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Homogenization of Reinforced
Periodic One-Codimensional Structures

H. ATTOUCH - G. BUTTAZZO

1. Introduction

Periodic reinforced structures play an important role in modem technology:
stratified, alveolar, fibred reinforced materials are frequently used in civil

engineering, aeronautics...
Such structures are characterized by the geometrical properties of the

reinforced zone (especially its "codimension") and by three parameters:

e the period of the structure,
r the "thickness" of the reinforced zone,
A the physical parameter (conductivity, elasticity coefficient)

of the reinforced zone.

Typically, for such structures, e is small with respect to the size of the
global structure, r is small with respect to e, and A is large with respect to the
surrounding (non reinforced) material.

The macroscopic behaviour of such material is described by means
of the asymptotic analysis (called homogenization and reinforcement) of the
constitutive (which we take second order linear elliptic) equations as

We focus our attention here on the case of one-codimensional reinforced
structures (stratified, alveolar...), the case of fibres in dim 3 (two codimensional
structures) being much more involved (cf. Attouch - Buttazzo [22], paper in
preparation), one reason being that a one-codimensional manifold has a strictly
positive capacity while a two-codimensional one has zero capacity!

For such one-codimensional reinforced structures we show the existence

of a critical ratio and compute, depending on the limit of ~, the limit
homogenized-reinforced material. (We stress the fact that our results hold

without any restriction on the shape of the reinforced zone).

Pervenuto alla Redazione il 5 novembre 1986.
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This asymptotic analysis is performed by means of r-convergence method,
the solutions being expressed as minimizers of the corresponding energy
functionals. By the way, convergence of the energies and of the momentum
(dual solutions) are also obtained. The effective coefficients are explicitely
computed (in the- last section) for some structures of particular interest, the
reinforced-homogenized formula (5.1) being proved efficient and flexible for
numerical computation.

Let us finally mention some recent related works where some aspects of the
above problem are considered: Chabi [11 ] (stratified structure), Cioranescu-Saint
Jean Paulin [12] (first e --~ 0, then (r,A) - (0, +oo) for structures with particular _
symmetries), Bakhvalov-Panasenko [3] (formal asymptotic expansions), and
Caillerie [9]. 

2. Statement of the result

Let n be a bounded open subset of R" with a Lipschitz boundary; we
want to study the conductivity problem in H (with a given charge density)
when many thin highly conductive layers are periodically distributed in it.

More precisely, let Y = [0, l[n be the unit cube in and let S c Y be
a smooth (or piecewise smooth) n - 1 dimensional surface.

For every c &#x3E; 0, r &#x3E; 0, A &#x3E; 0 set (see figure 1)

Fig. 1
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and consider the functional defined on by

The functional F.,r,). (u) represents the electrostatical energy of the body
f2 (subjected to the potential u) when the periodically distributed layers 
are supposed to have a conductivity coefficient A.

Given a charge density 9 E L2(0), we want to study the asymptotic
behaviour (when e --~ 0, r --~ 0, A - +oo) of the solutions ug,,r,a of the
variational problems

and to characterize the limit of as the solution u of a new variational

problem

The problem is then reduced to the identification of the r-limit F of
the functionals defined in (2.1). Indeed, by well-known results (see
Proposition 2.1) this immediately implies the convergence of to u.

For simplicity, in the following we shall often omit the limit variable in the
expressions lim, lim inf, lim sup., 

-

For the reader’s convenience we recall the definitions of r-limits (further
information can be found for instance in Attouch [ 1 ], Buttazzo [5], Buttazzo-
Dal Maso [6], Carbone-Sbordone [10], De Giorgi [14], De Giorgi-tiranzoni
[15] and in references quoted there). 

_

Let X be a metric space and let F, : X - R(e &#x3E; 0) be a family of
functionals. For any ac E X we define

Finally, we say that Fs r(X)-converges at the point ac E X if

and this common value is denoted by It is possible to prove
that the infima in (2.2), (2.3) are actually minima, so that Fs r(X)-converges
to F at x if and only if
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The link between r-convergence and Calculus of Variations is given by
the following proposition (see references quoted above).

PROPOSITION 2.1. Assume that F; r(X)-converges to F at any point x E X
and that F, are equi-coercive, that is for any t E ll~ there exists a compact
subset Kt of X such that

Then we have:

i) the functional F admits a minimum on X and min F = lim [inf F.];x x

ii) if x. --+ Y is such that lim F.(x.) = lim [inf F,], then z is a minimum
, 

x

point for F on X;

iii) if G : X --,, lI~ is continuous, then G + F = r(X) lim~G +~ Fe~. ’

Now, we come back to our functionals Fe,,., a defined in (2.1 ). The problem
we are interested in, is the characterization of the r(L2 (0) )-limit of Fs,,.,a when
the three parameters E, r, A tend to 0, 0, +oo simultaneously. This r-limit actually
depends on the way the three parameters go to 0, 0, +oo respectively. In fact,
our result is the following, where is the n - 1 dimensional Hausdorff

measure, W is the space of all functions in which are Y-periodic,
and DTv denotes the tangential derivative of v on S

THEOREM 2.2. Assume that ~r --~ k &#x3E; 0. Then there exists a positive
definite, symmetric quadratic form on 

such that:

i) for every u E there exists r(L2(n)) lim = F (u);

ii) we have F(u) = f f (Du)dx for every u E H1(O);
0

iii) the following represention formula for f holds:
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REMARK 2.3. From Theorem 2.2 and Proposition 2.1 it follows that for

every 9 E and a &#x3E; 0 the solutions u.,r,~ of the problems

converge in L2(0) to the solution u of

By well-known r-convergence arguments (see for instance Attouch [1],
Buttazzo-Dal Maso [6], Carbone-Sbordone [10], Marcellini [18]) we can prove
that the same conclusion holds if u.,r,~ and u are respectively solutions of

The r(L2(0))-limit of the functionals has been studied, in different
situations, by several authors. For example, when Å is fixed and r goes to zero
with the same order as e with f -~ 4~ then the limit analysis is classic (see
for instance Bensoussan-Lions-Papanicolaou [4], Marcellini [18]) and the limit
functional is

where the quadratic form f&#x3E; is given by the so-called homogenization formula

On the contrary, if e is fixed and r goes to zero with the same order as

I /A with Ar - ek, then the limits functional is (see for instance Attouch [1],
Carbone-Sbordone [10], Sanchez-Palencia [19])
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Our Theorem 2.2 permits to calculate the r-limits of the functionals Fo,o,a
and defined in (2.6), (2.7) respectively; in fact, the following result holds
(see also Cioranescu-Saint Jean Paulin [12]).

THEOREM 2.4. Indicating by F the FE,,.,a when e --~ 0,
r 2013~ 0, A 2013~ k, we have:

i) F (as À ~ +00);

ii) F -~ 0).

PROOF. Since all functionals we consider are L2 (n)-equicoercive, the

r(L2 (fl))-convergence is induced by a compact metric d (see Attouch [ 1 ], De
Giorgi [13,14], De Giorgi-Franzoni [15]).

By the classic homogenization result, for every A &#x3E; 0 we can find a

such that setting r = ¥ we have

Theorem 2.2 implies that to F (as A - +oa), hence,
by the triangle inequality

and this proves i). The proof of ii) is analogous..

3. Proof of the result

In all this section we denote by w - the weak topology of HI (0),
and by c an arbitrary positive constant; the quantities E, r, A are supposed to tend
to 0, 0,+oo respectively, with ~r --~ k E [0, +00[. When there is no ambiguity
we shall write Ws instead of Us instead of ... The following lemma
will be useful.

LEMMA 3.1. Let we - 0 in w - then = 0.

PROOF. For simplicity, denote by 11 the quantity and let u be a smooth

function. For every y E Y we have
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where is the point on ,S of least distance from y, and v is the unit normal
vector to s at the point ~. By integration we get

The continuous imbedding of HI(y) into L2(S) gives

so that, by (3.1 )

Setting v(y) = u(y/E) and performing the change of variables x = sy we obtain

where the constant c depends only on S. Formula (3.2) holds for every cell
e(Y + y) with y so that taking the sum on all cells contained in f2 one
has for every smooth function v

Formula (3.3) can be extended by a density argument to all functions v E H1 (0),
so that if we - 0 in w - we get

lim sup

Denote by !1 the class of all open subsets of 11. For every A and

every u E HI (A) set
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LEMMA 3.2. There exists a constant c &#x3E; 0 such that for every A E A and
u E 

-

PROOF. Since F+ (., A) is L2 (A)-lower semicontinuous and u -- f IDul2dx
A

is HI (A)-continuous, we may reduce ourselves to prove the assertion when u
is a smooth function. In this case set

where a(z) is the point on S, of least distance from x. Then

(3.4) F+ (u, A) !5 lim sup F~,,.,a (u~,,., A)

Moreover, since u is smooth (take u Lipschitz with constant L)

which tends to zero.
Let us finally consider the term

Assuming u E C Z we first obtain
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Hence

lim sup

Applying inequality (3.3) of Lemma 3.1 to v = Du we obtain

Combining these two last inequalities

Thus, by (3.4), (3.5), (3.6) we obtain

REMARK 3.3. It follows in a straight way from Lemma 3.2 that, when

that is, the highly conductive layers have a negligible macroscopic effect.
This result can also be obtained (see Attouch [1], Carbone-Sbordone [10]) by
noticing that in that case

Indeed f p (1 + HN_1 (s) . t), the case ar --~ k E ]0, +oo[
o 

’ ’

corresponds to the following property:

"the sequence a.,r,À is bounded in but not equiintegrable".

Let us now examine the properties of F+ (u, .) and F- (u, .).
LEMMA 3.4. Let A, B be disjoint, and let u E HI (A U B). Then

PROOF. It follows straightforward from the definition of F- (u, ~) ~
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LEMMA 3.5. Let A, B, C E It with C cc A U B, and let u E U B).
Then

PROOF. Let Us - u in and ve -+ u in L2(B) be such that

Since we may assume that F+ (u, A) and F+ (u, B) are finite, we have

Let p E ego (A) be such that 0  ~  1 and p = 1 in a neighbourhood of
C - B, and define

u in L2(C) and we have for every t E ~0,1~ [

so that

where is a constant depending on p. Since u, and v« converge to u in
L2(A n B) we have I-
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moreover, taking into account (3.8), Lemma 3.1 yields

Therefore, using (3.7), (3.9) we get

and, since t E ]o,1 [ was arbitrary, the proof is achieved..

REMARK 3.6. In a similar way we can prove that for every A, B E A with
B c c A, and for every compact subset K of B

for every u E HI(A). By Lemma 3.2 this implies that

In order to prove Thorem 2.2 we have to show that for all u E HI (0)

where f is the quadratic form defined in (2.5).

PROOF of PART a). By a standard density argument it is enough to prove a)
only for a dense class in say the piecewise affine functions; moreover,
by Lemma 3.5, Remark 3.6, and Lemma 3.2, we may reduce ourselves to
consider only linear functions. Thus, let ~(x) _  z, x &#x3E; with z e Rn; our goal
is to prove that

Let wE,,.,a be the solution of the problem

and let
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By Poincare inequality, and by taking w = 0 in (3.11) we get

so that

Hence ve,r,À tends to u in L2(0). Now, we obtain

Since r/e -~ 0 it is known (see Attouch [1 ], Carbone-Sbordone

[10], Sanchez-Palencia [19]) that the functionals converge to
the functional

so that

Therefore, by (3.14) and (3.15)

and (3.10) is proved. *
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PROOF of PART b). As in part a), it is enough to prove b) for all piecewise
affine functions; moreover, by Lemma 3.4 we may reduce ourselves to consider
only linear functions. Thus, let u(x) =  z, x &#x3E; with z E and let (u,,,,,B)
be a given family converging to u in L2(0). Our goal is to prove that

If the right-hand side is +oo, (3.16) is obvious; otherwise, we may assume that
(ua stands for u~,,.,a)

hence u, - u weakly in Define Vø,r,Å as in (3.12), and let p E 
be such that 0  ~  1. Then we have 

.

As in the proof of part a) we get

Moreover, since = 0, integrating by parts
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Recalling (3.13) and (3.17), by Lemma 3.1

so that, by (3.18), (3.19), (3.20)

lim inf ,

and, since p was arbitrary, (3.16) is proved
THEOREM 3.7. Let us consider

where

and A is a symmetric, positive definite matrix with continuous coefficients. The
conclusions of Theorem 2.2 still hold with the following formula for f :

where the matrix B is related to A via the following formula:

(v is the normal vector to S).

PROOF of THEOREM 3.7. The proof is quite similar to the proof of
Theorem 2.2, the only modification coming from formulae (3.23) and (3.24)
which extend to the case of a matrix A (instead of the identity) the formula
(3.15) (see Acerbi-Buttazzo-Percivale [21]).
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4. Convergence of Dual Variables

The dual variables (momentum) whose expression is

play an important role too (in the elasticity mo4el = stress tensor, in elec-
trostatics = current field...) (see (2.1 )... for the definition of u6,,., a ). The
convergence of cannot be obtained directly from the convergence of

a.,r,Å and U.,r,Å since E ]0, 

The idea is to express U .,r,), as solution of a dual minimization problem.
Following classical duality approach via ’perturbation functions (in the convex
setting) let us introduce

where the perturbation variable r is taken in Co (0). The marginal function
h,,,,.x is given by

and o~~,,., a is solution of

For e, r, A fixed a,,r,, is clearly in but one cannot expect the sequence
~‘,,.,a to be bounded better than in This is made clear by the following
majorization (resp. minorization) of h,,,,.B (resp. 

which in turn implies

Thus, in order to study the convergence of the sequence (~~,,.,a) by means of
r-convergence method we have to prove the
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(4.7) of the sequence .

(see Proposition 2.1). 
’ ’

From the continuity properties of the Legendre-Fenchel transform with respect
to r-convergence (see Attouch [ 1 ] and more precisely Aze [2] in this non
reflexive setting), property (4.7) is equivalent to the

The equi-local Lipschitz property of this sequence ( hs,,., a ) on C ° (this is a
direct consequence of (4.5)) makes the r(s - C°) convergence be equivalent to
pointwise convergence; using again the variational properties of r-convergence
and the definition of h,,,.,,B, the final problem is:

(4.9) for every r E CO fixed, study the r(s - 
of (F.,r,Å (., r)). This is solved by the following theorem:

THEOREM 4.1. i) For every r E CO fixed there exists

where f is given by the homogenization formula (2.5) of Theorem 2.2.

COROLLARY 4.2. The following convergence holds:

where u = A(Du), u is the solution of the limit homogenized problem and
A = a f is the homogenized matrix associated to the quadratic form f (see
(2.5)).

5. Some examples

In previous sections we computed the r-limit of the family of functionals

A similar result can be obtained if the conductivity coefficient in 0 is assumed
to be equal to 6 &#x3E; 0, that is, the approximating energy functionals are
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If 5 is very small, the limit energy is close to f where the quadratic
n

form f is given by

If the dimension n is equal to 2, formula (5.1) permits some explicit calculations.
In fact, in this case ,S is a (assume it is parametrized by the
curvilinear abscissa s), so that, indicating by L the length of 1, formula (5.1 )
becomes

where the minimum is taken over all functions w satisfying the periodicity
conditions. An analogous formula holds if ,S is the union of finitely many
curves ïi (s) (i = 1, ~ ~ ~ , N):

The advantage of formula (5.2) is that it is very easy to compute; in fact, the
necessary conditions for minimum give 

’

where ci are constants which can be obtained from the periodicity conditions.
Then (5.2) becomes

We show now three examples of two-dimensional net structures for which we
made this calculation.
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Fig. 2 Unitary cell Network structure

Fig. 3 Unitary cell Network structure
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Fig. 4 Unitary cell

After some elementary calculations we get:

Network structure

in example of figure 2

in example of figure 3

in example of figure 4
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