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An Asymptotic Formula for the Green’s Function
of an Elliptic Operator

MARTINO BARDI (*)

1. Introduction

Let be the Green’s function with pole at y of the Dirichlet

problem for the uniformly elliptic operator L", i.e., the weak solution of

where 0  e  1, 611 is the Dirac measure at y E 12, bounded
and open, and we adopt, here and in the following, the summation conven-
tion. In this paper we show that under certain conditions on the vector field b,
as e B 0 Gg (., y) converges exponentially to 0, uniformly on compact subsets of

, with rate of jr~ ~ ~ 0, and we give a

representation formula for I (x, y).
The exponential decay as e B 0 of the Green’s functions of the parabolic

operators It + L" was studied by Varadhan [17, 18] in the case 6 _ 0,t -

and by Friedman [7, 8] in the general case. Friedman employed the Ventcel-
Freidlin estimates from the theory of large deviations of stochastically perturbed
dynamical systems and some rather delicate parabolic estimates due to Aronson.
His result is the following. For any x(’) E define

where ((ai?)) = a-1 is the inverse matrix of a. If all, a~~ and bi are smooth,

(*) This work was done while the author was- visiting the Department of Mathematics
of the University of Maryland, partially supported by the Consiglio Nazionale delle Ricerche.

Pervenuto alla Redazione il 28 Luglio 1986.
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then the Green’s function with pole in y, satisfies

The corresponding formula we propose for the elliptic case is the following:
t

It is clear, however, that unlike the parabolic case, such a formula can be true
only under some strong assumptions on the vector field b, since in the simple
case b -= 0, G- --+ +oo uniformly on compact subsets of [2B(y).
The main result of this paper is the proof of formula (1.3) in the case that b
satisfies the following condition:

I u

Condition (Bl) was first used by Fleming [5] in the study of a singular
perturbation problem arising in stochastic control theory. Its physical meaning
is that it takes an infinite amount of energy to resist the flow determined by -b
and stay forever in H. In particular, b is "regular", i.e., it has no zeroes in H.
We remark that the definition of coincides with that of "quasipotential"
of the vector field b with respect to the point y in Freidlin-Wentzell [6, p. 108].

Our proof of (1.3) is completely independent of formula (1.2) and also
of the probabilistic methods used by Friedman. Instead we follow the PDE
approach to WKB-type results initiated in the recent paper by L.C. Evans and
H. Ishii [4], where new, totally analytic and simpler proofs are given of three
results due respectively to Varadhan, Fleming, and Ventcel-Freidlin. The idea
of Evans-Ishii is basically the following: 1) apply a logarithmic transformation
to the unknown function, in our case

and find a PDE that v. solves; 2) prove estimates, independent of 6, on v’
and its gradient; 3) show that a subsequence converges as c B 0, to

the viscosity solution of a Hamilton-Jacobi equation (see Crandall-Lions [2],
Crandall-Evans-Lions [1] and P.L. Lions [14]); 4) by deterministic control

theory methods find a representation formula for such a solution..
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The main difficulties in the implementation of this plan in our case are
in the treatment of the two boundary layers that our problem exhibits, one at
the boundary where vs goes to +oo, and the other around the singularity
y, where 1)S goes to -oo: notice that the limit I(z, y) is positive and bounded.
To deal with these problems we shall establish in §2 suitable estimates of 1)B
around y, and we shall introduce in §3 various approximating problems.

The pioneering work about singular perturbation, of elliptic operators is
due to Levinson [13]. We refer to Schuss [15] for an introduction to the physical
motivations and an extensive bibliography. The theory of viscosity solutions
has been utilized for problems of this type also by P.L. Lions [14, Ch. 6]
and Kamin [12]. For results in the nonregular case, i.e., b having one or more
zeroes in 0, we refer to Freidlin-Wentzell [6], Friedman [8, Ch. 14], Kamin
[11], Day [3], and the papers quoted therein. Kamin [19] has also treated

recently a nonregular problem where the relevant Hamilton-Jacobi equation has
more than one viscosity solution.

The paper is organized as follows: in §2 we list the hypotheses, recall a few
definitions and basic facts about the Green’s function, prove the estimates for vs
and deduce from them a convergence result; in §3 we prove the representation
formula for the limit.
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2. Estimates and Convergence

Throughout the paper we assume the summation convention and 0  ~  1.
We will write for brevity H := W 1’ 2 ( [0, oo) , ll N ) . 

-

loc ([0, oo
Let f2 c N &#x3E; 2, satisfy

(Al) f2 is open, bounded and connected, with smooth boundary 
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Let be the space on N x N symmetric matrices and let o : n 2013~

satisfy
for some

for every

for some

and define

It is well known that in the above hypotheses, for every f E 0°(0), the
unique weak solution of

belongs to and it solves

see for instance [9, Ch. 9]. The problem adjoint to (2.1 ) is

which is also uniquely solvable in the weak sense.
DEFINITION [16]. A function G-(x,y) defined for E 0, x 54 y is a

Green’s function for the problem {2.1 ) if G‘ (~, y) E Vy E 0, and

for every 0 E 0°(0) and v the corresponding weak solution of (2.3).
From the theory of Stampacchia [ 16] it follows that there exists a unique

Green’s function for the problem (2.1 ), and it satisfies the following properties:
...-A , " M-1 , "

where G’ is the Green’s function for problem (2.3), i.e.

and u the corresponding solution of (2.1 );
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for each I

for every

I I and it is a weak solution in f~B{y} of

PROPOSITION 2.8. Under assumptions (Al), (A2), (BO) we have E

(11B{y)) and it satisfies

PROOF. Fix 6- and y and define u(z) = GI (x, y). Let f n be an approximation
of the identity and let un be the weak solution of

By [16, Thm. 9.1] we have

Then a subsequence of un converges in Lq ([2) and weakly in to u.

Now fix 0’ cc [2B{y} with smooth boundary. For n big enough un solves

Thus, by standard methods we have

so that a subsequence of un converges in L2 (~l’) and weakly in Wl,2([21),
necessarily to u. Thus u is a weak solution in 0’ of

Thus u is continuous and the proposition follows from the Schauder theory.
0
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By the above proposition and the strong maximum principle we have
&#x3E; 0 for all x E 0, x $ y, so that we can define

It is easy to check that v‘ (~, y~ satisfies

For the solution of the above PDE it is possible to obtain interior estimates for
the gradient independent of e, as shown by Evans-Ishii [4]:

LEMMA 2.10. For each 0’ there exists a constant C ( ~’ ) ,
independent of E, such that every C3 solution of the PDE in (2.9) satisfies

PROOF. See [4, Lemma 2.2].
0

We are now going to prove interior estimates, independent of 6, for 
To do this we will estimate the Green’s function of the adjoint problem de
and exhibit the dependence of the constants on e. The crucial exponential
dependence on E-1 of the bounds for ä- comes from the constant in the
Harnack inequality: 

~

LEMMA 2.11. Let 0’ C f2 be open and u ~ W 1, 2 (fll), u &#x3E; 0, be a solution

of

Then, for any ball we have

where

and define

. i .. I .

Then 3 solves
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a satisfies (A2) and D. Since

inequality there exists C such that
by the Hamack

Since any two points in B(z, r) can be connected by a chain of 6
appropriately overlapping balls of radius s, we obtain (2.12). 

12-r I
0

REMARK 2.13. The dependence of the constant in the Harnack

inequality displayed in (2.12) is sharp, as the following simple example shows:

has the positive solution u(x) = that assumes the values er/6 and 
on the boundary of .B(0, r).

0
PROPOSITION 2.14. Assume (A1 ), (A2), (BO). The function de (x, y) defined

in (2.4) satisfies the inequality

where C‘1 and C2 are constants independent of E.

PROOF. Fix x 0 y and define r = ,ac - yl, u(z) := Define

81 :,,; {z E Iz - r}, S‘2 := {z E f2l r  I z - 3r} and let

~ E COO (0) be such that 0 _ ~  1, ~ =- 1 in - 0 in QBS2, ~Z. By
(2.7), using 0 = U~2 as a test function, we get

where we indicate by C any constant depending only on N, D 
Thus
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Now let ø E be such that 0  ~  1, ~ - 1 in B (y, ’), 0 = 0 in
C. As a consequence of (2.4) and the regularity of the

coefficients we have

Then

for r  1, where we have got the second inequality from Schwarz inequality and
(2.15). Now, in order to apply the Harnack inequality (Lemma 2.11), we observe
that any ball B(z, R) with z E ,SZ and R = fa is such that B(z, 4R) 9 
and that any two points in ,SZ can be connected by a chain of appropriately
overlapping such balls whose number depends only on N. Then we obtain

which yields the conclusion.
0

REMARK 2.16. For this proof we borrowed some ideas from Gruter-
Widman [10].

0
In order to get the estimate from above of GO around the pole y we shill

use hypothesis (Bl). Define

The main consequence of (B 1 ) is the following Lemma, which is a slight
extension of Lemma 4.2 in [4]:

LEMMA 2.17. Assume (BO) and (B 1 ) and let b be a Lipschitz extension
of b to a neighbourhood of o. Then there exist a &#x3E; 0, T &#x3E; 0, ï &#x3E; 0 such that

for all
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PROOF. First observe that (Bl) is equivalent to

for all X(-) E W1~2([0,oo),O). Then the pro of (by contradiction) is essentially
the same as that of Lemma 4.2 in [4].

0

LEMMA 2.18. Under the assumptions of Lemma 2.17 there exist -y &#x3E; 0
and w E such that

PROOF. For a given a:(.) z(0) = x, let tz be the first exit time of

x(’) from i.e.

Let a, T, ~ be the constants provided by Lemma 2.17 and define for x E 1211

By standard arguments w is Lipschitz continuous in 
Now, observe that w is the value function of the control problem of

minimizing 
t.

where x(.) satisfies x(s) - (3(s), z(0) = x, and the control 3(-) E

The Hamilton-Jacobi-Bellman equation associated to this

problem is - -

Since w is continuous it is a viscosity solution of this equation (see [14, Thm.
1.10]), then by Rademacher’s theorem it also satisfies the equation a.e., which
implies (2.19). 

-

PROPOSITION 2.20. Assume (A1 ), (A2), (BO), (B 1 ). Then the function
68 (x, y) defined in (2.4) satisfies

where the constants C1, C2, C3 are independent of s.
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PROOF. We extend b to a Lipschitz vector field b defined in a

neighbourhood of 12 and consider the function w constructed in Lemma 2.18.
We call 

’ °

the convolution of w with a mollifier P’1. Then w’~ is smooth and satisfies

and

Now we choose qo small enough so that v := satisfies

and

Therefore v satisfies

Now let u. be the solution of

By the Alexandrov-Bakelman-Pucci maximum principle (see e.g. [9, Thm. 9.1 ])
we then have

Using the definition of C- we get

Now taking p = ix - ~/5, 4e/3  p  dist(x,80’)/4, by the Hamack inequality
(Lemma 2.11) we have
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THEOREM 2.21. Assume (Al), (A2), (BO), (BI). For each y E f2
there exists a sequence sk ~, 0 and a function v(~, y) E such that

lim VSk(.,y) = v (., y) uniformly on compact subsets of and v (., y) is a
Ie

viscosity solution of the Hamilton-Jacobi equation

Moreover there exists a positive constant C such that

PROOF. Lemma 2.10 and Propositions 2.14 and 2.20 imply that

(v6(.,y), 0  e  1} is bounded in Therefore a subsequence
converges uniformly to v(’,~) E W~o~ ° (~), which is a viscosity solution of
(2.22) because v~ (~, y) solves (2.9), see Crandall-Lions [2, §IV,I]. By the
results of Crandall-Lions [2, §1.4], (2.22) C in ~~{y} and
then v(.,y) has a unique Lipschitz extension to f2.

0

3. The Representation Formula for the Limit

We recall the definition:

where + b (x (s)) 112 is defined by (1.1). Our main result is the following:

THEOREM 3.1. Assume (Al), (A2), (BO), (Bl). Then

uniformly on compact subsets of 

PROOF. Let v (., y) = lim vek (., y) uniformly on compact subsets of 
A;

for some sk , 0. Our goal is to prove that v(x, y) = I(z, y) for all z, y E 2.

For x E 11 let T:J; be the first exit time of x(-) E H, x(o) = x, from Since

by Theorem 2.21 v(~, y) is a viscosity solution of (2.22) and we are assuming



580

(Bl), the following representation formula of Evans-Ishii [4, Thm. 4.1 ] holds:

for all x E 12B{Y).
Since either

because (2.23) implies v ( y, y) = 0.
We are now going to prove that v (x, y) &#x3E;_ for all x,y E f2.

We fix y E 0 and in order to simplify the notation we drop the second
variable y in vll, v, I and in all the functions defined in the following. Define
f2l = f2 U 01  fl), for fl &#x3E; 0 small, let r.1 be the exit time of
x ( ~) E H x(O) = x E ot from and extend a and b to be Lipschitz and
bounded in all For A &#x3E; 0, x E ot, define 

.

For all A &#x3E; is locally Lipschitz with
that

C independent of A,

and it is not difficult to show, using the argument in [4, Lemma 2.4], that I.
is a viscosity solution of

Now define for 0  ~  fl the mollification

where py is an approximation of the identity. It is easy to deduce from Jensen’s
inequality, (A2), (BO) and (3.2) that
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where C is independent of -y and A. (3.2) implies also

so that 11 satisfies

for a suitable constant Co independent of E, 1 and A, where L~ is the quasilinear
elliptic operator

Furthermore, since I. (y) = 0, we have la (y)  C1 ï and thus

where the constants are independent of and R, 0  R  
Now fix a constant M such that

and to be the solution of

(for the existence and regularity of v!,R see e.g. [9, Thm. 15.10]). By the
comparison principle [9, Thm. 10.1 ] and (3.3-4-5) we have

Again by the comparison principle, (3.6) (3.8) and (2.9) (2.20) we get

Combining this last inequality with (3.7) and letting e -~ 0, ~ -~ 0 and R - 0
in this order we get
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We are now going to show that

satisfies

Fix e &#x3E; 0. Let iQn B 0 aS n - oo, On := 0 U {x ~ Oldist(x, i9f2)  On), let

Tz be the exit time from of x(~) E H,x(O) = x and let be Ia for
,8 = Now take xn(.) E H such that = x, = y if rn  oo and

Define

It is easy to see, using (3.9), that for all T &#x3E; 0

so that the sequence {z"(~)} is bounded in Wl,2 ([0, T], Do). Hence there exists
z(.) E H and a subsequence of z"(~), still denoted by z"(~), which converges
to z (.) weakly in [2o) and uniformly on [O,T].

. Now for z(.) E H, z(0) = x define

We claim that z (s) E f2 for all 0  s  sz . To prove this assume 0. Let
a := and fix n such that  ~ for 0  8 ~ s, n &#x3E; n.

Let n be such that Qn  ~ and define n := max {n, n}. Then for all n &#x3E; n we
have On and thus y :=  s. Hence Tn has

a subsequence converging to s  s and it is easy to see that z(s) = y, which
implies s &#x3E; sz and proves the claim.
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Now define

We claim that

To prove this we recall that for each T &#x3E; 0 the functional

is sequentially weakly lower semicontinuous by a classical theorem of Tonelli.
Then

Thus

and the claim is proved by the arbitrariness of e.
Next we claim that

We first observe that by a Lemma of Evans-Ishii (see [4, Remark 4.3])

hypothesis (Bl) implies that there exist To, Ao such that
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for all T &#x3E; To, 0  A  Ao, x(.) E H satisfying x(s) for all 0  s  To.
Then, if we assume A  Ao and fix 0  e  1, we can find x(.) E H such that

Since 9f2 is smooth there exists a smooth function 0 : l~~ --~ R such that

Define

Clearly

and using the definitions (1.1) (3.13) (3.14) and the smoothness of a, b, and
4J, it is not hard to show that

and to deduce from it that

This proves the claim (3.12), and then, by (3.11) and the arbitrariness of

Qn ’B, 0, the proof of (3.10) is complete. It remains to show that

Using [4, Remark 4.3] as above, we find Ao, To such that for all A  Ao and
fixed c &#x3E; 0 there exists E H such that
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Then

for A small enough. This gives (3.15) and completes the proof.
0

REMARK 3.16. Several ideas in this proof are taken from Evans-Ishii
[4, §2].

0
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