br (ç) n n = Cr (0).
We introduce functions v and g on C, (0) by setting

Then (3.5) takes the form

Further,



156

for all 0ro 

2° We introduce new variables z = by the transformation

Clearly, T is a one-to-one mapping (with Jacobian == 1) from C’~(O) onto

D., = T(C., (0)).
Define

according to

Then B~ c Do. Indeed, z E B~ implies E 0 0 . Letting denote
we have y3 &#x3E; F (yl, Y2) J and

i.e. y E Co(0) and therefore z = T(y) E Do. Furthermore, a simple calculation
shows

Now we introduce new functions w and h by

Thus, w E Hl(Du;R3), div w = 0 a.e. in D, and w = 0 a.e. on
Analogously, hE Hl(Du;R3).

Let 0 E V (Bt.) be arbitrary. Set

4~ Repeated Greek subscripts imply summation over 1 and 2.
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We extend x by zero onto and obtain an admissible test function
for (3.6). This gives 

where

Here while the coefficients

and with (at least one index = 3) are of

the form respectively (e.g.
the coefficients Aa are

composed by the functions respectively.
are continuous functions on Do and the following

estimates hold:

for all

3° Let 0  r  r 1 be arbitrary (recall that ri + max.

denote the uniquely determined solution of
, Then

for all 0  p  r where co is the constant occuring in (2.6).
The function

is admissible in (3.10). Adding (3.10) and (2.2) with p = w - tI we find
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In order to estimate I, we first note that

[for what follows it is decisive that the factor of f |vW|2 dz can be made
B+

arbitrarily small to obtain (3.16) below; this explains the introduction of the
coordinate system y = A ( x - ~) at each f E The estimation of the remaining
two integrals forming I1, is readily seen when taking into account (3.3), (3.12)
and w - U = 0 a.e. on Thus,

Next, using (3.3) and (3.11) one easily obtains

(0  r  ri). Inserting these estimates into (3.14) and combining this result
with (3.13) we find

fpr all 0 prr1.
It remains to estimate the second integral on the right of (3.15). To

this end, we note that c [for z E B+ implies 
Therefore,

On the other hand, from h ( z ) = g ( y ) ( z = T (y)) we infer that 
max I for a.a. y E Co (0) (co = const). Thus, by (*), (3.3)
A a

5) In what follows, we denote by c( M ) (resp. different positive constants which only
depend on ~t (resp. o and M).
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and (3.8),

for all 0  r  min

Now, (3.15) gives

forall0prmin
such that

Hence there exists an 0  r2  rnin 

for all 0  r  r2 (cf. e.g. [5; Lemma 0.6]). Here r2 only depends on M via
c(M).

4° In (3.16) we return from w to u. To begin with, we note that

6) We emphasize that the components a,, of the matrix A occuring do not

explicitely enter into (3.7) and (3.8). Therefore, all estimates in step 4° are independent of the
a,,’s and thus too.
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Combining (3.16) with (3.17) and (3.18) one finally obtains

being fixed]. Thus, (3.1) is satisfied with

4. - Proof of the Theorem completed

Let x E f) be arbitrary. Let d = dist( x, an). Then there holds

with co an absolute constant (cf. [5; Prop. 1.9]).
We distinguish two cases.

(i) d &#x3E; R1/2 (R1 according to (3.1) with A = A2 (from (1.8)) and A = 1).2
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Then (4.1 ) combined with (3.4) gives

where the constant c depends on n only.
(ii) d  ~ . There exists a ~ E such = d. Following [4]

we combine (1.7) and (3.1) to obtain

co being an absolute constant.
Thus, in both cases,

for all 0  p  d = Since almost all points x E f) are Lebesgue
points of luI2,. the latter inequality implies the-assertion of the Theorem.

Appendix: Proof of (2.7) and (2.8)

We apply an idea from Solonnikov, Scadilov [11] ] (cf. step 3 below).
In that paper, the authors prove the square integrability of the second order
derivatives of any generalized solution to the inhomogeneous Stokes system near
the boundary of a bounded domain with C3 -boundary (i.e. after introducing the
new variables z = (cf. above) the reasoning in [ 11 ] refers to an

equation of type (3.10)). In contrast to that, we start immediately from (2.2).
Therefore, our proof of (2.7) is technically simpler that the one in [11]. In
addition, we establish the estimate (2.8) which is crucial for the proof of (2.6).

To begin with, we introduce the following notations. Let ~ E We

extend ~ by zero onto II~ + B Br ~~ and denote this function on again by ~.
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Then define

for any e &#x3E; 0 and almost all x E R3, where
and being the standard mollifying kernel in I1~ 2 . We
have:

1. PROOF OF

(I, j = 1, 2, 3, a = 1, 2, c = const &#x3E; 0 independent of r).

Let § e supp(q§i ) c Bt/48 We extend 1/; by zero onto 
denote this function on R ~ again and form

for a. a. x E and all 0  e  ~ . 0 (a = 1, 2 ) . Using
,p,xQ as test function in (2.2’) (in place of x), changing variables and observing
(ii) gives

Thus, by integration by parts,

By an approximation argument, (A.2) is in fact true for any
(cf. e.g. [8; Th. 4.10, p. 87]).
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Let q E be a cut-off function for .

co = const &#x3E; 0 independent of

and (2.4)]. Observing that div
and (ii) above) we obtain from

[no summation over a]. _

The estimation of 11 is standard:
I

(cf. (i) and (ii) above). Next, to estimates 12 we make use of (2.5), (i) and (ii):
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Inserting these estimates snto (A.3) we get

Letting e -~ 0 implies (A.1 ).

2. PROOF OF

Firstly, div U = 0 a.e. in .B/ and (A.1 ) imply

a.e. in B:¡28 Whence the statement on in (A.5).
Secondly, let h E Ho ( B ~ 2 ) . We extend h by zero onto and

denote this function on .0~ again by h. ~0, 0, h} is admissible in

The statement on QX3 in (A.5) is now readily seen.

3. PROOF OF

In order to prove (A.6) we need the following result.
Let f E have bounded support. Then there exists a function

0 E H2(II8+;1~3) such that
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(c = const &#x3E; 0 independent of f).
This result is stated without proof in [11]. A proof of (A.7)-(A.10) can

be given by using the explicit representation of the solution of

in terms of potentials the kernels of which involve only differences with

respect to xl and x2 (X = IXI, X2, X3) E R3 ; cf. [9; pp. 163-165]) [private
communication by V.A. Solonnikov].

An entirely different and more elementary solution of (A.7)-(A.lo) can be
given as follows [private communication by V.A. Solonnikov]. Define

here K is any function in C2(1~3) with supp(K)

Then (A.7) and (A.8) are easily verified. Further, the derivatives as well
as (i, k = 1, 2, 3; a = 1, 2) give rise to a singular integral to which the
well-known Calderon-Zygmund theorem applies. Whence (A.9) and (A.10) (cf.
also [10; Lemma 2.1, p. 252]).

Now, let n E C°°(R3) be a cut-off function for Br/2 : q = 1 on

in R 3BBr/2  1, |Vn|  oc/r and I  CO/r2 in
3 , , 

r
- 1, 2, 3; co = const &#x3E; 0 independent of r). We apply the result just

stated with f = (g - a.e. in B:, f = 0 a.e. in 0  e  4 .
Thus, there exists a function Q (e) E H2 (R3 + R3) such that
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(a = 1, 2; c = const &#x3E; 0 independent of r; note that

is admissible

in (A.2). Taking into account (A.7J and

we get

[no summation over a]. To estimate Jl and J2 we combine (2.5) and (A.4),
(A.9,), (A.10~ ): 

~
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Analogously, by (2.5) and (A.9,), (A.10~ ),

Finally,

Inserting the estimates 6n J 1, ... , J4 into (A.11 ) and letting e ~ 0 we get
(A.6).

4. PROOF OF

Let h e Ho ( B ~ 4 ) . We extend h by zero onto and denote this

function on J3~ again by h. Then we let x = ~ h, 0, o} in (2.2’ ) and find

Hence, the claim follows for a = 1 when observing (A.4) and (A.6). To prove
the claim for a = 2 we let X = ~ 0, h, 0} in (2.2’ ) and argue analogously.

The proof of (2.7) and (2.8) is complete.
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