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On the Asymptotic Behavior of Solutions of Linear
Parabolic Equations in L! Space

DONG GUN PARK - HIROKI TANABE (¥)

The object of this paper is to investigate the asymptotic behavior of the
solution of the initial-boundary value problem for the linear parabolic equation

0.1 du/dt + A(z,t, D)u = f(z,t), in Q x [0,00),
0.2) B;(z,t,D)u =0, Jj=1,...,m/2, on 80 x [0, 00),
0.3) u(z,0) = uo(z), on Q,

in L1(Q) as ¢t — oo.
This type of problem for an abstract parabolic evolution equation

(0.4) du(t)/dt + A(t)u(t) = f(2)

was first treated in [9], and the convergence of the solution u(t) to a stationary
state was shown under the assumption that the domain D(A(t)) of A(t) is
independent of ¢t. Pazy [8] established the asymptotic expansion of the solution
of (0.4) assuming a certain asymptotic behavior of A(t) and f(t), and as its
application he obtained the asymptotic expansion of the solution of the parabolic
problem (0.1)-(0.3) in L?(Q2), 1 < p < oo, in case when the boundary conditions
(0.2) are independent of t. ‘

Recently, Guidetti [4] extended the above results to the case when D(A(t))
and the boundary conditions (0.2) depend on time. We show that analogous
results for the solution of (0.1)-(0.3) hold in L*(f2) using the method of [7],
[11] of estimating the Green function of the problem considered.

(*) The work of the second author was supported by Grant-in-aid for Scientific Research
61460003, Ministry of Education of Japan.

Pervenuto alla Redazione il 29 Gennaio 1987 e in forma definitiva il 21 Ottobre 1987.
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1. - Notations

Let 2 be a not necessarily bounded domain in R"” locally regular of class
C?™ and uniformly regular of class C™ in the sense of Browder [2]. The
boundary. of 2 is denoted by 9Q2. We put

= (3/3:1:1,. . .,3/62,,).

Let
A(z,t,D) = Z aqo(z,t)D*
la|<m
be a linear differential operator of even order m with coefficients defined in 0
for each fixed ¢t € [0,00), and let

Bj(Z,t,D) = Z ‘b];ﬂ(z’t)Dﬁa .7= 1)"‘1 %’
181<m;

be a set of linear differential operators of respective orders m; < m with
coefficients defined on 8 for each fixed ¢ € [0, 00).

The principal parts of A(z,t,D) and B;(=,t, D) are denoted by A #(z,t, D)
and B (z,t, D) respectively.

Tet & be a nonnegative integer. For 1 < p < oo, W*P(Q) stands for
the Banach space consisting of all measurable functions defined in 2 whose
distribution derivatives of order up to & belong to L”((2).

The norm of W*P(Q) is defined by

/lD"‘u|”dz)1/” if 1 <p< oo,
llelle.p = '“'<’°
a 1 —
mg ess _sup |D*u| if p = oo.

We simply write || ||, instead of || ||o,, to denote LP norm for 1 < p < oo.

We use the notation || || to denote both the norm of L(f2) and that of
bounded linear operators from L(f2) to itself.

We denote by B’°( (1) the set of all functions which are bounded and
uniformly continuous in {2 together with their derivatives of order up to k.
B¥(11) is a Banach space with norm

luli = max sup |D*u(z)].

For 0 < h < 1, B*¥**(Q) is the set of all functions in B*(Q) whose kth
order derivatives are uniformly Holder continuous of order h. The norm of
B*+h(()) is defined by

IDa ( ) D“u(y)l
= a su
I‘UIk+h Iulk + |r‘£1|=k z,!; Q I.’B - ylh
. z#y
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B*(8Q2) denotes the Banach space consisting of all functions having
bounded and uniformly continuous derivatives of order up to k on 81.
B*¥(9Q) is a Banach space with norm

|ulk,00 = = max W, |D*u(z)|.

We denote the set of all bounded linear operators from LP({2) to
Lr(Q), wm™r(Q) by B(L*?,Lr), B(L?,W™?) respectively.

For a Banach space X we denote by B¥(I : X) the set of all functions
with values in X which are bounded and continuous in the interval I together
with their derivatives of order up to k.

2. - Convergence as t — oo

We assume the following:
(I.1) A(z,t,D) is uniformly strongly elliptic, i.e. there exists an angle 6, €
(0, %) such that for all real vectors £ # 0 and all (z,t) € ( x [0,00)
larg(~1)™/2 A% (2,1, €)| < bo.

(1.2) {Bj(=,t D)}"‘/2 is a normal set of boundary operators, ie. 90 is
noncharacteristic for each B; i(z,t, D) and m; # my for j # k.

(1.3) For any (z,t) € 80 x [0,00) let v be the normal to 90 at z and £ # 0 be
parallel to 9 at z. The polynomials in 7

# -
BT (z,t,€ + 1v), i=1,...,m/2

are linearly independent modulo the polynomial in 7, H (r—1 (€, 3,1))

J=
for any complex number A with 8, < arg A < 2 — 6y where
T F (&, z,t) are the roots with positive imaginary part of the polynomial
inr, (- 1)"‘/2A#(x t,E+Tv) = A

(L.4) For each t € [0,00) the formal adjoint of A(z,t,D)
A'(z,t,D) = Z al (z,t)D*
|aj<m
and the adjoint system of boundary operators
_ B . m
B!(z,t,D) = Iﬂlz:lb;-,ﬁ(z,t)D , o i=Le

can be constructed.
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(L5) For |a| = m, au € B°(@ x [0,00)). For |a| < m, a,, o,
B([0,00); L*(f)), and

. . . - . Y -
A Jlaa(,t)llo =0, lim [laf(,¢)]leo =0,
where a, = da,/8t, d&!, = da!,/dt.
(L6) For |B| <mj, j=1,..., B¢, bjs € B([0,00); B™~™i(d12)), and
tl_ifgo Ib 8 ('1t)|m—mjy30 =0.
Similarly, for |8] < mj, j =1,..., 2, ¥, € B([0,00); B~} (30)),
and
Jim 65 5(,8) lm—m:,00 = 0.

(I) For each p € (1, 00) there exists a constant C,, such that for ¢t & [0,00), 8o <
arg A < 2m — 8o, u,v € W™P(Q)

@1 NNl < C{I(AC, 8, D) = AYull,
J=0
' m/2

m/2
+ Z I’\l(m_mj)/mllgj"p + Z "gj”m—m,‘,p}’
J=1 J=1

@2 3 Do) < Co{lI(A'(t, D) - Ao,

=0
m/2 m/2
+ Z lAl(m-m")/m"hJ'"p + E "hj"m—m}m}’
J=1 7=1

where g; and h; are arbitrary functions in Wm=mi2(()) and W™=™5p(0)
such that B;(z,t,D)u = g; and Bl (z,t,D)v = h; on 90 respectively.
REMARK. It is known that under the hypothesis (I.1)-(1.6) the inequalities

(2.1), (2.2) hold if we add some positive constant to A(z,t, D) if necessary.
For 1 < p < oo let A,(t) be the operator defined by

D(Ap(t)) = {u € W™P(Q) : B;(z,t,D)ulpn =0, j=1,..., g},

for u € D(4,(t)), (A,(t)u)(z) = A(z,t,D)u(z) in the distribution sense.
Similarly, the operator A,(t) is defined by replacing A(z,t,D) and
{B;(z,t,D)}7/} by A'(z,t,D) and {B!(z,t, D)} /2.

=1 =1
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From the assumptions above it follows that —A,(t), —AL(t) generate
analytic semigroups in L?((2), and the resolvent sets p(A,(t)), p(A}(t)) contain
the closed sector

D ={r:00< arg A< 2m— 6o} U{0}.

- The operator A(t) is defined as follows:
The domain D(A(t)) is the totality of functions u satisfying the following

three conditions:
(i) wewm™1e(Q) for any g with 1 < g<n/(n—-1),
(ii) A(z,t,D)u € L*(Q) in the sense of distributions,
(iii) for any p with 0 < (n/m)(1 -1/p) < 1 and any v € D(4A},(t)),

P=p/lp-1)

(A(=z,t, D)u,v) = (u, A'(z,t, D)v).

For u € D(A(t)) (A(t)u)(z) = A(z,t,D)u(z) in the distribution sense.

It is known that —A(t) generates an analytic semigroup exp(—rA(t)) in
L'(Q) ([10], [11]). It can be shown without difficulty that for some positive
constant co the inequalities (2.1) and (2.2) hold if we replace A(z,t,D) by

A(z,t,D) — ¢o and C, by some other constant. Hence, there exists a constant
Co such that for r >0, 0<t < o0

(2.3) llexp(—7A(t))|| £ Co exp(—cor),
(2.4) A(t)exp(—-7A(t))]| € Cor~texp(—cor).

Let U(t,s) be the evolution operator of the evolution equation in L!((Q2):
(2.5) du(t)/dt + A(t)u(t) = f(t).

The existence of such an operator was shown in [6] and it is constructed
as follows:

2.6) Ult, s) = exp(—(t — ) A(t)) + W(t, s),
@7 Wi(t,s) = / exp(~(t — r)A(t))R(r, s)dr,
2.8) R(t,s) - / Ra(t,)R(r, s)dr = Ry(t, ),

L]

2.9 R, (t,s) = —(3/0t + 3/as)exp(—(t — s)A(t)).
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Our first main result is the following:

THEOREM 2.1. Suppose that the hypotheses (1.1)-(1.6), (II) are satisfied.
Let f(t) be a uniformly Holder continuous functions with values in L'((Q)
defined in [0, 00):
I7(@#) = F(s)|| € Ca(t — s5)*, 0<s<t<oo,
where C, and h are constants with C; > 0, 0 < h < 1. Moreover, assume

that the strong limit fo = tlim f(¢t) exists. Then, for any solution u(t) of the
—+ 00
evolution equation (2.5), we have
lim A(t)u(t) = fo

t—o0

in the strong topology of L*(f).
Following the -argument of [4] we can prove Theorem 2.1 with the aid of
(2.3), (2.4) and the following lemma.

LEMMA 2.1. For each fixed s >0
@10 Jim AW 9)] =0

For any € > 0 there exists a constant sy > 0 such that

t
@.11) / AW (t,0)lde <& for so <8<t < oo.

We plan to prove Lemma 2.1 as follows. First we note that

AW (2, 5) = A(t) / exp(~(t — 1) A(t)) Ra (r, 8)dr

+ / Alt) / exp(~(t - r)A(1)) Bu(r,0)dr R(o,s)do.

If we have a desired estimate of A(t)?R,(r,s) for some 0 < p < 1, then
we can write the first term of the right side of (2.12) as

/ A(8)Pexp(~(t - r) A(t)) A(t)° Ra(r, s)dr.

Let Wo1(Q) = (L*(2),W'1(Q))s,1 be the real interpolation space of
L'(Q) and W*(Q) with norm denoted by || [|o,1-
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Then, in view of Grisvard [3] we have for 0 < 0 <1

2.13) wo (@) = (L}(Q), Wo™" (D)o/m,1-
It is easy to show that for 0 < p < 6/m

(2.14) (L*(R2), D(A(t)))s/m,1 € D(A(t)?).
Clearly,

(2.15) w1 (Q) € D(A()).
Combining (2.13), (2.14), (2.15) we get

(2.16) w%(Q) c D(A(t)").

Consequently, in order to establish an estimate of |A(t)?Ri(r,s)| it
suffices to obtain that of ||Ry(r,s)|| B we) where B(L!,W?%?) is the set
of all bounded linear operators from L*({2) to W%?(Q). Since

2.17) IR1(r,8)fllo.2 < CliRa (7, 8)FIIE,1[|Ra(r, 8) £II*~°,

the problem is reduced to estimating ||Ry(t,s)||z(z:,ws1) and ||R(t,s)| for
0< s<t<oo. In view of (2.1) the desired result follows from the estimates
of 92G(z,y,r;t)/dz;08t, 8G(x,y,r;t)/0t where G(z,y,r;t) is the kernel of
exp(—rA(t)).

3. - Proof of Lemma 2.1.

In what follows we let the notation C,, stand for constants depending only
on the hypothesis (I.1)-(1.6), (II) and p € (1, 00).

Arguing as in [7], [11] we see that for each p € (1,00) there exists a
positive constant §, such that for each ¢ € [0,00), A € ), a complex vector 7
with || < 6,|A|*/™ and u,v € W™P(Q)

@G0 Y eI ulljp < Co{I(ACt D + 1) = Nullp
=0
m/2 m/2
+ ) Mgl + D 95 lm—mjp}s
i=1 j=1

32 Y NIl < Co{lI(A'(ht D+ ) = Mol
=0
mf2 ‘m[2

+ IRl + D 2 Isllm-my 0}

=1 I=1
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where g; and h; are arbitrary functions satlsfymg B;(z,t,D +n)u|ag = g; and
Bj(z,t, D+r])v|an =h; for j=1,.
We define the operator Al(t) by

D(A%()) = {u e W™P(Q) : Bj(z,t,D +n)uloa =0, j=1,..., %},
for u € D(AR(t)) (A7(t)u)(z) = A(=,t, D +n)u(z) in the sense of distributions.
Similarly replacing A(z,t,D+n), {B;(=z,t, D-i-'?)}m/2 by A'(z,t,D+1n),

{B}(z,t,D + n)}'"/ 2 the operator A% (t) is defined.
It follows from (3.1), (3.2) that if In| < 8,|A/™, A€y, then

(A3 () = X)~ |z (Lr,Lr) } C
3.3 p < ZB
e 1CA0) ~ ) I (zr,zry | < P
(A () = A) " iB(zs,wmr) }
3.4 L4 <C..
G9 1A (E) = A) oz me | <7

Let w(t) be a function defined in [0,00) such that
11m w(t)=0

laa(st)llo < w(t), laa(tlleo Sw(t)  for |a| <m,

|i7',ﬁ("t)|m—m,-,80 < w(t) for |ﬂ‘ <m;, 3=1,.

ERE

|B_'f,p("t)|m—m;,80 < w(t) for |ﬂ| < m;" .7 = la ey

Il
S
B3
—~~
- .
o
|
b
o
|
-
“a

Since the derivative w = dw/adt of the function w(t)
satisfies

(A(z,t,D + 1) - A)i(z,t) = —A(z,t,D + n)w(z,t) z€Q,

o zeoaq,

Bj(z,t,D + n)w(z,t) = —B,(=,t, D + n)w(z,t), j=l,...,2

it follows from (3.1), (3.3) that

(3.6) 11(8/88)(A2(t) = X~ lB(zr,Lo) < C,]c;l(t)’

3.7 ||(3/at)(Ag () - A)—]'"B(Lr'Wm.P) < Cpw(t)
for || < 8,|A|*/™, A €Y. Similarly for those values of 5, A

38) I(0/0)(A'3(0) = 2 lageszm < Z,

3.9 1(8/88)(A'3 (1) = ) ™HlB(zr.wmir) < Cpu(t).
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We choose natural numbers ¢, s and exponents 2=¢; < gz < ... < g, <

Qoy1 =00, 2=r; <13 < ... <ty < rg—pp41 = 00 as follows (Beals [1]):

(i) incase n/2m <1—-1/m:€=2 and s = 1, hence 2—q1 < g2 = oo,
2=r;<rg=o00, ¢! < (m-1)/n.

(ii) incase 1-1/m<n/2m<1:€=3 and s =2, 2=q1 < g3 < g3 = 00,
gil-gl<m/n, gzl <(m—-1)/n, 2=r; <rp=o00

(iii) in case n/2m >1:8>n/2m+1/m, L—s>n/2m, g7 — g7}y <m/n
for j=1,. -1, q, 1>m/n, @l < (m —-1)/n, m —n/q, is not a
nonnegatlve mteger ril-rih<m/nforj=1,..,6-s-1, rj2 ;>
min>r;l,, m- n/rg_, is not a nonnegative mteger

(iv) incase n/2m =1 : € =4 and s = 2, 2 = q1 < g2 < gs = oo,
2=r;<rg<rg=o00, g} <1/2-1/n=(m—-1)/n.
In what follows we consider only the case (iii).

According to Sobolev’s imbedding theorem there exists a positive constant
~ such that for j=1,...,s -1

(3.10) W™ (Q) € L%+(Q), |lullgs, < llulla g, lullzy
where 0 < a; = (n/m)(g;* — g;},) < 1,

W™ (Q) ¢ B™ "% (Q) c WH*(Q),

lullsco < Al g2/ ™ ullys 2,

(3.11)

where 0 < a, = (n/m)g;! <1-1/m, and for j=1,...,6—s

G12) W) € Fn (@), fully, < Al lul e,

m,rj

Whel'e 0< a,+J ("":/"'n)(r.7 - r1+1) <1
Let 6§ = min{6, : p = q1,..-,4s,71,---,Te—,}. By virtue of (3.3), (3.4),
3.6), 3.7, (3.10), (3. 11) for A€ ) and |17| < 5])\|1/"‘

(3.13)  [|(AZ(¢) = A) M IB(zy,Les+r) S CRASY, 5=1,...,8 -1,
(3.14) (A7, (8) = N) 7 | (ze,wrey < CA[PeF/m=L
(3.15) [|(8/9t)(Ag;(t) = X)~ YNB(zes,Loser) S Cw(t) A%, 7=1,...,8—1,
(3.16) [|(a/at)(A4q, (t) - )‘)_lné(un,wl,m) < C’w(t)|)\|"'+1/""‘1_
Similarly, by virtue of (3.3), (3.4), (3.8), (3.9), (3.12) we obtain
GAT) A0 = )M s(ers ey < CAH
3.18)  [|(9/08)(A', (1) = N) T llp(zrs prsen) S Cw(B)| AP+

for j=1,...,L—s.
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As is easily seen

(3.19)  exp(—erAy(t)) = (1/2m)* / / g=AaT=e e mAer

r r
(Ag(t) - Al)_l. . .(Ag(t) - Ag)—ldAl. ..dAg,

where T is a smooth contour running in Y \{0} from oce~*% to coe'®.
For Ay,...,2, €Y and 5 with

(3.20) In] < & min{|A;[*/™, ..., |Ao/™}

set
S(t) = (A3(2) = X))~ (A5(8) = A) 7,

T(t) = (A7(t) = Xeta) 77 (A3 () = 2e) T
Let KY  ,.(z,y;t) be the kernel of
ST () = (A3(8) — A1) 7" (A3 (8) = A0) ™™
Then (9%2/9z;0t)Ky,  ,,(z,y;t) is the kernel of
D;(d/dt)S(t) - T(t) + D;S(t) - (d/dt)T(t).
By an elementary calculus

(3.21) D;(d/dt)S(t) = D;(3/8t)(AL(t) — A,)~*
©(AD(E) = Aum1)™h (AT () - Ag)
D;(A3(t) = A,)7?
-(A3(t) = A2) 7 (/at)(A3 (1) — A1) 7?

With the aid of (3.13), (3.14), (3.15), (3.16)
1D;(2/8t)(A3 () = Aa) ™" - (A3 (t) = A1) "+ -(43(8) = M) T llm(z2,2)
< ||(a/at)( AL () = X) T la(ze,wie)

H" (&) = )" B (zes,Loi)
< Cuw(t)A, ™ H A% 2
i=1

Estimating other terms of the right side of (3.21) analogously we obtain

(3.22) ID;(d/dt)S ()| (L) < Cw(®)IAs ™ [T 1251% 7.

7=1
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Similarly we get

[4
(3.23) IT*®)lla@a =y <€ I] Pl*,
I=s+1
(3.24) 1D;S (t)lB(z2,2=) < CIA™ TT INj1%72,
=1
[4
(3.25) I(d/a)T* @) |pzs,ze) < Cwlt) T IAslo
J=s+1
Hence
[4
(326)  |(8%/9z;00K], .5 Az uit)l S CIAPI™ T Inglo2.
j=1
It is easy to show
[4
(3.27) I8/ K3, 5, (2 u;t)| < Cuw(t) [T 125127
=1

Let KA,,.._,M(z,y;t) be the kernel of (Ag(t) - Al)—l. . -(Az(t) - At)_l.
Then as was shown in [7], [11]

(3.28) Kx,,..a(z95t) = e(’“")"K;'h._.,‘\L(z,y;t).
With the aid of (3.20), (3.26), (3.27), (3.28) we obtain

e
(82 /02;0t)Ka,,....x,(2,4:t)] < Cw(t)e==97 2 /™ TT ;1%
J=1
Minimizing the right side of the above inequality with respect to n we
get (Hérmander [S])

(329) |(9%/3z;0t)Kn,,... 2, (2, 5t)|

(4
< Cw() /™ TT 1%~ exp{=smin(As[*/™,..., Ae[/™)]z — [}

J=1
[/ [4
< Cw) MM TT sl exp(=61Ae*/™|z ~ y])
=1 k=1

In view of (3.19) we have
(3.30) G(=,y,tr;t)

= (1/2m’)‘/.../e_)‘""'"""Kh,,_,,h(z,y;t)d,\l...dAg.'
r r
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For any fixed z,y € 2,7 > 0 let T, be the contour defined by
Toyr={A:larg A\| = 0o, |A| > a}U{d:X=ae®, 6 <0< 2m— 6o}

where a = g(|z —y|/7)™/ (™Y = ¢p/r, p=|z—y|™/(m=1) /71/(m=1) and ¢ is a
positive constant which will be fixed later. Differentiating both sides of (3.30)
with respect to z,; and ¢, deforming the integral path I" to Iz, ,, and using
(3.29) yield

|(8%/0z;0t)G(z,y, tr;t)|

14
< CW(t) Z / .. / e—ReA;r—...-RéAu’lA'll/m

k=1 r‘yv:" F‘rﬂy'

4
x 1‘[ 12712~ exp(—8| A2/ ™ |z — y[)|dAs - . - dAe).
J=1

Estimating the right side of the above inequality as in section 5 of [6]
we conclude

Cuw(t z — y|™/(m-1)
(331)  |(9%/92,8t)G(z,y,7;t)| < T(—M(—)/)"T exp(—c l_ﬁy/l(W
Similarly
Cuw(t z—y"'/(""'l)
B3 [(0/00G(wyrit)] < o exp(—e U

If we denote the kernel of R,(t,s) by Ri(z,y,t,s), then in view of (2.9)
Ri(z,y,t,8) = —(8/3t)G(z,y, 7; t)|r=t—s-

By virtue of (3.31) and (3.32)

2

a 0
(3'33) ‘(E)Rl(z’ y,t, s)l = | (W)G(ﬂi,y,f; t) |

r=t—s
Cuw(t)
- (t - s)(n+1)/m

|z _ ylm/(m—l)
DR

Cuw(t z—y"’/(""'l)
(3.34) |R1(z,y,t,s)| < (t_——ng)/m- exp(—c |(t — 3|)1 ol )

exp(—c
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With the aid of (3.33), (3.34) we conclude
0
(3.35) G20 Bat Sl < Cult)(t = 8) /111l
]
(3.36) IR. (2, 8) fI| < Cw(B)II Il
for any f € L'(0Q).
We choose constants p and § so that 0 < p< 6/m, 0 <0< 1.
Combining (2.16), (2.17), (3.35), (3.36) we obtain
(3.37) |A(t)?Ry(r, 8)|| € Cw(r){1 + (r — 8)~Y/™}°.

By virtue of (2.8), (3.36) and Gronwall’s inequality we get
i
(3.38) IR (, s)]| < Cw(t)exp(C / w(r)dr).

Using (3.37) and the inequality
lA()*~Pexp (=(t - 1) A < C(t —7)*~*

we get
t

339 140) [exp (- NAWIR(o)r]

= Il [ A rexp (~( - VAW AW Ra(r,s)ar]
< C’/(t 1) 1+ (r - s)"e/"‘}w(r)dr

< C’{’(t —8)P + (t — 8)*"°/™} sup w(r).

a<r<t

Making use of (3.37) and (3.39) yields

(3.40) "/A(t)/éxp (—=(t = 7)A(t))R1(r,0)dr R(o,s)do||
<C /{(t —o)P+(t- a)”"o/"‘} é\:%tw(r)w(a)exp (c / w(r)dr)do

<C{(t-s)"t+(t- s)"""/”‘ﬂ}‘ggtw(r)zexp (C/w(r)dr).
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Combining (2.12), (3.39), (3.40) we get

AW (8, 8)ll < C{(t - 5)° + (£ — 8)°~*/™} sup w(r)

8 <r<t

+ C{(t — 5)°*! + (t — 5)P~0/m+1} oggtw(r)zexp (C/w(r)dr)

With the aid of (2.7) and (3.38) we get

4D WG9 < {exp (© [ wlr)ir) - )sup exp (~rAW)]
343)  ||UG,s) < exp (C / w(r)dr)sup [lexp (—rA(t))]\

As was mentioned in section 1 all the hypothesis (I.1)-(1.6), (II) are

satisfied by A(z,t, D) — co, {Bj(z,t,D)};.’;/l2 for some ¢y > 0 if we replace C,

by some other constant. If we denote by U°(t,s), W°(t,s), R{(t,s), R(t,s)
operators obtained by replacing A(t) by A°(t) = A(t) — co in the definition of
Ul(t,s), W(t,s), Ri(t,s), R(t,s), then
U(t,s) = U°(t,s)e= (=) W(t,s) = WO(t, 5)e~0(t=2),
Ry(t,s) = RY(t,s)e™°°0!=)| R(t,s) = RO(t,s)e 0 (t=),
and (3.41), (3.42) hold with A°(t), W°(¢,s) in place of A(t), W (s,t).
Hence
(B.44) [ AW (2, 8)l| = I((A°(2) + o)W (2, 5)e =) |
< A WO (2, 8) ) + co|[WO (8, 5) e 0l=)
SC{(t— )"+ (t—5)P""/™} sup w(r)e~*olt=?)
+ C{(t - 5)P* + (t — 5)P70/m+1} sup w(r)?

1<t

X exp (C/ w(r)dr — co(t — s)))

i

+ coCofexp (C/w(r)dr) — 1}ecolt=2),

which implies (2.10).
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With the aid of (3.44) we have
t 13
/ |A@)W (t,0)||do < C/{(t —0)? + (t —o)Pt/m}eco(t=2) 4o gugtw(r)
’ 13 ’ t
+ C/{(t —0)P*t 4 (t — 0)P~0/m+1Yexp (C / w(r)dr — co(t — 0))do Sgpqw(r)2 ‘
t t )
+¢oCo / {exp (C / w(r)dr) — 1}e~* (=) 4g,

Let ¢ be an arbitrary positive number. If s is so large that sup w(r) <e,
then the right side of (3.45) does not exceed o

(o) (o)
C/(TP + TP-O/m)e-code e+ C/(TP+1 + Tp—o/m+1)e-(co—0¢)rdr &2
0 0
(<]
+ ¢0Co /(c_(""_c‘)’ — e °°T)dr,
0

from which the second half of the assertion of Lemma 2.1 follows.
Thus the proof of Lemma 2.1 is complete.

4. - Asymptotic expansion at ¢t = oo

In this section we consider the asymptotic expansion at ¢ = oo.
In addition to (I.1)-(1.6), (II) we make the following assumptions.

(IIL1) For |a| < m

4.1) ao(z,t) = Z t_kaa,k(z) +t7Vrg(z,t),

’ k=0

4.2) a (z,t) = E t7*al, o (z) + tVrl (z,t)
k=0

with aqk, @, € L*(Q) for k = 0,...,v and_r,,, r!, € B([0,00) :
L*®(Q)). If |a| = m, aqx € B°(Q) and r, € B°(Q2 x [0,00)), and hence
so do a, , and ry,.
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(IIL.2) For |a| < m

4.3) tl_l’ngo Ira(-st)lleo =0, tI—LTO [IFa(-t)llo =0,
. ’o. _ . s _
@ Jm G Ole =0, lim 460l =0

where 7o = dr, /0t, ¥, = Or! [dt.
(IIL.3) For |B| < m,, 5= 1,...,-’2’!,

(4.5) bip(2,8) = Y t7™*b;p4(2) + pjp(z,t)
k=0
with bjpg € B™m ™ (aﬂ) for k = 0,...,0 and P;Bp €

B1([0,00); B™~™i(30)).
For |ﬂ|5m.'i’ J.:l’...,%’

v

(4.6) b p(z,t) = D t7FY, 5 (2) + 0 5 (2, 0)
k=0

with b5, € B™™5(90) for k = 0,...,v and p}, € B([0,c0);
B™-m;(30)).
(IIL4) For |8 < my, j=1,..., %,

@7 Lm |pjp(2,t)lm-mjso0 =0,  lm |5;s(z,t)|m-m;00 =0,
and for || < mj, 5= 1,...,-'2'!,
@8)  Im |pj () lm-ms00 =0, UM |5} 5(-t)|lm—mt,00 =0,

where ;5 = 3p;p/0t, §}4=0p; /0t

THEOREM 4.1. Suppose that the hypotheses (1.1)-(1.6), (II), (IIL.1)-(I11.4)
are satisfied. Let f(t) be such that

i) = EV: tF fe +t7r(t)
k=0

with fi € L*(Q) for k=0,...,v and r € B°([0,00); L}(Q)), tl_lglo [lr(®)]l = o.
Then for any mild solution of (1.5)

v

u(t) =) t7Fux +t7*p(t)

k=0
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with ux € L*(Q0) for k=0,...,v and p € B°([0,00); L*(f2)), Jim lle(t)]| = 0.
According to the argument of theorem 1.4 of [4] it suffices to show that

(4.9) AR)7 =) TR+ t7VR(Y)

k=0
with Ty, R(t) € B(L*,L*) for k = 0,...,v and t € [0,00), 11m R() 0,
11m (d/dt)R(t) = 0 in the strong operator topology. Actually we shall prove

th1s convergence in the uniform operator topology.
In what follows we assume that bj sk, pjg, b}, P;p are extended to
the whole of Q2 or  x [0,00) so that

65,8,k |m—m; < 2bj,8,klm—m 00,

IPj,ﬁ(' )lm-m; < 2|p;,8("st)lm—m;,00,
b p.klm—mi < 2|b} g xlm—m 00,

IPJ,p( t)|m—m} < 2|P_1,ﬁ( )|m—m;.,8no

We put

A(z,D) = Z aq,0(z)D%, i(z,D) = Z bj,8, O(Z)Dﬁ
la|<m 1Bl<m;

Ae(z,D)= Y 6ax(z)D*,  Bjx(z,D)= ) bjsx(z)D?
la|<m |Bl<m;

for k=1,...,v, and

/i(:c,t,D) = Z ro(z,t)D*, Bj(z,t,D) = Z - pj.p(z,t)DP

lal<m 18|<m;

Analogously, the operators A'(z,D), Aj(z,D), fil(z’t, D), B;-(z, D),
B;',k(Z,D), B;(Z,t,D) are defined.
It is obvious that (3.1) holds also for A(z,D + 1), {Bj(z,D + rl)}n}/z

j=1

in place of A(z,t,D+1n), {Bj(=,t,D+n)}" / :for e ), n € C* with
In] < 8p|AIY/™ and u € w™P(Q)

4.10) 3 =Dl < Co{ll(Alz, D + 1) = Nullp

7=0
m/2 m/2
+ ) [A[lmmmadimgl, + E lgillm—m;}>
=1

where g; is an arbitrary function in W™~™i?((Q) satisfying B;(z, D+n)ulog =
= g; for each j=1,...,m/2. This is the same for the inequality (3.2).
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Let A, be the operator defined by

D(4,) = {u e W™?(Q); B,(z,D)ulpn =0, j= 1,...,_';1},

(Apu)(z) = A(=z, D)u(z) for u € D(4,) in the distribution sense, and A7 be the

operator defined analogously with A(z,D +n) and {B;(z,D + fl)}',"—/f in place

of A(z,D) and {B;(z,D)}7/7. Similarly, the operator A’,, A"l are defined.

For A € Y \{0}, n €C" with |n| < §,|A\|*/™ and f € LP(Q) 1<p<oo,
we put v(t) = (A%(t) - A)~'f and v = (A" A)~1f. In view of (3.1) and,
(4.10)

(4.11) > A= (#) 1,5 < Coll llps
i=0
4.12) E I'\I(m—j)/m"”O"J}p < Collfllp-

=0

We define a finite sequence of functions v;, 7 =1,...,v, successively as
the solutions of the following boundary value problems:

=1
(A(z, D + 1) = X)vi(z) = ZA._;,, (z, D + n)vk(=), z €N
k=0
-1 m
Bj(z,D + n)v;(z) = EB,,,_;,(:: D + n)vi(z), 7= 1,...,?, z € 9N.
k=0

Since the functions wv;, z = 1,...,v, are uniquely determined by f, we
may denote them as

v =H})\  f, i=1,...,v.
We put

Hiyp=(Ap =21  Hopp=(4p-2)7}

Ry () =t (45(t) - )~ Zt""' Iy Bap(t) = B3, ().

=0

Clearly

(4.13) (An() - )™ Zt"H."xp +17V R (0).

=0
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Applying (4.10) to v; yields

i—1
EII\I(”'"” ™villio < Colll D Air(z, D+ n)vellp
=0 k=0
m/2
+ E |’\|(m_m’)/m" Z Bji-k(z, D + n)vkllp
=1 k=0
m/2 t—1
+ Z ” Z B v'—k z D + ﬂ)vk"m—m_,,p}
=1 k=0

3
gM"

DL G L
j=0
It follows from (4.12) and the above inequality that

(4.14) ZlAl"" NMm\HD , flie < Collflls,  i=0,.

7
3=0

We put
wi(t) =max{|lra(",t)lleos IFal"st)lloos 105,8(*st)lm—m;>
R . m
|P:i,p("t)|m—M,-; le| < m, |B] < m;, 3=1,.. ?}

wa(t) =max{||re(,t)lleos lIfa(t)lleos |£G8(E)lm—rmi>»

. m
|P;', ( )lm-—m" o] < m, |ﬂ|<m =1, 2}

An elementary calculus yields

(A(z,t, D+ n) = A)(t"v(=,1) ’ E tv~v;(z))

= —A(z,t,D + n)vo(z), z€Q
Bj(z,t,D + n)(t"v(z,t) Z tv"tv;(z))
=0

~ . m
= —Bj(z,t, D + n)vo(z), i=1,...

Hence, applying (4.10) to

R} (1) f =t"u(t) = )t and (3/0t)R} (1),
1=0
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we easily get

(4.15) > A= IRE () fllip < Cowa (D) 1]lps
J=0

(4.16) A m=imi(8/0)RY ()]l < Cpwr () lp-
7=0

The inequality (4.15) implies
@1 lim B, (0)flmp =0, . Lm [|(3/80)R] ()f]mp = 0.

Similarly, replacing (A, {B;}) by its adjoint (A, {B}}) we define operators
H'],, i=0,...,v, and R'] (¢) so that

v

(A2 =Nt =)_ tTVH'?, +tTVR'T (1),

We obtain
@18) Y IIET, Sl < ol i =0,
=0
@19 3 IR (0l < Coua(®ll Tl
=0
(420) 2'": AC=D/m(3/98) R (1)l < Cpwa(8) -
J=

Since ((A7(t) — A)~*)* = (A4';,"(t) = X)~! we see that
4.21) (B, =HZ ., (RL,®) =R57().

We first establish the asymptotic expansion of the kernels of the semigroup
exp(—rAz(t)) at t = oo. We choose natural numbers £, s and exponents
2=¢; <gz2<...< (s < @yp41 = 00, 2=r1<rg<...<rp_y <Tp_yp1 = OO
as in [7], [11] (Beals [1]) i.e.

(i) incase m > nf2. £ =2 and s =1, hence 2 = ¢; < g2 = oo and
2=r; <rg=o00;

(i) in case m < n/2. s > n/2m, £—s > n/2m, ¢;! —g;}; < m/n for
i=1,...,8-1, ¢} > m/n > ¢;!, m—n/q, is not a nonnegative integer,
rit-rily <m/nforj=1,...,-s-1, rel,_y>min>ri}, m-n/r,_,

is not a nonnegative integer,
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(iii) in case m = nf2. £ = 4, 8 = 2, 2 = ¢ < g2 < g3 = o,
2=ry <ry<rg=o0.

In what follows we only consider the case (ii). According to Sobolev’s
imbedding theorem the inequalities (3.10) and (3.12) hold for j =1,...,s and
J=1,...,€— s respectively.

Put 6 = min{6,; p = q1,--+,s,71,-- -, Te—s}. Let Aq,..., A € 3°\{0} and
n be a complex n-vector satisfying

(4.22) o] €& min{|A; /™, ..., | A2 ™}.
In view of (4.13)

(4.23) (AZ(t) — A1) (AD(E) — Ag)?
= (AJ(2) — Xs) "2 (A2() — A1) (AT(E) — Aggr) ™ .
(A%(8) =22

v

- —fy— e —ig TN n n
- Z t ‘Hi.,A.,Z' * 'Hﬁ,Al,Z Hi,+;,k.+1,2' ot
$1,...8¢=0

e Hi e TR ga(t)s

where R}, 5(t) is the sum of terms which contain at least one of R}, ,(t)’s
as a factor. With the aid of (4.14) and (3.10) we see that

(424) IHZ p g onss < ORI s B= 1,000,
Hence
(4.25) ||H.'".,,\.,2' . 'Ha,xl,zuB(L’,L“’)
< H NH, oy g B, Lok41) £ C H |Ag|®*2.
k=1 k=1
Analogously
(4.26) [0 HANSVRRPIRES : WY il |F-T7 28 25
=1 'i-z,ﬁi'zﬂ' o 'i_.zx,i.u,z“‘?(""""")
<C f[ |Ak|*L.
k=a+1

Therefore, if we denote the kernel of

H} H!

n n
$0,24,2° " 711,A1,2 H5.+1,Aa+1,2' * 'H"L,Myz
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by M"(z,y), then in view of (4.25), (4.26) and Lemma 2 of [1]

4
4.27) |M"(z,y)] < C [T IAel**

k=1

As was shown in [7], [11] if # is pure imaginary, then

(4.28) (A2 = A)"1=¢€"(4] =)l "
(4.29) (A2(t) = A)"t=e"(AT(t) —A)"te "

(if 0 is bounded, n need not be pure imaginary). Since
H},, = Jim {(43() - )™ - (47 - )7,

it follows from (4.28), (4.29) that Hy 2 =€ "Hy, , e~ '".
Similarly we obtain

Hiyz=e¢"HJ,,e= ", i=2..,v, Rag(t)=¢*R]e”"".
Hence, arguing as in [7], [11] if we denote the kernel of
Hi a2 -Higag,2 Higpiaegn,2e- - Higag2
by M(z,y), then we have
(4.30) M(z,y) = eZ~9"M"(2,y)
for any complex n-vector satisfying (4.22). Combining (4.27), (4.30) and arguing
as in section 4 of [7] we get
(4.31) |[M(z,y)| < C f[ [Ag|®*~2 exp {~6 min (|A;[¥/™,...,|AeY™)|z -y}
k=1

Analogously, if we denote the kernel of Ry ., (¢) by M(z,y;t) we get

(4.32)  |M(z,y;t)|, |(3/3t)M(z,y;t)|

[3
< Ca(t) [T Inel®s= exp {=6 min (|As]*/™,..., [ Ael*™)= - y]},
k=1
where &(t) = max {w;(t), wa(t), t71}.
It follows from (4.23), (4.31), (4.32) that
(433)  (Az(t) = A1)t (A2(t) = Ae) 7 = (A2 — A1) 7h (A2 - A)?
+ Z t—iHi,xh...,AL,2 + t-uRAla"'yAb2(t)’
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where H;, ..x.2, Ra,,..a,2(t) are operators with kernels K;,,,... 2, (2,9),
KAI:---,XL(zd/;t) satisfying

(4'34) |KI‘,A1,...,A¢(2) y)l
[
< CIJ 1xel**~? exp {=6 min (]\[*/™,...,]Ac*™)|z - yl},
k=1

(435) |KA1,...,A¢(x:y;t)|’ |(a/at)f(4\1,---.h(z’y;t)l
. [ .
< Ca(t) [T Ixel™* exp{-6 min(|A,[*/™,...,[A*™)|z - y]}.
k=1

If we denote by Kj,,....x.(2,y;t), Ki,,...,r.(2,y) the kernels of (Aa(t) -
A1) (A2(t) = Ae)7E, (A2 = A1)t (A2 — M), then in view of (4.33)

v |
436)  Knyoao(2,458) = Koy 2o (2,9) + )t Kiny, (25 9)

=1

+ 7Ky, oao (3, 05t).

We denote the kernels of the operators exp (—rAz(t)), exp(—rAz),

(1/2mi)" f / exp (~Aar —... =Aer) Hinyonpz dhae-.dhe,
r r

(1/21!’{)‘/.../ exp (—)‘11' - —AgT) Ri,,... 52 (t)dAl...dA¢
r r

by G(z,y,7;t), G(z,y,7), Gi(z,y,¢r), G(z,y,er;t). Then by virtue of the
equality (3.19) and that with A, in place of A,(t) we have

4.37) G(z,y,7;t) = G(z,y,7) + Zt“"G,- (z,y°7) +t7VG(=,y,1;t).

=1

Arguing as in [7], [11] we get

|G(=,y,7;¢)|

< C |z - y|'"/('"-1)
|G(z,y,r)| - |1-|n/m exp (—c -W/(—m:l—)—
|G.'(z,y,‘r)|
éz, y Tt % _ o|m/(m—1)
Gla,y,731)] < S0 oyp (¢ l2—ul T
(8/04)G(z,y, ;1)) ~ Il Ir]

for r in the region |arg 7| < § — 6o.



610 D.G. PARK - H. TANABE
Let Ky (z,y;t), Ka(z,y) be the kemels of (A;(t) — A)~1, (42 —A)73,
and put

[+ ] 00
K; \(z,y) =/eA'G;(z,y,r)dr, Ih(z,y;t) =/e"'é’(z,y,r;t)dr.
0 0

With the aid of the argument of [7], [11] we obtain

(4.38) |Kx(z,93:t)|, [Ka(=,9)ls [Kia(z,y)]
< C exp(—cA[Y ™|z - y)
|z — y|™™" if m <mn,
x { [A|m/m-1 if m > n,

(1 +1log* (]A|"Y™|z — y|71)) if m =n.

(4.39) |Kx(z,9;t)], |(3/3t)Ka(z,v;t)|
< Ca(t)exp(—cA[Y™|z - y)
|z — y|™™" if m < n,
x { |A/m-1 if m > n,

(1 +log* (A|"Y™|z — y|7Y)) if m=n.

From (4.13) with n = 0 and the equality

v
Ki(z,u;t) = Ka(z,9) + ) _t " Kia(z,9) + TV Ka (2,33 1),

i=1

it follows that K; »(z,y), and K (z,y;t) are the kernels of H; ), and R, ,(t)
respectively for 1 < p < oo. If we define the operators H; i1, Ra1(t) as
integral operators in L(f2) with kernels K;(z,y), Ki(z,y;t), then

(4.40) (A2(t) = X)) = (A1 = A1+ Dt Hin g + TV Raa ()
=1
In view of (4.39) we have
Jim |[Bya(6) =0,  lim [|(9/08)Bxa(t)]] = 0.
Since the above argument remains valid if we replace A(z,t,D) by

A(z,t,D) — co for some co > 0 (section 1), the expansion (4.40) also holds for
A = 0. Thus the proof of (4.9) is complete.
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