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r-Convergence and 03BC-Capacities

GIANNI DAL MASO

Introduction

In some recent papers ( [ 11 ], [12], [13], [5]) the notion of JL-capacity
(Definition 2.8) has been used to study a class of differential equations, called
"relaxed Dirichlet problems", that arise in the limit of perturbed Dirichlet

problems with homogeneous boundary conditions on varying domains, as well
as in the limit od Schrodinger equations with non-negative varying potentials.

These equations can be formally written as

where n is a bounded open subset of 2, f E L2(0), and the "coefficient"
JL is a non-negative Borel measure on n which must vanish on all sets of

(harmonic) capacity zero, but may take the value + o0 on non-polar subsets of
.

According to [13], we denote by Mo([2) the class of all these measures,
and for every g E we define the it-capacity of a Borel set B C n with
respect to f2 by

The purpose of this paper is to study the measures u E M o (11) by means
of the corresponding JL-capacities.

To this aim we determine the properties of cap"" considered as an

increasing set function defined on the Borel subsets of n (Theorem 2.9). As
remarked in [11], Example 5.4, the ii-capacities are not, in general, Choquet
capacities (Definition 1.1), because the continuity along decreasing sequences
of compact sets does not hold for every u E 

Therefore we introduce a class of measures (Definition 3.1), denoted by
contained in such that the p-capacity of a measure 14 E 

Pervenuto alla Redazione il 4 novembre 1986.
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is a Choquet capacity if and only if JL e (Theorems 3.6 and 4.6). We
prove that each measure of the class N](Q) is inner regular (Theorem 4.4)
and that for every JL E there exists a measure ~.* e which is

equivalent to JL according to Definition 4.6 of [11], i.e.

for every u E More precisely, we prove that ~* is maximal in the

equivalence class of p (Theorem 3.10).
Then we consider the problem of the reconstruction of a measure

p E from its p-capacity. If g is finite on all compact subsets of f2 and
if we know a finite measure v E Mo(f2) with respect to which is absolutely
continuous, then this problem can be solved by a derivation argument ([5],
Theorem 2.3). For an arbitrary E Mo(f2) this method is not available. We
prove, however, that JL is the least superaddittive set function which is greater
than or equal to cap,, on every Borel subset of n. This allows to obtain u from
cap, by means of a general formula (Theorem 4.3), which can be simplified
when JL E (f2) (Theorem 4.5).

These results are used to prove that two measures are equivalent if and
only if their p-capacities agree on all open sets (Theorem 4.9).

The problem we deal with in the last two sections of this paper is
the connection between the -y-convergence of a sequence in Mo (n) and the
convergence of the corresponding g-capacities.

The ~-convergence (Definition 5.1) is a variational convergence for

sequences in Mo (0), which was introduced in [11] to study the dependence
on p of the solutions u of equation (0.1), subject to appropriate boundary
conditions. This convergence, which is defined in terms of the r-convergence
(see [15], [14], [1]) of the quadratic forms associated with (0.1), is equivalent
to the strong convergence in of the resolvent operators of equation (0.1 )
([3], Theorem 2.1). Moreover, it is equivalent to the stable convergence of the
randomized stopping times associated with (0.1) (see [3], where a probabilistic
analysis of equation (0.1) is carried out).

In Section 5 we prove that, if (Ah) ~-convergence to p, then

for every finely open set A C 12 (Theorem 5.8), and

for every finely closed set F C f2 with finite harmonic capacity with respect to
f2 (Theorem 5.9). These inequalities imply that
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for every set E C n, with finite harmonic capacity in f2, such that the fine
interior and the fine closure of E have the same JL*-capacity (Theorem 5.11).

In Section 6 we prove that the ~-convergence of a sequence in Mo (n)
is equivalent to the convergence of the corresponding u-capacities on a dense
(Definition 4.7) family of subsets of f2 (Theorem 6.3).

By using the compactness of the ~-convergence, we can even prove that,
if the sequence (cap,) converges weakly (in the sense of [16]) to an inner
regular increasing set function a, then the sequence (ph) ï-converges to a
measure u E and g can be obtained as the least superaddittive set

function which is greater than or equal to a (Theorem 6.1). This improves
a result of [5], where the measure u is assumed to be finite on all compact
sets, and a probabilistic result of [2], where, in addition, it is assumed to have
(locally) a bounded potential.

The equivalence between u-convergence and convergence of JL-capacities is
exploited to give a non-probabilistic proof of the following localization result,
obtained in [3], Lemma 5.1, by probabilistic methods: if two ~-convergent
sequences of measures of the class No (fl) agree on all finely open subsets of a
finely open set, then the same property holds for their -1-limits (Theorem 5.12).

Finally, the equivalence between ï-convergence and convergence of It-

capacities is used to tackle the non-trivial problem of the continuity, for the
~-convergence, of the restriction operator (Definition 2.4). Given a measure
it E we determine a family of subsets of f2, depending on ~u, such that,
for every element E of this family, the ~-convergence of a sequence (ph) to
it implies the ~-convergence of the restrictions of Ph to the restriction ILL’
of it (Theorem 6.6). This family contains the family R, introduced in [11],
Definition 5.6, as well as the family of sets considered in [3], Lemma 5.2,
and can be characterized in terms of the capacity cap~* (Theorem 6.6), of the
measure it* (Proposition 6.7), and of the measure JL itself (Proposition 6.8 and
Remark 6.9).

1. - Notation and Preliminaries

Let 0 be an open subset of 2, and let P (0) be the set of all
subsets of n.

DEFINITION 1.1. A Choquet capacity on f2 is a set function a : --+ R
with the following properties:

(a) a is increasing, i.e. a(E2) whenever El C E2;
(b) if (Eh ) is an increasing sequence of subsets of fZ and E = U Eh, thenh

h

(c) if (Kh) is a decreasing sequence of compact sebsets of 0 and K = n Kh,h

then (x(K) = inf a(Kh).h
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If a is increasing, it is easy to see that (c) is equivalent to the following
property:

(c’) for every compact set K c [I

A subset E of [2 is said to be capacitable (with respect to a) if

The abstract definition of Choquet capacity is motivated by the following
result, the celebrated Choquet capacitability theorem (see [6]).

THEOREM 1.2. If a is a Choquet capacity on 0, then every analytic subset
of 0 (in particular every Borel subset of 0) is capacitable. 

-

We now recall the variational definition of the harmonic and metaharmonic
capacities on O.

DEFINITION 1.3. If 0 is bounded, for every compact set K ç 0 we define
the harmonic capacity of K with respect to 11 by

If fl is unbounded, for every compact set K C 0 we denote by the same
symbol cap(K) the metaharmonic capacity of K with respect to f2, defined by

Both these definitions are extended to open sets U C f2 by

and to arbitrary sets E by

The following proposition collects some well-known properties of the
harmonic and metaharmonic capacities (see, for instance, [18]).

PROPOSITION 1.4. The harmonic and metaharmonic capacities are non-
negative countably subadditive Choquet capacities on f2. Moreover they are
strongly subadditive, i.e.

for every , J
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Let E be a subset of n. If a property P(x) holds for all z E E, except for
a set Z C E with cap(Z) = 0, then we say that P(z) holds quasi everywhere
on E (q.e. on E).

A set A C 0 is said to be quasi open (resp. quasi closed, quasi compact)
in f2 if for every e &#x3E; 0 there exists an open (resp. closed, compact) set U C f2
such that cap(AAU)  e, where A denotes the symmetric difference and the
topological notions are given in the relative topology of n.

It is well known that A is quasi open if and only if f2 = A is quasi closed
and that any countable union or finite intersection of quasi open sets is quasi
open (see, for instance, [19], Lemma 2.3).

A function f : R is said to be quasi continuous in f2 if for every
e &#x3E; 0 there exists a set E C ft with cap(n - E)  e such that the restriction of

f to E is continuous on E.
The notions of quasi upper and quasi lower semicontinuity are defined in

a similar way.
For every set E C f2 we denote by lE the characteristic function of E,

defined by lE (x) = 1 if x E E and lE (z) = 0 if x E 0 - E.
It is easy to check that a set E C f2 is quasi open (resp. quasi closed) in

f2 if and only if lE is quasi lower (resp. quasi upper) semicontinuous in f2.

It can be proven that a function f : R is quasi lower (resp. quasi
upper) semicontinuous if and only if the sets {z e H : f (z) &#x3E; t} (resp.
{x e fi : f (z) &#x3E; t}) are quasi open (resp. quasi closed) for every t E R (see,
for instance, [4], Proposition IV.2).

For the definition and properties of the fine topology on f2 we refer to
[17], Part 1, Chapter XI.

For every set E C f2 we denote by intfe, cIfE, and afE respectively the
fine interior, the fine closure, and the fine boundary of E in 5~.

The following proposition shows the connection between finely open (resp.
finely closed) and quasi open (resp. quasi closed) sets (see, for instance, [4],
Chapter IV).

PROPOSITION 1.5. Every finely open (resp. finely closed) subset of [2
is quasi open (resp. quasi closed). If A C f2 is quasi open in S2, then

cap(A - = 0. If F ç 0 is quasi closed in S2, then cap(clJF - F) = 0.

The following result can be proven in the same way.

PROPOSITION 1.6. A function f : R is quasi upper (resp. quasi
lower) semicontinuous in fZ if and only if f is finely upper (resp. finely lower)
semicontinuous quasi everywhere in f2.

We denote by the Sobolev space of all functions in L2 (f2) with
first order distribution derivatives in and by the closure of 

in HI (0).
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For every x G Rn and every r &#x3E; 0 we set

and we denote by I its Lebesgue measure.
It is well known that for every function u E the limit

exists and is finite quasi everywhere in ~2. We make the following convention
about the pointwise values of a function u E for every x E f2 we always
require that

With this convention, the pointwise value u(x) is determined quasi everywhere
in 12 and the function u is quasi continuous in 12 (see, for instance, [18]).

If f2 is bounded, it can be proven that

whereas, if n is unbounded,

for every E C o.
It is easy to prove that for every function u E the level sets

{x E f2 : U(X) &#x3E; t} are quasi compact for every t &#x3E; 0. It follows from the

equalities above that a set E C ~2 is quasi compact if and only if it is quasi
closed and cap(E)  +oo.

We now prove the following analogue of the Urysohn lemma for quasi
open and quasi closed sets. Compare this result with the quasi normality property
of the fine topology ([20], Section 3.10).

PROPOSITION 1.7. Let F and A be subsets of fl with F quasi closed in [2,
A quasi open in 0, and F C A. Then there exists a quasi continuous function
f : 11 --+ ~0,1~ such that f (x) = 0 for every x E F and f (x) = 1 for every
x E 0 - A. If, in addition, F is quasi compact in f2, then f can be chosen so
that the sets f x E 12 : f (x)  t} are quasi compact for every t E [0, 1 [.
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PROOF. Since A is quasi open, the function 1 A is quasi lower

semicontinuous, therefore there exists an increasing sequence (u h ) of non-
negative functions of H5 (0) which converges to lA quasi everywhere in f2

(see, for instance, [9], Lemma 1.5). Let gA : ~0,1~ be the function defined
by

for every x E n. Then gA is quasi continuous, gA = 0 q.e. on f2 - A and gA &#x3E; 0

q.e. on A. Let fA : f2 -~ [o,1~ be defined by

Then fA = gA q.e. on n, hence fA is quasi continuous, fA = 0 on f2 - A, and
fA &#x3E; 0 on A.

In the same way we construct a quasi continuous function f F : n -~ [0, 1]
such that on F and fF &#x3E; 0 on n - jFB

Since F C A, the function fF + fA never vanishes, therefore the function
f = + is quasi continuous, f = 0 on F, and f = 1 on n - A.

If F is quasi compact, then cap(F)  +oo, therefore there exists
u E such that 0  u  1 on f2 and u &#x3E; 1 q.e. on F. Define g : Q - R
by 

f

Then g is quasi continuous and the sets {x g(x) &#x3E; t} are quasi compact
for every t &#x3E; 0. Finally define f’ = 1- min {1- f, g}. Then the function fl is
quasi continuous, fl = 0 on F, f’ = 1 on f2 - A, and the sets {x E S2 : f’(x)  t}
are quasi compact for every t E [0, 1[. D

2. - Some Properties of the p-Capacity

In this section we introduce the class No (fl) of all non-negative Borel
measures on f2 which vanish on all subsets of S2 with capacity zero, and

study the notion of equivalence in Mo(f2) introduced in [11], Section 4. Then
for every measure it E we define the -capacity relative to an elliptic
operator and study those properties of the It-capacity that hold for an arbitrary
measure 

We denote by the Q-field of all Borel subsets of f2. By a Bo-
rel measure on ~2 we mean a non-negative countably additive set function

it : B(S~) --~ [0,+oo] such that = 0. If u is a Borel measure, we still denote
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by li its extension to P (0) defined by

for every E C f2. Then ~c is countably subadditive on and satisfies
conditions (a) and (b) of Definition 1.1. If u is finite on all compact subsets
of f2, then it is well known that is a Choquet capacity. Simple examples
show that property (c) of Definition 1.1 may not hold if p is infinite on some
compact subset of f2.

DEFINITION 2.1. We denote by Mo(f2) the class of all Borel measures
on fl such that = 0 for every Z C n with cap(Z) = 0.

PROPOSITION 2.2. Every quasi open set is the union of a sequence of
compact sets and of a set of capacity zero. Therefore

or E and for every quasi open set A C O.

PROOF. Let A be a quasi open subset of i2. For every hEN there exists
an open set Uh c 0 such that  I /h. By (1.1) there exists an open
set Vh c 0 such that c Vh and cap(Vh)  Since the set A U Vh is

open, for every hEN there exists a sequence of campact sets such that

Since every set Kh - Vh is compact and contained in A, it remains to

prove that cap(Z) = 0. Since U(Khk - Vh) = A - Vh, we have Z c Vh, so
k 

-

cap(Z)  cap(Vh)  for every h E N, which proves that cap(Z) = 0.
The assertion concerning follows now from the fact that = 0

whenever cap(Z) = 0. D

We observe that the measures of the class are not required to
be regular nor u-finite. For instance, the measures introduced by the following
definition belong to the class Mo(O).

DEFINITION 2.3. For every set E ç 0 we denote by oo E the Borel measure
defined by

for every B E 8(0).
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By (2.1) we have ooE (B) = ooB (E) for every E C 0 and for every Borel
set B C f2 (more generally, for every set B C [2 which differs from a Borel
set by a set of capacity zero). In particular, this equality holds if B is quasi
open or quasi closed in S2 (Proposition 2.2).

We now introduce the restriction of a measure to an arbitrary set E C S2.

DEFINITION 2.4. For every p E and for every E ç 0 we denote

by ~E the measure of the class defined by

for every B E B (0) -
By (2.1) we have ~,E (B) _ pB (E) = p(B n E) for every E c f2 and for

every Borel set B c n (more generally, for every B ç n which differs from a
Borel set by a set of capacity zero). In particular these equalities hold if B is
quasi open or quasi closed in f2 (Proposition 2.2).

Moreover, (2.1) implies that

for every E C 0 and for every non-negative Borel function f : 0 - [0, +00].
Following [11], Definition 4.6, we introduce an equivalence relation on

m o (f2).
DEFINITION 2.5. We say that two measures p, v ~ Mo ([2) are equivalent

if 
It It

for every u E Hj (0).

If p and v are equivalent, then we obtain easily that

for every open set U C n and for every u E In particular p(U) = v(U)
for every open set U C 0, but this condition is not sufficient for the equivalence
of p and v (see (11], Example 4.7).

We now prove that two measures are equivalent if and only if they agree
on all finely open subsets of S2 (see also [3], Lemma 4.1). The proof is based
on the property that every non-negative quasi lower semicontinuous function is
the limit of an increasing sequence of functions of 
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THEOREM 2.6. Let JL and v be two measures of the class The

following conditions are equivalent:

(a) p (A) = v(A) for every finely open set A C f2;
(b) p(A) = v(A) for every quasi open set A C f2;
(c) p and v are equivalent.

PROOF. Conditions (a) and (b) are equivalent by Proposition 1.5. Let us
prove that (b) is equivalent to (c). Assume (b) and let u E Since u is

quasi continuous, for every t &#x3E; 0 the sets At = {x E f2 : (u(z)]2 &#x3E; t} are quasi
open, hence

which implies (c).
Assume (c) and let A be a quasi open subset of n. Since the function

lA is quasi lower semicontinuous, there exists an increasing sequence of

non-negative functions of Ho (f2) which converges to lA quasi everywhere in
fl (see, for instance, [9], Lemma 1.5). Therefore (u2) converges to lA quasi
everywhere in f2 and

by the monotone convergence theorem. 0

REMARK 2.7. If FI and F2 are quasi closed in n, then the measures
00 Fl and introduced in Definition 2.3 are equivalent if and only if

0. In fact, if 0, then clearly ooF1 = 
Conversely, if ooF1 and ooF are equivalent, then OOF1 (0 - F2) = ooF, (0 - F2)
by Theorem 2.6, hence cap (F1 - F2) = 0. In the same way we prove that

cap (F2 - F1) = 0, hence = 0.

Throughout the paper L will denote a fixed elliptic operator of the form

where aii = aji E L°° (0) and
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for suitable constants 0  c2. For every open set U ç n and for every
Borel set B c U we denote by (DB the quadratic form on Hloc (U) defined by

if 0 is bounded, and by

if fl is unbounded.
We now define the it-capacity relative to the operator L.

DEFINITION 2.8. Let p E and let E c n. The u-capacity of E in
S2, relative to the operator L, is defined by

where it’ is the measure introduced in Definition 2.4.

The minimum in (2.5) is clearly attained, by the lower semicontinuity of
the functional in the weak topology of If cap,(E)  +oo, then the
minimum point is unique by strict convexity.

If E is p-measurable (in the sense of Caratheodory) then

If f2 is bounded and p = oon (Definition 2.3), then cap, coincides with
the capacity, associated with the operator L, introduced by G. Stampacchia
in [22], Definition 3.1: If, in addition, L is the Laplace operator -A, then
cap~ (E) = cap(E) for every E C n.

Returning to an arbitrary g E the set function cap, coincides with
the capacity cap’ introduced in [13], Definition 3.1, provided that fl is bounded
(see [13], Remark 3.4). If, in addition, L = -A, then cap, coincides with the
p-capacity introduced in [ 11 ], Definition 5.1.

The following theorem collects the main properties of the p-capacity for
an arbitrary u E No (fl)

THEOREM 2.9. For every p E the set function 
-~ ~0, -~-oo~ satisfies the following properties:
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(a) = 0;

(b) if El C E2 g n, then caPI.I(E2);

(c) if (Eh) is an increasing sequence of subsets of Q and E = U Eh, then!f 
h

cap, (E) = sup cap,. (Eh);
h

(d) if (Eh) is a sequence of subsets of f2 and E C U Eh, then cap,, (E) 
 

_ 

h 
_

h

(e) every El, E2 g f2;

(f) cap,~ (E)  k cap(E) for every E C f2, where k = max f 1, c2 }, C2 being
the constant which occurs in (2.4);

(g) cap~(E~  for every E C S~;

(h) cap~(E) = inf (cap, (B) : B E B(O), E C B} for every E C 0;

(i) cap,(A) = sup {cap~(K) : K compact, K C A} for every quasi open set
A

(j) cap, (A) = U open, A C U} for every quasi open set

A

PROOF. Properties (a), (b), and (g) are trivial and (h) follows easily from
(2.2).

To prove (f), we may assume that cap(E)  +oo and, for instance, that
Q is unbounded. Then there exists u E Hol such that u = 1 q.e. on E and

By the definition of It-capacity we have

which proves (f).
By (h) it suffices to prove the other properties when each set Eh belongs

to B (0).
Property (e) is proved in (11], Proposition 5.3, when 0 is bounded and

L = -A. The same proof holds in the general case.
Let us prove (c). Let (Eh) be an increasing sequence in B (0) and let

E = U Eh. Since cap, is increasing (property (b)), we have only to prove that
h
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cap~(E)  sup cap,(Eh), assuming that
h

For every h e N let uh be the unique function in Hol (12) such that

By (2.6) the sequence is bounded in Hol(Q), hence there exists a

subsequence, still denoted by (uh), which converges weakly in to

a function u E For every k E N the functional

is lower semicontinuous in the strong topology of (recall that JL vanishes
on all sets of capacity zero). Since BIlk is convex, it is also weakly lower
semicontinuous in Ho (f2), therefore

As k goes to we obtain

which concludes the proof of (c).
Property (d) follows easily from (c) and (e).
Let us prove (i). Let A be a quasi open subset of 0, and denote by S the

right hand side of (i). By monotonicity it is enough to prove that cap,~ (A)  S.
For every 6 &#x3E; 0 there exists an open set U c n such that cap(UAA)  e. By
(1.1) there exists an open set V c 0 such that UAA c V and cap(V)  e. Let

(Kh) be an increasing sequence of compact sets such that UKh = UUV. Thenh

(Kh - V) is an increasing sequence of compact sets and A - V = U (Kh - V).
. h

By (c) we have
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therefore (e) and (f) imply that

Since e &#x3E; 0 is arbitrary, we obtain cap,, (A)  S.
It remains to prove (j). Let A be a quasi open subset of S2 and denote

by I the right hand side of (j). By monotonicity it is enough to prove that
cap,(A) &#x3E; I. For every ê &#x3E; 0 there exists an open set U C f2 such that

cap(UAA)  s. By (1.1) there exists an open set V such that UAA c V
and cap(V)  e. Therefore

by (e) and (f), hence I  cap~(A).

, 
ll

We remark that, in general, the set function capw is not a Choquet capacity,
because there are measures A E No (fl) such that cap, does not fulfil condition
(c) of Definition 1.1 (see [11 ], Example 5.4).

3. - A Class of Measures

In this section we introduce a class of measures, denoted by 
contained in No(fi), such that for every E the set function cap,
is a Choquet capacity on ~2. Then we prove that every measure E Mo (n)
is equivalent (according to Definition 2.5) to a measure /n* E More

precisely, 14* is characterized as the largest measure in the equivalence class of
.

DEFINITION 3.1. We denote by the class of all measures ii E 
such that

for every E C 12.

By (2.1) it is enough to verify (3.1) for every E E 8(0).
REMARK 3.2. Every measure g E No (fl) which is finite on all compact

subsets of S2 belongs to the class In fact, in this case

for every E C f2.
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REMARK 3.3. If F is quasi closed in 11, then the measure ooF introduced
in Definition 2.3 belongs to M*([2). In fact, if B is any Borel subset of il such
that cap(B n F) = 0, then A = (Sl - F) U (B f1 F) is quasi open, contains B,
and cap(A n F) = 0. Therefore

because both sides are zero. If cap(B n F) &#x3E; 0, then ooF (B) _ +00 and (3.2)
is trivial. 

,

Conversely, if B is a Borel subset of f2 (more generally, if B differs
from a Borel set by a set of capacity zero), and the measure ooB belongs to

then B is quasi closed in n. In fact, since B) = 0, by (3.1)
there exists a quasi open set A C f2 such that - B C A and cap (A n B) = 0.
This implies that 0 - B is quasi open, hence B is quasi closed in n.

REMARK 3.4. Theorem 2.6 implies that two measures of the class 
are equivalent if and only if they are equal.

THEOREM 3.5. E Then

for every E C o.

PROOF. By Theorem 2.9(h) we have

for every E c 0, and by Theorem 2.9(j) we have

for every quasi open set A C f2. Theorefore it is enough to prove that

for every B E B (f2).
Fix B E and denote by I the right hand side of (3.3). By

monotonicity we have cap,~(B)  I. It remains to prove the opposite inequality,
assuming that cap, (B)  +00. Then there exists u E such that

By a truncation argument we obtain easily that 0  u  1 q.e. on H (see [13],
Remark 3.2).
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Fix s E]0,1[ and define Bs = {x E B : u(z)  1- 61. Since (u -1)2 &#x3E; 62
on Bs, we have

Since p e there exists a quasi open set As c 0 such that B, c As and
 e. Since u is quasi continuous, the set AB = {x u(x) &#x3E; 

is quasi open, hence the set A, = is quasi open and contains B. Define
~ .... _

Since q.e. on f2 we have

As c -~ 0+ we obtain I  cap,,, (B). 0

The following theorem, which collects the main properties of cap, for
p E is an easy consequence of Theorems 2.9 and 3.5 (compare with
Proposition 1.4). 

THEOREM 3.6. For E the set function capt, is a non-

negative countably subadditive Choquet capacity on Q. Moreover it is strongly
subadditive, i.e.

for every E2 ç ~.

From Theorem 3.6 and from the Choquet capacitability theorem (Theorem
1.2) we obtain the following result.

THEOREM 3.7. Let JL E Then
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for every analytic subset E of 0, in particular for every Borel subset E of o.

We now prove that for every measure E there exists a unique
measure ~* E which is equivalent to it. The measure p* is given by the
following definition.

DEFINITION 3.8. For every p E Mo(f2) we denote by w* the set function
defined by

for every 

THEOREM 3.9. For every p E Mo(n) the set function p,* is a Borel measure
and belongs to 

PROOF. Let p E Mo(n). Since the family of quasi open sets is stable
under countable union, the set function p* is countably subadditive on 
To prove that /A* is a Borel measure, we will show that every open set is U*-
measurable (in the sense of Carathéodory), adapting to our case an argument
of [16], Theorem 5.1.

Let U be an open subset of o. We have to prove that

for every E C il. We argue by contradiction. Assume that (3.4) is false for a
set E c 0. Then, by the definition of there exists a quasi open set A C f~
such that E C A and

Since A n U is quasi open, by Proposition 2.2 there exists a compact set
KCAnu such that

Since A - K is quasi open and contains A - U, we obtain

which contradicts the fact that K is p-measurable. Therefore, (3.4) holds for
every E c 0, which implies that ~,* is a Borel measure.

For every subset Z of 0 with cap(Z) = 0 we have ~.* (Z)  p(Z) = 0
because Z itself is quasi open, hence p* E Mo(f2). Since p*(A) = p(A) for
every quasi open set A C 0, the definition of p* implies that p* satisfies (3.1),
hence p* e D

THEOREM 3.10. Let p E Mo(n). Then p* is equivalent to p and p* &#x3E; v

for every measure v E which is equivalent to p.
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PROOF. Since u" (A) = for every quasi open set A c ~2, the

equivalence between o and ~* follows from Theorem 2.6.
If v E Mo(f2) is equivalent to ~, then p(A) = v(A) for every quasi open

set A C n by Theorem 2.6, hence

for every E c n. D

The capacity cap* is related to cap, by the following proposition.
PROPOSITION 3.11. Let It E M o (f2). Then

for every E C [2 and

for every quasi open set A C f2.

PROOF. By Theorem 3.10 ~* is equivalent to p, thus (2.3) implies that
cap,.. (U) = cap,(U) for every open set U C S2. Theorefore (3.5) follows from
Theorem 3.5 (recall that ~* E M*(f2)) and (3.6) follows from (3.5) and from
Theorem 2.9(j). D

We now give a different construction of the measure p*, based on the
notion of singular set of a mesure introduced by the following definition.

DEFINITION 3.12. For every measure o E the set of 
of p is defined as the union of all finely open subsets A of fl such that

p(A)  +oo. The singular set S(p,) of p is defined as. the complement of A(p)
in fl.

REMARK 3.13. The set of u-finiteness A(p) is finely open, hence the
singular set is finely closed in n.

By the quasi-Lindel6f property of the fine topology (see [17], Theorem
1.XI.11) there exists a sequence (Ah) of finely open sets with p( Ah)  +00
and a set Z with cap(Z) = 0 such that

Therefore is u-finite on 
If A c [2 is finely open and A n 0, then p(A) = +oo by the

definition of If A ç 0 is quasi open and cap(A n S(u)) &#x3E; 0, then

intrA n s(ii) 0 0 by Proposition 1.5, hence +00.
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REMARK 3.14. By Theorem 2.6 we have = A(v) and = S(v)
if p and v are equivalent.

REMARK 3.15. If  +oo for every compact set K C 0, then
= 0. The converse is false. In fact, in dimension n &#x3E; 2 there exist an

open set U c 0 and a point xo E U n 11 such that zo g cl/!7. It is then

easy to construct a measure p E Mo(f2) (even absolutely continuous with re-
spect to Lebesgue measure) such that U) = 0, p(U - Br (zo))  +oo, and

u(U n +oo for every r &#x3E; 0. Then S(p) = 0, but 1L(K) = +00 if K
is a compact neighbourhood of xo in n.

PROPOSITION 3.16. Let p and v be two equivalent measures of the class
Mo(11). Then = v(E) for every set E ç n with cap(E n S(p)) = 0.

PROOF. Let E be a subset of f2 such that cap(En 8(JL)) = 0. By Remark
3.13 there exists an increasing sequence (Ah) of quasi open sets such that
p(Ah)  +00 and E c U Ah. By Remark 2.2 we may assume that each Ah is 

_
’ h

a Borel set. Fix h G N and consider the measures ph = pAh and vh = vAh
(Definition 2.4). By Theorem 2.6 we obtain

for every open set U C n. Since ph and vh are finite Borel measures, it follows
that ph = vh for every h E N, hence

(recall that each Ah is a Borel set, therefore the above equalities hold even if
E is not a Borel set). 0

THEOREM 3.17. Let u E Mo (S2). Then

for every E C f2.

PROOF. Let E be a subset of n. Since p* is equivalent to u (Theorem
3.10), by Proposition 3.16 we have ~,*(E) _ whenever = 0.
If cap (En S(~c)) &#x3E; 0, and A is a quasi open subset of f2 containing E, then
cap(An S(p)) &#x3E; 0, hence p(A) = +oo by Remark 3.13. By the definition of
it* this fact implies that ~* (E) _ +oo. 0

REMARK 3.18. If p is a measure of the class M*(f2) such that = 0
or 1L(E) = +oo for every E c ~2, then u = In fact, by Theorem
3.17 we have p(E) = +00 if cap(En S(u)) &#x3E; 0. If cap(E n S(p)) = 0, then
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p(E f1 Ah) where (Ah) is the sequence of finely open subsets of
h

f2 considered in Remark 3.13. Since p(E n Ah)  +oo, by hypothesis we have
u(E f1 Ah) = 0, hence = 0. 

’

Since is finely closed in f2 (Remark 3.13), we can conclude that
~ is a measure of the class which takes only the values 0 and +00 if
and only = ooF with F finely closed (see Remark 3.3).

4. - Properties obtained from its p-Capacity

In this section we prove an explicit formula which enables us to reconstruct
a measure IL E from the corresponding p-capacity. Then we use this
formula to prove that two measures of the class are equivalent if and
only if their p-capacities agree on all open subsets of f2.

We begin with two lemmas from measure theory.

LEMMA 4.1. Let a : B (f2) -~ [0,+oo] be a set function such that a (0) = 0
and let A be the least superadditive set function on B (f2) which is greater than
or equal to a. Then for every B E B (f2) we have

(4.1) A (B) = sup E 
. iEl

where the supremum is taken over all finite Borel partitions (Bi)iEl of B.
If, in addition, a is increasing and countably subadditive, then A is a

Borel measure.

PROOF. It is easy to check that the set function A defined by (4.1) is

superadditive and greater than a. To prove that A is minimal, let a be a
superadditive set function on such that Q &#x3E; a. Then

L E acBO
iEl iEl

for every B E B (Q) and for every finite Borel partition of B, hence
~i &#x3E; a.

Suppose now that a is increasing and countably subadditive. Let us prove
that A is a Borel measure. Since A is superadditive and A(0) = 0, it is enough
to show that A is countably subadditive. Let (Bh) be a sequence in B (f2) and
let B = U Bh. By (4.1) for every t  A (B) there exists a finite Borel partition

h .

(Bi)iEI of B such that
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Since a is countably subadditive, we have

Noting that (Bi r1 is a finite Borel partition of Bh, we obtain

Since t  a (B) is arbitrary, from (4.2), (4.3), and (4.4) it follows that

hence A is countably subadditive on B (f2). D

LEMMA 4.2. Let Cl. and A be as in Lemma 4.1. Suppose that a is increasing
and

for every B E B (n). Then

for every B E B (0) - If, in addition, a is countably subadditive, then

for every B E B (0), where Qh denotes the cube

for and for every i = (iI, ..., in) E Zn.

PROOF. To prove (4.6), fix B E B (0) and denote by ,S the right hand side
of (4.6). By monotonicity it is enough to prove that A(B)  S. By (4.1) for
every t  A(B) there exists a finite Borel partition of B such that

By (4.5) there exists a family of compact sets such that 9 Bi for

every i E I and
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Let K = U Then K is compact, K C B, and
iEI

by (4.1). Since t  S for every t  A(B), we obtain S, which concludes
the proof of (4.6).

Suppose now that a is increasing and countably subadditive. To prove
(4.7), for every B E B(n) we set

Note that for every h E N

by the subadditivity of a, thus the supremum in (4.8) is a limit.
The set function 8 is clearly increasing. Let us prove that

for every B E B (f2). Fix B E and denote by M the right hand side of
(4.10). By monotonicity it is enough to prove that ~i(B)  M. By (4.8) for
every s  Q(B) there exist h E N and a finite set I c Z" such that

By (4.5) there exists a family of compact sets such that K; c B n Qh
and

Let K = U Ki. Then K is compact, K C B, and Ki = K f1 Qi, therefore
iEl 

h

Since s  M for every s  p(B), we obtain Q(B)  M, which concludes the
proof of (4.10).

Let us prove that 6 is superadditive. Let i , B 2 E with B, n B2 = 0,
and let ti  Q(Bl), t2  By (4.10) there exist two compact sets Kl, K2
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such that K, ç Bl, K2 9 B2, and tl+t2 By (4.8) and (4.9)
there exist h E N such that

By (4.9) we may assume that h is large enough, so that I~l 0 implies
K2n Q2 = 0. Since 0:(0) = 0, we obtain

hence 8 (Bl) + /~(Bz)  U B2), which proves the superadditivity of {3.
Since p is superadditive and {3 &#x3E; a, by the minimality of A we have

{3 &#x3E; A. To conclude the proof of the lemma it remains to show that Q  A.
Let B E By (4.8) for every s  #(B) there exist h E N and a finite set
I c Zn such that

Therefore (4.1) yields s  a(B f1 U Qi ) !5 A (B), hence /(B)  a(B).
iEl 

h

1:1

THEOREM 4.3. Let it E Then for every B E B (f2) we have

where the supremum is taken over all finite Borel partitions (Bi)iEI of B.

PROOF. By Theorem 2.9 the set function cap, is countably subadditive on
B (f2) and satisfies cap, (0) = 0. Let A be the least superadditive set function
on which is greater than or equal to cap,. By Lemma 4.1 A is a Borel
measure and, for every B E B (f2), A(B) equals the right hand side of (4.11).
Therefore we have to prove that A = ~. Since It &#x3E; cap, by Theorem 2.9(g),
the minimality of A implies that p &#x3E; A, hence A E No (fl).

To prove that ii  A we fix B E B (f2). If A(B) = +oo, then the

inequality lt(B) :5 A(B) is trivial. If A(B)  we consider the measures

AB and AB introduced in Definition 2.4. Note that AB is finite on n and
that cap,,,, (E) cap,, (E f1 B) for every E E B (f2). Therefore, adopting the
convention 0/0 = 1, we have

for every ball Bt(x) contained in S2. Since AB is finite on n, from the derivation
theorem for the p-capacities ([5], Theorem 2.3) we deduce that A B, hence
p(B) = B (B)  AB (B) = A(B), which implies u :5 A. D
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If ~ E and we take a = cap, in Lemma 4.2, then A = p by
Theorem 4.3 and a satisfies (4.5) by Theorem 3.7. Therefore the next two
theorems follow immediately from Lemma 4.2.

The first theorem concerns the inner regularity of every measure iz of the
class 

THEOREM 4.4. Let it E Then

for every B E B (0).

The second theorem provides an easy way to obtain it from cap, when
JL E 

THEOREM 4.5. Let ~. E .Mô(O). Then for every B E B (f2) we have

where Qi h denotes the cube

for every h E N and for every i = (ii, - - ., i,,) E zn.

The following theorem is the converse of Theorem 3.6.

THEOREM 4.6. If ii E No (Q) and cap, is a Choquet capacity on 0, then
p E 

PROOF. Let p E and suppose that cap, is a Choquet capacity on
f2. By property (c’) after Definition 1.1 and by Proposition 3.11 we have

for every compact set K C n. By Theorem 3.7 and by the Choquet capacitability
theorem (Theorem 1.2) we obtain 

°

for every B e 8(0), hence p = p* by Theorem 4.3. Since p* e Mo(tt)
(Theorem 3.9), we conclude that p E D

In the rest of this section we shall prove that two measures of the class

No (fl) are equivalent if and only if the corresponding p-capacities agree on a
family of subsets of 0 which satisfies one of the conditions considered in the
following definition.
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DEFINITION 4.7. Let 6 be a family of subsets of n. We say that £ is
dense (resp. finely dense) in P (fl) if for every pair (K, U), with K compact
(resp. quasi compact in f2), U open (resp. quasi open in and K C U c n,
there exists E E 6 such that K C E C U. We say that f is rich (resp. finely
rich) if, for every chain (resp. fine chain) (Et)tET in the set

{t E T : is at most countable. By a chain (resp. fine chain) in P(O)
we mean a family (Et)tET of subsets of f2, such that T is a non-empty open
interval of R, Et is compact (resp. cIfEt is quasi compact) in f2 for every

- 0 

t E T, and E, C Et (resp. cap(cffEa - intEt) = 0) for every s, t E T with
s  t.

It is easy to check that any countable intersection of rich (resp. finely
rich) families is rich (resp. finely rich).

PROPOSITION 4.8. Every rich (resp. finely rich) family is dense (resp. finely
dense).

PROOF. Let e. be a finely rich family in Let F and A be two
subsets of f2 with F quasi compact in quasi open in f2, and F C A. By
Proposition 1.7 there exists a quasi continuous function J: 0 -+ ~0,1~ such
that f (x) = 0 for every x E F, f (x) = 1 for every x E 0 - A, and the sets

are quasi compact in 0 for every t E ] 0,1 [. Let T = ] 0,1 [. By Proposition 1.5
the family (Et)tET is a fine chain, and F C Et g A for every t E T. Since 6
is finely rich, there exists t E T such that Et E £. This proves that there exists
E E (6 with F C E C A, therefore we can conclude that E is finely dense.

The proof for rich families is similar. 0

THEOREM 4.9. Let ii and v be two measures of the class ,Mo (0). The
following conditions are equivalent:

(a j p and v are equivalent;

(b) cap, and capv agree on all open subsets of f2;

(c) cap, and capv agree on a dense family in P (0);
(d) cap, and capv agree on a rich family in P (f2);

(e) cap, and cap, agree on all quasi open subsets of f2;

(f) cap, and cap, agree on a finely dense family in P (11);

(g) cap, and cap, agree on a finely rich family in 

(h) cap, and capv agree on the finely rich family El (p) of all subsets E of f2
such that caPI£* (intfe) = cap.. (E).
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PROOF. (a) ~ (b). It follows from (2.3).

(b) ~ (e). See Theorem 2.9(j).

(e) ~ (h). The family is rich because it contains the family
6(ce) considered in Lemma 4.10 proved below, for a = cap~* . By (e) and
by Proposition 3.11 we have cap,* = cap,,. on and cap,* = cap, =
cap" - cap,,. on all finely open subsets of U. Therefore, if E E 61 (/1),
then cap~(E) = capv. (intfE). Since (inffe) = cap,, (E) 
cap~* (E), we have cap~ (E) - cap~* (E) for every E E In the same

way we obtain capv(E) = cap~* (E). Since cap~* = we conclude that
= capv(E) for every E E 61

(h) ~ (g). Obvious.
(g) ~ (f). Every finely rich family is finely dense (Proposition 4.8).
(f) ~ (c). Every finely dense family is dense.
(g) ~ (d). Every finely rich family is rich.
(d) ~ (c). Every rich family is dense (Proposition 4.8).
(c) ~ (b). It follows easily from Theorem 2.9(i).
(b) ~ (a). By Proposition 3.11 we have cap~* = cap~* on the-

refore it* = v* on B (0) by Theorem 4.3. Since p and v are equivalent to *
and v* respectively (Theorem 3.10), we conclude that A is equivalent to v.

0

LEMMA 4.10. Let a : --+ R be an increasing function such that
whenever 0. be the family of all

subsets E of f2 such that clfE is quasi compact in 12 and a(intE) = a (cl fE) .
Then £(a) is finely rich in 

PROOF. Let (Et)tET be a fine chain in and let f : T --+ R be the
function defined by f (t) = a(Et). Then f is increasing and

for every i E T, therefore Et E G (a) for every t E T where f is continuous.
This implies that the set {t E T : is at most countable, hence
~ (a) is finely rich in 0

REMARK 4.11. If FI and F2 are quasi closed in f2, and cap(i7nFi) =
for every open set U c 0, then oo F, and ooF are equivalent by

Theorem 4.9, hence 0 by Remark 2.7. This is a well known

result with an easy direct proof (see, for intance, [19], Lemma 2.6).
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5. - -~-Convergence

In this section we prove that the ï-convergence of a sequence of measures
in o (Q) implies the convergence of the corresponding It-capacities in a finely
rich subfamily 

The -y-convergence is a variational convergence for sequences (ph) in
which is defined in terms of the r-convergence of the corresponding

functionals 
-

We refer to [11] and [3] for the motivation and the main properties of the
-y-convergence and for the applications of this notion of convergence to the
study of the asymptotic behaviour of Dirichlet problems in domains with many
small holes.

For the more general definition of r-convergence (also called epi-
convergence) and for its applications to the study of perturbation problems
in calculus of variations, we refer to [15], [14], [1], and the bibliography
therein.

In this paper we need only to recall the definition of 7- convergence and
the compactness property proved in [11], Theorem 4.14.

DEFINITION 5.1. Let (ith) be a sequence in Mo(n) and let it E 
We say that (ilh) -y-converges to p if the following conditions are satisfied:

(a) for every u E and for every sequence in converging to
u in we have

(b) for every u E there exists a sequence in converging to
u in L2 (fl) such that

REMARK 5.2. If properties (a) and (b) hold on 0, then they also hold
for every open set 0’ c O. Conversely, if (a) and (b) hold for every open
set 0’ c c n, then they hold on f2 (the non-trivial proof of this facts can be
found in [3], Proposition 2.8). Therefore, if L is the Laplace operator - A and’
[2 = our definition of ~-convergence is equivalent to Definition 4.8 of [ 11 ],
and for an arbitrary L our notion of -y-convergence coincides with the. i L-

convergence introduced in [5], Definition 5.1.
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REMARK 5.3. The definition of -y-convergence depends, of course, on the
operator L which enters in the definition of However, it is independent
of the choice of Ph and it in their equivalence classes in Therefore,
(uh) i-converges to u if and only if (pg) 1-converges to ~c*.

REMARK 5.4. The 1-convergence on MO(12) (more precisely, on the

quotient of under the equivalence relation of Definition 2.5) is metrizable
([ll], Proposition 4.9) and Mo(2) is compact under 1 ([11], Theorem 4.14).
Since M*(f2) contains one (and only one) representative for each equivalence
class in MO(f2), it follows that M*(f2) is metrizable and compact with respect
to 1-convergence..

The 1-convergence of a sequence (ph) implies the convergence of the
sequence of the corresponding capacities (cap",,,) on a rich family of subsets of
P (0). When 0 is bounded, this can be obtained as a conseguence of Theorem
5.11 of [11], which relies on more general results about r-convergence and
obstacle problems proven in [8].

We prefer to give here a direct proof of this fact which relies on the
following lemmas.

LEMMA 5.5. Let be a sequence in Mo (0) which 1-converges to

P E Mo(f2). Let U and V be two open sets such that U C V C f2. Then

for every u E HI(V) and for every sequence (Uh) in converging to u
weakly in L 2 (V).

PROOF. We assume that fl is bounded, the proof in the unbounded case
being analogous. Let u E and let (Uh) be a sequence in which

converges to u weakly in L 2 (V). We may assume that the right hand side of
(5.1) is finite and that the lower limit is a limit, so that the sequence (uh)
converges to u weakly in by the coerciveness of the quadratic form
(Dv. Let K be a compact subset of U and let p E Co (U) with 0  ~p  1 on
U and p = 1 in a neighbourhood of K. Then the sequence is in 
and converges to pu strongly in L2(0), so by condition (a) of Definition 5.1
we have
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hence

Since (Uh) converges to u weakly in H1 (U), the first and the second term on
the left hand side are equal to the limits of the corresponding terms on the
right hand side, hence

By lower semicontinuity we also have

By adding the last two inequalities and by taking the limit as K t U we obtain
(5.1). 0

LEMMA 5.6. Let (JLh) be a sequence in Mo (0) which ¡-converges
to p Let K be a compact set and let U and V be two open sets
such that K C U C V C S2. Then for every u E HI (V) there exists -a sequence
(Uh) in such that Uh - u E Ho (V ) for every h,

and (Uh) converges to u strongly in L2 (V ).



452

PROOF. We assume that n is bounded, the proof in the unbounded
case being analogous. Let u E To prove (5.2) we may assume that
c E L2 (U, p). By a diagonal argument it is enough to show that for every c &#x3E; 0
there exists a sequence in Hl (V), with uh - u E for every h, such
that converges to u strongly in L~(V) and

Given e &#x3E; 0, let W be an open set such that K c W C W c U and
 E. Let lp E with 0  1 on U and lp = 1 in a

neighbourhood of W. Define v = pu, so that v E By condition
(b) of Definition 5.1 there exists a sequence (vh) in Hol(f2) converging to v in
L2 (fl) such that

Then, putting A = fl - W, we have

By Lemma 5.5 we have

hence, recalling that v E L2 (A, we obtain

Let 0 E Co (W) with 0  ~  1 on W and 1§ = 1 in a neighbourhood of
K. For every h E N define uh = + (I - 1§) u, so that ~ E E

= vh in a neighbourhood of K, and (Uh) converges to u in L2 (V).
By convexity, for every e E~O,1 ~ we have
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Since (Vh) converges to u in L2(W), from (5.3) we obtain

Since e &#x3E; 0 is arbitrary, the proof of the lemma can be concluded by a diagonal
argument. 0

PROPOSITION 5.7. Let (Ph) be a sequence in ,Mo(f2) which i-converges
to JL E No (f2). Then

and

for every open set U and for every compact set K with K C U C 12.

PROOF. Let U and K be as required in the proposition. By Theorem
2.9(c) we may assume U cc n. To prove (5.4) we may assume that the right
hand side of this inequality is finite and that the lower limit is a limit, so that
there exists a bounded sequence (Vh) in such that

By passing to a subsequence, we may assume that (Vh) converges weakly in
H 1 (11) to a function v E HJ (11). Therefore the inequalities

follow from the definition of cap,, (U) and from Lemma 5.5, applied with
V =0, u=v-v and where VECO-(f2) on U.
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To prove (5.5), let w E such that

By applying Lemma 5.6 with V = fl and u = w - p (p E = 1 on

U), we obtain a sequence (wh) in such that

(it is enough to take Wh = uh in Lemma 5.6). Since

(5.5) follows from (5.6) and (5.7). 0

The previous result can be extended to quasi open and quasi compact
sets, as shown in the following theorem.

THEOREM 5.8. Let be a sequence in Mo (n) which ï-converges to.

~ E M o (f2). Then

and

for every pair of sets A and F, with A quasi open in f2, F quasi compact in
FCACf2.

PROOF. We prove only (5.9), the proof of (5.8) being analogous. Let
A and F be as required in the theorem. For every e &#x3E; 0 there exist an

open set U ç 0 and a compact set K ç 0 such that cap(UAA)  E and
 e. By (1.1) there exist two open sets V and W contained in

f2 such that UDA C V, KAF C W, cap(V)  c, and cap(W)  c. Then

K-W C UUV, hence

by Proposition 5.7. By properties (e) and (f) of Theorem 2.9 we have
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and

hence

Since e &#x3E; 0 is arbitrary, we obtain (5.9). 0

The next theorem follows easily from Theorem 5.8 and Proposition 3.11.

THEOREM 5.9. Let (ph) be a sequence in ,Mo (SZ) which 7-converges to
it E M o (0). Then

for every A quasi open in f2, and .

for every F quasi compact in f2.

The inequalities of Theorem 5.8 and 5.9 are improved in the following
theorem.

THEOREM 5.10. Let (ph) be a sequence in Mo(fl) which 7-converges to
Then

for every A quasi open in fl, and

for every F quasi compact in il.

PROOF. We prove only (5.10), the proof of (5.11) being analogous. Let
A be a quasi open subset of n and let

By (5.9) it is enuogh to prove that S. By Theorem 2.9(i) for every
E &#x3E; 0 there exists a compact set K c A such that  Since
A is quasi open, there exists an open set U c n such that cap(UAA)  e, and

by (1.1) there exists an open set V c f2 such that UAA c V and cap(V)  e.
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Since K C U U V, there exist an open set W and a compact set H such that
K ç W ç H ç UUV. By (5.4) we have

The set H - V is compact and contained in A. By properties (e) and (f) of
Theorem 2.9 we have

hence

Since e &#x3E; 0 is arbitrary, we obtain cap,, (A)  S. 0

We now associate with every measure g E Mo (12) a finely rich family
G2 (p) such that, if (uh ) -y-converges to , then cap,,,, (E) converges to cap,, (E)
for every E E 62 (it) -

THEOREM 5.11. For every p E Mo (f2) let G2(P) be the family of all subsets
E of fZ such that cl¡E is quasi compact in f2 and cap,,. (intfe) = cap",. (clfE).
Then is finely rich in P(O) and

for every E E G2(P) and for every sequence (Ph) which ï-converges to p, in
Mo(n).

PROOF. For every P e the family G2(P) is finely rich by Lemma
4.10. By Proposition 3.11 we have cap~(E) 

for every E c fi, hence cap,(E) = 
if E E f2(/~). The conclusion follows now from Theorem 5.9. D

We conclude this section by proving the following fine localization
theorem, which was obtained by probabilistic methods in [3], Lemma 5.1.

THEOREM 5.12. Let (Ph) and be two sequences in Mo(n) which
ï-converge to P and v respectively, and let A be a quasi open subset of ~. If
Ph and vh agree on all quasi open subsets of A for and
v agree on all quasi open subsets of A.

PROOF. The hypothesis of the theorem implies that Ph and vh agree on
all subsets of A (Definition 3.8). Since (Ph) ï-converges to p* and i-

converges to v* (Remark 5.3), Theorem 5.10 implies that cap,* and 
agree on all finely open subsets of A, therefore cap~* and capv. agree on all
subsets of A by (3.3) (Theorem 3.5). By Theorem 4.3 p. and v* agree on all
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Borel subsets of A, thus the conclusion follows from the fact that it* coincides
with it and v* with v on all quasi open subsets of f2 (Definition 3.8). 0

6. - -1-Convergence and Convergence of g-Capacities

In this section we prove that a sequence of measures of the class No (Q)
-y-converges if and only if the sequence of the corresponding p-capacities
converges on a dense subfamily We use this result to associate with

every E Mo(n) a finely rich family such that, if (ph) -1-converges to
., then the sequence of the restrictions (Definition 2.4) ,-converges to
the restriction for every E E ~3 (~).

THEOREM 6.1. Let (Ph) be a sequence of measures of the class Mo(f2).
Define for every E C 12

Suppose that for every open set U C n

For every open set U C f2 define a(U) as the common value of both sides of
(6.1), and extend the definition to arbitrary sets E C 0 by

Let A be the least superadditive set function on 8(0) which is greater than or
equal to a, so that for every B E 8(0)

where the supremum is taken over all finite Borel partitions (Bi)iEI of B.
Then A is a measure of the class the sequence (ph) -y-converges

to A, and a(E) = capa (E) for every E C fi.

PROOF. First we note that (6.3) follows from Lemma 4.1. Since the 7-
convergence on Mo (fl) is metrizable and compact (Remark 5.4), and a does
not change if we pass to a subsequence of (~). we may assume that (Ph)
-y-converges to a measure it E and we have only to prove that A = p*
and a = cap... By (6.1) and by Theorem 5.10 we have a(U) = cap,(U) for
every open set U C n, hence a = cap,,. by (6.2) and by Proposition
3.11. Therefore we conclude that À = ~* by (6.3) and by Theorem 4.3. 0
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REMARK 6.2. If the measure A defined by (6.3) is finite on all compact
subsets of 0, then Theorem 6.1 can be obtained also from a derivation argument
(see [5], Theorem 5.2, applied with v = A). If, in addition, A has (locally) a
bounded potential, and each Ph has the form Ph = ooEh for a suitable closed
set Eh C f2, then the same result was obtained in [2] by probabilistic methods.

THEOREM 6.3. Let be a sequence in and let it E Then
the following conditions are equivalent:

(a) 1-converges to p;

(b) the inequalities 
.. -. - - ..

hold for every compact set K and for every open set U with K C U C 0;

(c) for every open set U C [2

(d) the family of all sets E C 12 such that

is dense in P(O);

(e) the equality

holds for every set E in the finely rich family G2(JL) of Theorem 5.11.

PROOF. (a) ~ (e). It follows from Theorem 5.11.

(e) ~ (d). Every finely rich set is dense by Proposition 4.8.

(d) ~ (b). It follows immediately from the definition of dense set

(Definition 4.7) and from the monotonicity of the A-capacity.

(b) ~ (c). Let U be an open subset of 12 and let

By (b) it is enough to prove that cap,~(U)  S. By Theorem 2.9(i) for every
e &#x3E; 0 there exists a compact set H C U such that  cap, (H). Let
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V be an open set and let K be a compact set such that H C V C ,~ C U. By
(b) we have - . _ _ - - L - . _

Since e &#x3E; 0 is arbitrary, we obtain cap,, (U)  S.

(c) =&#x3E; (a). By (c) the sequence (Ph) satisfies hypothesis (6.1) of
Theorem 6.1 with a(U) = cap,,(U) for every open set U c O. By (6.2) and by
Proposition 3.11 we have « = cap,* hence A = ~,* by (6.3) and by
Theorem 4.3. The conclusion follows now Theorem 6.1. 0

REMARK 6.4. E. De Giorgi and G. Letta introduced a notion of weak
convergence in the space A([2) of all increasing set functions defined on 
vanishing on the empty set ([16], Definition 7.3). This notion depends on the
choice of two families of subsets of ~2, denoted in their paper by u and K. If
we choose U equal to the family of all open subsets of S2 and K equal to the
family of all compact subsets of il, then Theorem 6.3 implies that a sequence

-y-converges to u in if and only if (caps) converges weakly
to cap, in and Theorem 6.1 implies that the set of all iz-capacities is

compact in A(O). Compare this result with the density in of the class of
all Choquet capacities ([7], Theorem 4.5) and with the compactness in A([2) of
the class of all strongly subadditive Choquet capacities ([7], Proposition 4.9).

REMARK 6.5. Let F and F,, (h e N) be closed subsets of n, let oop and
ooF,, be the corresponding measures (see Definition 2.3), and let K = Hol(f2-F)
and Kh = Hol (f2 - Fh) (considered as subspaces of HJ(O). Then (Kh) converges
to K in in the sense of Mosco ([21], Definition 1.1) if and only if

(ooF,,) 7- converges to ooF with respect to the Laplace operator L = - A ([11],
Proposition 4.13). By Theorem 6.3 the last condition is satisfied if and only if
there exists a dense family F such that

for every E E G. Compare this result with Theorem 3.3 of [10].

We now attack the problem of the continuity, with respect to i-

convergence, of the restriction operator introduced in Definition 2.4.

THEOREM 6.6. For every it E M 0 (12) let G3(P) be the family of all subsets
E of f2 such that cap,,. (U fl intJE) = cap,* (U ncl/E) for every open set U C S2.
Then E3(ji) is finely rich in P([2) and (JLf) ï-converges to pE for every
E E G3(p) and for every sequence which ï-converges to JL in Jvto (SZ).

PttoOF. Let p E Mo ([2) and let ’V be a countable dense family of

open subsets of n. For every V E 11 we can apply Lemma 4.10 with

a(E) = cap,,. (V f1 E), therefore for every V E T there exists a finely rich



460

family Gv such that cap,,. (V n intfE) = cap,* (V f1 clfE) for every E E Cv. Let
f = n Cv. Since is countable, the family 6 is finely rich. Let us prove

vev
that 6 C Let E E 6 and let U be an open subset of n. Since is

dense, there exists an increasing sequence (Vh) of elements of V whose union
is U. Since cap~* (Vh n intfE) = cap". (Vh n clfE) for every h E N, by Theorem
2.9(c) we obtain cap,* (U n intfe) = capa. (U ft cItE). Since U is arbitrary, we
have E E G3(p,), hence £ C G3(P,). This implies that Gs(p,) is finely rich.

Let E E and let (ph) be a sequence in Mo(fl) which ï-converges
to p. We have to prove that ~-converges to Since cap,,:(B) =
cap"A (B f1 E) and capaw (B) = cap,, (B f1 E) for every B E 8(0), by Theorem
6.3 it is enough to prove that

and

for every pair (K, U) of subsets of f2 with K compact, U open, and K C U.
Let (K, U) be such a pair. Then cap,,. (U n cIfE) =

= by the definition of ’3(p) and by Proposition
3.11. Therefore Theorem 5.8 implies that

which yields (6.4).
To prove (6.5) we observe that cap,(U n E) &#x3E; n intfE) =

cap,.. (U n intfE) = cap,* (U n cap,,. (K n clfE) by the definition of

Gs (p) and by Proposition 3.11. Therefore Theorem 5.9 implies that

which yields (6.5). 0

The following proposition characterizes the family G3 (p) in terms of the
measure p*. This shows that the definition of G3 (p) is independent of the
operator L occurring in the definition of cap,,..

PROPOSITION 6.7. Let p E Mo (f2) and let 63 (it) be the family of sets
introduced in Theorem 6.6. Then a set E C f2 belongs to ~s (~) if and only if

= for every finely open set A C f2.

PROOF. Let E be a subset of f2 and let ul and lL2 be the measures of

the class Mo(O) defined by Pl(B) = p*(B n intfe) and JL2(B) = p*(B n cItE)
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for every B E B(n). Since cap"l(B) = cap".(B n intfe) and cap,~, (B) _
cap.. (B f1 cl¡E) for every B E B (Q), the set E belongs to 63 (p) if and only if
cap.. (U) = cap"2 (U) for every open set U C ~2. This condition is satisfied if
and only if PI and P2 are equivalent (Theorem 4.9), that is only if PI and ~2
agree on all finely open subsets of n (Theorem 2.6). Since the last condition
is satisfied if and only if ~,* (A n ~.* (A n cife) for every finely open
set A C 0 (by the definition of ~1 and P2), the proof of the proposition is

complete. 0

The following proposition characterizes the family ’3 (p) in terms of the
measure ii and of its singular set introduced in Definition 3.12.

PROPOSITION 6.8. Let it E M o (f2) and let G3(JL) be the finely rich family
introduced in Theorem 6.6. Let E be a subset of Sl, let Eo = intfe, and let

Then E E 63 (IL) if and only if all the following conditions are satisfied:

(a) alE) = 0,

(b) f1 (8fE - a¡Eo)) = 0,

(c) JL(A f1 A(p) fl Eo) = +oo for every finely open set A C SZ such that

cap(A n E*) &#x3E; 0.

PROOF. Assume E E By Proposition 6.7 we have

for every finely open set A c 12. Therefore n n afE) = 0
for every finely open set A c n such that  +oo. Since is the
union of these sets (Proposition 3.11 and Definition 3.12), (a) follows from the
quasi-Lindelof property of the fine topology ([17], Theorem 1.XI.11).

To prove (b) we take A = fl -clfEo. Since A is finely open and AflEo = 0,
by (6.6) we have p*(afE - n cl¡E) = 0, which implies (b) by
Theorem 3.17.

To prove (c), let A be a finely open subset of 0 such that cap (A n E* ) &#x3E; 0
and let A’ Since = A n E*, we
have cap(A’ n clfE n S(()) &#x3E; 0, hence p*(A’ n clfE) = by Theorem 3.17.
Since A’ is finely open and A’ n Eo = A n A(u) n Eo, from (6.6) we obtain
w*(A n n Eo) = It* (A, n clfE) = +oo, hence n n Eo) = 
which completes the proof of (c).

Conversely, assume (a), (b), and (c). By Proposition 6.7, to prove that
E E it is enough to show that (6.6) holds for every finely open set

A c Q. Let A be such a set.
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If cap(A n E*) &#x3E; 0, then (c) implies p*(A n cIfE) ;?: p*(A n Eo) &#x3E;
p(Al1 n Eo) = +00, which yields (6.6).

If A f1. n Eo 0 0, then Remark 3.13 implies n 

n Eo) &#x3E; n Eo) = +oo, which yields (6.6).
If cap(A n E*) = 0 and An S(p) n Eo = 0, then A n cl¡(S(p) n Eo) = 0

and the identity

together with condition (b), implies that cAp (A n fl cife) = 0. By (a) and
by Theorem 3.17 we obtain

which proves (6.6). 0

REMARK 6.9. If cap(E*) = 0, then condition (c) of Proposition 6.8 is

trivial, therefore conditions (a) and (b) imply that E E E3(~.).
Since E* C 8¡S(p) n afeo, it follows that the set E belongs to if

the following conditions are satisfied:

(a’) p(A(p) n alE) = 0,

(b’) (8fE - a¡Eo)) = 0,

(c’) f1 (9fEo) = 0.

Compare this result with Lemma 5.2 of [3].

REMARK 6.10. Let F be a quasi closed subset of f2 and let = ooF.
Then ooF = oos(,) by Remark 3.18, hence = 0 by Remark
2.7. Therefore a subset E of Q belongs to 63 (,u) if and only if the following
conditions are satisfied:

In fact condition (c) of Proposition 6.8 is equivalent to (6.8) because p(A(p)) =
=0.

REMARK 6.11. The rich family RA introduced in Definition 5.6 of [11] is
contained in the finely rich family of Theorem 6.6. In fact, by applying
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the inequality (5.6) of [ 11 ~ to for every E E R, = R ~,* we obtain

for every u E hence the measures pi and U2 considered in the proof
of Proposition 6.7 are equivalent, which implies E E 

In general, the inclusion R, C E3 is strict. For instance, if IL E Mo (0)
is finite on all compact subsets of 11, then R, is the family of all B E B (0)
such that B cc ~2 and = 0 ([11], Proposition 5.7), whereas is the

family of all sets E C ~2 such that = 0 (Remark 6.9).
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