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Concavity Properties of Solutions to Some Degenerate
Quasilinear Elliptic Dirichlet Problems

SHIGERU SAKAGUCHI

1. - Introduction

The purpose of this paper is to show that solutions to some degenerate
quasilinear elliptic Dirichlet problems have certain concavity properties.
Precisely, we show the following two theorems.

. THEOREM 1. Let n be a bounded convex domain in 2) with
smooth boundary c9f2. Fix a number p &#x3E; 1. Let u E Wo,P(f2) be a positive weak
solution to the nonlinear eigenvalue problem:

A = inf If IVvlPdx/ J lvlpdx; v E W~,P.(O)}, the Poincarg constant.
9 0

Then v = log u is a concave function. 
* 

.

. THEOREM 2. Let f2 be a bounded convex domain in 1~" (n &#x3E; 2) with
smooth boundary 8f1. Fix a number p &#x3E; 1. Let u E be the unique
weak solution to the Dirichlet problem: 

°

i
Then v = concave function.

REMARKS.

(1.3) The existence of a non-trivial non-negative solution to (1.1) follows from
direct methods of the calculus of variations (such a solution is the solution to
(2.1) in this paper).

Pervenuto alla Redazione il 16 luglio 1986 e in forma definitiva il 25 giugno 1987.
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Positivity of this solution follows from Harnack’s inequality of Trudinger [23].
Along the similar line to that in Aubin [1, pp. 102-103] we can show that
the solutions to (1.1) are proportional. We give its proof in Appendix (see
Theorem A.1). When [2 is a ball, Thelin [20] showed the uniqueness of the
radially symmetric eigenfunction u of norm 1 to (1.1).

( 1:4) The existence of the solution to (1.2) is due to the direct method in the
calculus of variations. The uniqueness of the solution to (1.2) follows from
the weak comparison principle due to Tolksdorf [22] (see [22, Lemma 3.1, pp.
800-801] or Lemma A.2 in Appendix).

Recently many results concerning concavity properties of solutions to

elliptic boundary value problems were obtained by various authors with the
help of concavity maximum principles.
Korevaar [14] first established a concavity maximum principle and using this
he obtained the concavity property of capillary surfaces in Furthermore,
Korevaar [15] and Caffarelli and Spruck [5] showed the result of Branscamp and
Lieb [3], that is, "The first eigenfunction of the Laplacian on a convex domain
in ~n is log" concave" by using a concavity maximum principle. Kennington [13]
and Kawohl [10], [11] improved Korevaar’s concavity maximum principle and
obtained concavity properties of solutions to various nonlinear elliptic boundary
value problems. Especially Kennington [13] and Kawohl [ 11 ] showed that ~
is concave in the case p = 2 in our Theorem 2. Strict concavity properties of
solutions to semilinear elliptic equations in R 2 were proved by Caffarelli and
Friedman [4] (see also Kawohl [12] and Korevaar and Lewis [16]).

On the other hand,, the pseudo-Laplacian - div (IV’ lp-2 V.) has been
studied by many authors (see Diaz [6]). Thus we consider the pseudo-Laplacian
instead of the Laplacian and obtain results similar to those obtained in the case
of the Laplacian. Theorem 1 corresponds to the result of [15] and [5], and
Theorem 2 corresponds to that of [11] and [13]. In the case of the Laplacian
the solutions to (1.1) and (1.2) are classical (that is, smooth), but in the case of
the pseudo-Laplacian they are generally only weak solutions, since the pseudo-
Laplacian is degenerate elliptic. Precisely, it was shown in [21 ] and [22] that the
bounded solutions to (1.1) and (1.2) belong to for some a (0  cx  1)
and not always belong to C2(0). For example, when the domain is a ball
centered at the origin 0, the function u(z) defined by

with constants a and b (a  0, b &#x3E; 0), is a solution to (1.2). Korevaar’s
concavity maximum principle and its improved versions due to Kennington and
Kawohl work only for a classical solution. Therefore, we can not directly apply
concavity maximum principle to our problems, ( 1.1 ) and (1.2).

In this paper we introduce certain regularized problems and prove our
theorems. In the following sections we first prove Theorem 1, and along the
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similar line to this we prove Theorem 2. In §7 Appendix we show that the
eingenvalue A of (1.1) is simple if the boundary 9H is connected, where 0 is
not necessarily convex.

2. - A regularized problem

The equation of (1.1) is obtained by the variational problem:
(2.1 ) Find u E K satisfying

where K = {v E = 1) (see [2, Theorem (6.3.2), p. 325]).
It follows from Theorem A.1 that (2.1) has a unique positive solution u, which
is a positive solution to (1.1).

Our idea of the proof of Theorem 1 is to introduce the following variational
problem:
(2.2.e) Find u E K satisfying

for sufficiently small number e &#x3E; 0.

Concerning this problem we obtain

PROPOSITION 2.1. There exists at least one non-negative solution
u. E to (2.2. e) satisfying

in 0, and

where u is the unique positive solution to (2.1).

PROOF. It follows from Theorem (6.3.2) in [2, p. 325] that there exists
at least one solution u. E to (2.2.e). Since lu.1 E is also a

solution to (2.2.e), we may assume that u, is non-negative in 11. Of course

us satisfies (2.3) in the weak sense. Furthermore, we see that the set {u~ } is
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bounded in = 1. Hence there exist a subsequence
{uy } and it E Wo"p(f2) satisfying

It follows from the lower semicontinuity of the norm that

Since the imbedding - is compact, we have ug~ --~ it in
LP(f2) and almost everywhere in 0 as e’ -~ ,o, by taking a subsequence, if

necessary. Then we see that 3 E K and 11 is non-negative in f2.
On the other hand, by using the minimizing properties of u and u,, we

see that

Hence, with the help of Lebesgue’s dominated convergence theorem, we
have

Then it follows from (2.5) and (2.7) that

Therefore, in view of the uniqueness of the non-negative solution to (2.1),
we get 3 = u. Consequently, we have

Combining (2.7) and (2.8), we obtain (2.4) from the mean convergence
theorem of Riesz and Nagy [19, Theorem, §37, p. 78]. This completes the
proof.

Concerning_ the regularity of u, we have

PROPOSITION 2.2. The solution u. to (2.2.e) obtained in Proposition 2.1.
belongs to for some ~Q (0  Q  1) and satisfies
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where M and ~3 are constants independent of E.

PROOF. Since = 1 and 0, applying Lemma 9.6 in [9, pp.
213-214] to (2.3), we obtain the estimate

a

where CI is a constant independent of e (see also [17, Theorem 7.1, pp. 286-
287]). Therefore, using Theorem 1.1 in [17, p. 251], we see that Us belongs
to co (0’) for some Q (0  /~  1) and satisfies the inequality

where C2 and (3 are constants independent of e. Combining (2.10) and (2.11),
we get (2.9). This completes the proof.

Using ArzelA and Ascoli’s theorem, we obtain from Proposition 2.1 and
Proposition 2.2

COROLLARY 2.3. uniformly in ’0 - 0.

3. - Some properties of the unique positive solution u to (2.1)

From Theorem A.l and Lemma A.3 we get

PROPOSITION 3.1. There exists a neighborhood N of ao in 12 satisfying
the following conditions:

and

Furthermore, from Lemma 2.4 in [ 15, pp. 610-611 ] and its proof we have

PROPOSITION 3.2. Let Q be strongly convex (that is, all the principal
curvatures of an are positive.). For 6 &#x3E; 0 let

Put v = log u. Then there exists a number 60 which satisfies the following:

(3.4) The matrix [- Diiv] is positive on 1, where
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and

(3.5) For any 6 (0  6  bo) every tangent plane to the graph of v on 

lies above the graph on 06 and contacts it only at the tangent point
in 06.

PROOF. We choose bo &#x3E; 0 small to get fl - fl,6, c N, where N is the
neighborhood of an obtained in Proposition 3.1. Then, since u belongs to
C2(N) we can use Lemma 2.4 in [15, pp. 610-611 ] and its proof
to prove this proposition.

4. - An application of Korevaar’s concavity maximum principle

In this section we apply Korevaar’s concavity maximum principle [15,
Theorem 1.3, p. 604] to our problem. Before its application we get more
regularity of the solution u. in compact subsets of tl for small e &#x3E; 0.

PROPOSITION 4.1. For any b &#x3E; 0, if we choose numbers eo &#x3E; 0 and
r &#x3E; 0 sqfficiently small, we have the following: for any e (0  e  eo),

where M is the constant in Proposition 2.2 and f26 is the domain defined
in Proposition 3.2 (see (3.3)).

PROOF. Combining Corollary 2.3 and the positivity of u (see Theorem
A.1 ), we get (4.1 ).

With the help of Proposition 4.1, using Tolksdorf’s regularity theorem
[21, Theorem 1, p. 127], we get

PROPOSITION 4.2. For any 6 &#x3E; 0 and any e (0  e  eo), the solution u,
belongs to C °° (06) and satisfies

where 8 (0  a  1) and C are constants independent of c &#x3E; 0, and co is the
number in Proposition 4.1.

PROOF. We apply Theorem 1 in [21, p. 127] to (2.3). To this purpose,
choose a non-decreasing function 0 E satisfying
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where M and r are the constants in Proposition 4.1. We put

and

where D; = a . Then it follows from Proposition 4.1 that u. is also a weak
solution to the equation

We observe that

where C1 = min ((,r/2), 1) and C2 = max (2M, 1).
Therefore we easily verify the assumptions of Theorem 1 in [21], and

applying this theorem to (4.4), we see that u, belongs to C1 (flb) and Vu, is
Holder continuous in DeS. Then, is positive (that is, the equation is
elliptic), from the regularity theory for the elliptic partial differential equation
(see [9]) we see that u, E Furthermore, using Tolksdorf’s interior
estimate, we get (4.2). The proof is completed.

Now, we apply Korevaar’s concavity maximum principle to our problem.
In view of Proposition 4.1 and Proposition 4.2, for 0  e  eo we define the
function v. E COO (flb ) by

Then v, satisfies the equation

where

and

Let c~ (y, z, t) be the concavity function corresponding to - v, in the
convex domain 06, that is,

for (y, z, t) E f26 x 06 x [0,1]. Note that v. is concave if and only if c~  0.
Here, in view of (4.7), applying Korevaar’s concavity maximum principle

[15, Theorem 1.3, p. 604] to - v6 in the convex domain we obtain
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PROPOSITION 4.3. For any 6 &#x3E; 0 and any e (0  e  Eo), the function c,
attains its positive maximum on the boundary x fl5) x [0, 1], provided it
is anywhere positive.

5. - Proof of Theorem 1

First of all we show that it suffices to prove Theorem 1 when 0 is strongly
convex (see Proposition 3.2). We can choose a sequence of strongly convex
smooth domains (flk) satisfying

Let uk E be the unique positive solution to (2.1) corresponding
to f2k- We may extend the function uk to a function in n by putting uk = 0

Thus Uk belongs to Since 1, by using the
minimizing property of uk, we see that the set is bounded in 

Hence there exist a subsequence and a function n E 

satisfying 
.

Of course E &#x3E; 0 and IlullLP(O) = 1. By using the minimizing property
of uk and the lower semicontinuity of the norm of we see that u is
a solution to (2.1 ). Then it follows from the uniqueness of the non-negative
solution to (2.1) that u = u. Therefore we obtain

where u is the unique positive solution to (2.1 ).
On the other hand, since the of the solution to (2.1) is

independent of small smooth perturbations of the boundary we obtain the
estimate

where ~3 and C are positive constants independent of k.
According to ArzelA and Ascoli’s theorem we obtain

uk - u uniformly on any compact subset of f2.

This shows that it suffices to prove Theorem 1 when f2 is strongly convex.
Now we suppose that ~l is strongly convex. In order to prove Theorem 1

it suffices to show

PROPOSITION 5.1. For any small 6 &#x3E; 0, the function v = log ~c is concave
in 06, where 06 is the (strongly) convex domain in Proposition 3.2.
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Furthermore, in view of Corollary 2.3, it suffices to show

LEMMA 5.2. For any small v &#x3E; 0, if we choose ~1 &#x3E; 0 sufficiently small,
for any e with 0  e  ~1 the function v, = log Us is concave in f2,.

PROOF of LEMMA 5.2. First of all we choose v &#x3E; 0 sufficiently small to
get

where N is the neighborhood of an obtained in Proposition 3.1.
On the other hand, it follows from Proposition 4.2 that for small e &#x3E; 0

where Q and C are constants independent of E. Then, since the imbedding
CI+Ø(Ov/2) t...+ is compact, we have

Hence, from (3.1 ) in Proposition 3.1 we obtain

for small E &#x3E; 0. In view of (5.2) and (5.4) we can choose the ellipticity
constants of (2.3) independently of e for small e &#x3E; 0 (see [9]). Therefore it
follows from Schauder estimates for elliptic partial differential equations (see
[9]) that for small e &#x3E; 0

where C is a constant independent of 6 &#x3E; 0.

Furthermore, using the compactness of the imbedding

from Proposition 3.2 and (5.3) we obtain the following: for small 6 &#x3E; 0

(5.5) The matrix [ - Dij vs] is positive on OV/2 -- n2v, and

(5.6) Every tangent plane to the graph of v, on anv lies above the graph on
a., and contacts it only at the tangent point on Ov.

(Here, of course we choose v &#x3E; 0 small to get 2v  bo.)
Now, combining Lemma 2.1 in [15, p. 609] and (5.6), we see that the

concavity function c, does not attain its positive maximum on the boundary
x x [0, 1] for small c &#x3E; 0. Hence it follows from Proposition 4.3
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that c, is non-positive for small e &#x3E; 0. This completes the proof of Lemma
5.2.

6. - Proof of Theorem 2

We can prove Theorem 2 along the similar line to the proof of
Theorem 1.

The Dirichlet problem (1.2) is equivalent to the variational problem:

(6.1) Find u E minimizing the functional

in Our idea of the proof of Theorem 2 is to introduce the following
variational problem:

(6,2.~) Find u E minimizing the functional

in for sufficiently small number e &#x3E; 0.

Concerning this problem we obtain

PROPOSITION 6.1. There exists at least one solution u. E to

(6.2.e) satisfying

and

where u is the unique solution to (6.1 ).

PROOF. Using Young’s inequality and Poincare inequality, we see that
the functional F, is bounded from below in Wo’p (fl). Furthermore, with the
help of a semicontinuity theorem in [7, Theorem 2.3, p. 18] we see that F.
is sequentially lower semicontinuous with respect to the weak topology of

Hence there exists at least one solution to (6.2. E), say u. E 
Put ut = max (us, o). We have F. (u,+) :5 F.(u.). Then it *follows from

the minimizing property of u. that min (u,, 0) = 0. This implies (6.3).
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By using Young’s inequality and Poincare inequality, we see that the
set (u«) is bounded in Wol,P(f2). Accordingly, it follows from the lower

semicontinuity of F and the unique solvability of (6.1) that

where u is the unique solution to (6.1 ). Furthermore, since the imbedding
Wo ~p (~) ~ is compact, we have

On the other hand, since F, by using the minimizing properties of
u and u,, we see that F (u)  Fe (u) . Hence, with the help
of Lebesgue’s dominated convergence theorem, we have

Therefore we obtain from this and (6.6)

Combining (6.5) and (6.8), we get (6.4) from the mean convergence theorem
of F. Riesz and B. Sz-Nagy [19, Theorem, §37, p. 78]). This completes the
proof.

Concerning the regularity of u, we have

PROPOSITION 6.2. The solution Us to (6.2.e) obtained in Proposition 6.1
belongs to CO (0) for some {3 (0  Q  1) and satisfies

where M and ,~ are constants independent of s.

PROOF. First of all we put

Then, with the help of Young’s inequality, we see that the function u, Vu)
satisfies the growth condition
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where a and b are positive constants depending only on p. Hence, since the
set is bounded in using Theorem 3.2 in [17, p. 328], we obtain
the inequality

where C1 is a constant independent of e. Therefore, using Theorem 3.1 in [8,
p. 36] and the remark following it, we see that u, belongs to CO (0) for some
p (0  /3  1) and satisfies the inequality .

where CZ and /~ are constants independent of e. Combining (6.10) and (6.11 ),
we get (6.9). This completes the proof.

Using ArzelA and Ascoli’s theorem, we get Corollary 2.3 also in this
section.

Next, concerning the properties of the unique solution u to (6.1), first from
Lemma A.2 we see that u is non-negative. Hence, since u is not identically
zero, by the weak Harnack inequality [23, Theorem 1.2, p. 724] we see that
u is positive in 12. Then with the help of Lemma A.3 we get Proposition 3.1 also

. p2013i
in this section. Also we get Proposition 3.2 replacing v = log u by v = u P

Concerning the Euler equation for the variational problem (6.2. g) we get

PROPOSITION 6.3. For any b &#x3E; 0, if we choose numbers 0 and T &#x3E; 0

sufficiently small, we have the following for any e (0  e  eo)

where M is the constant in Proposition 6.2, and

(6.13) The solution u, is a weak solution to the Euler equation

where the domain defined in Proposition 3.2.

PROOF. Combining Corollary 2.3 and the positivity of u, we get (6.12).
(6.13) follows from the minimizing property of u..

Therefore, using Tolksdorf’s estimate, we have Proposition 4.2 also in
this section by the similar argument to that used in the proof of Proposition
4.2. 

’

In this section we use Kennington’s concavity maximum principle [13,
Theorem 3.1, p. 691 ] instead of that of Korevaar [15]. In view of Proposition
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6.3 and Proposition 4.2, for 0  E  eo we , define the function v. E Coo 

by

Then v, satisfies the equation

where

and

Let c, be the concavity function corresponding to -v, in as in (4.8).
Here we obtain

PROPOSITION 6.4. If we choose a number el sufficiently small
corresponding to p, then for any e with 0  6  min the function
c~ does not attain its positive maximum in f2b x f2,6 x [0, 11, where eo is the
number in Proposition 6.3.

PROOF. It suffices to verify the assumptions of Theorem 3.1 in [13, p.
691]. Put = Then we see that is positive for

small e &#x3E; 0. Indeed, if I VV, 12 &#x3E; 6 (p2 we get d(Vv,) &#x3E; 0. And

if IVV, 12  get -Cp e P- 2 + p for some positive
constant Cp depending only on p, since e  e + E.

Thus we can choose a positive number el depending only on p, and we
gee that is positive for 0  e  min since v. is positive.
We observe that

Therefore, applying Kennington’s concavity maximum principle [13, Theorem
3.1, p. 691], we get Proposition 6.4.

Consequently, by the similar argument to that used in the proof of Theorem
1 (see §5) we can prove Theorem 2.
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REMARK.

(6.17) Theorem 2 remains valid without hypothesis ",9Q is smooth". Indeed,
since the uniqueness of the solution to (1.2) holds for any bounded domain n
with the help of the weak comparison principle (see Lemma A.2 in this paper),
by the same argument as in the beginning of §5 we get Theorem 2 without
hypothesis is smooth"..

7. - Appendix

The purpose of this section is to show

THEOREM A.1. Let 0 be a bounded domain (not necessarily convex) in
(n &#x3E; 2) with smooth boundary aQ. Fix a number p &#x3E; 1. Then there exists a

non-trivial non-negative weak solution u E to the nonlinear eigenvalue
problem:

where A is the Poincarg constant (see Theorem 1), and any non-trivial solution
to (A.1) is positive in 0 or negative and belongs to (f-2) for some
a (0  a  1). Furthermore, if the boundary an is connected, the solutions
are proportional (that is, the eigenvalue A is simple.)..

In order to prove that the eigenvalue is simple we need the following:
LEMMA A.2. (Weak comparison principle) Let f2 be a bounded domain

in R n (n &#x3E; 2) with smooth boundary an. Let Ul, U2 satisfy

for all non-negative 0 E that is,

in the weak sense.
Then the inequality

implies that

PROOF. Let 0 = max {Ul - U2, O}. Since U2 on an, so 1/J belongs
to Inserting this function 0 into (A.2), we have
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Therefore, using Lemma 1 in [21, p. 129], we obtain

LEMMA A.3. (Hopf’s lemma) Let f2 be a bounded domain in (n &#x3E; 2)
with smooth boundary an. Let u E C 1 Cn) satisfy

 0 on where v denotes the unit exterior normal vector to a ~.

PROOF. Let zo E an. There exists an open ball C n with

Xo E n an, where denotes an open ball in R n centered at

z with radius o. We can find a smooth function v satisfying

in [18, Lemma 2, p. 207]. Since u is positive in 0, we have

Put w = Tv. Then w satisfies

Since w  u on applying Lemma A.2 to w and u 
w and U2 = u), we obtain

Of course w (zo) = u (zo). Therefore we get

This completes the proof.

PROOF of THEOREM A.1. Consider the variational problem (2.1).
Then it follows from Theorem (6.3.2) in [2, p. 325] that there exists at

least one solution uo to this variational problem. Since is also

a solution, we may assume that uo &#x3E; 0.



418

Of course uo satisfies the equation of (A.1 ) in the weak sense. Let u
be any non-trivial solution to (A.1 ). Then we see that lul is also a non-trivial
solution to (A.1 ) and is non- negative. Hence, concerning the regularity, first

by Lemma 9.6 in [9, pp. 213-214] we get u E L°° (fl). Next, using Theorem
1.1 in [17, p. 251], we get u E for some 8 (0  Q  11 Therefore,
using Proposition 3.7 in [22, p. 806], we see that u E for some
a (0  a  1). Positivity of lul follows from Harnack’ s inequality due to
Trudinger [23, Theorem 1.1, p. 724]. This shows that u is positive in 0 or
negative in fi.

Here it remains to show that the eigenvalue A is simple. Let ul and
U2 n C1+a(0) be two positive solutions to (A.1 ). As in Aubin [1,
p. 103], we define the number b by

Applying Lemma A.3 to ul and u2, we get

Therefore we see that b is positive. Obviously, bu2 &#x3E; 0 in o. Furthermore
we can show that there exists a point z E 0 where ui - bU2 vanishes. Indeed,
suppose u1 - bU2 &#x3E; 0 in ~2. Since bU2 is also a positive solution to (A. 1) and

in n, we see that

in the weak sense.
On the other hand, since a[2 is smooth, there exists a smooth vectorfield

v (x) on some neighborhood of 9f2 in R n which is equal to the unit exterior
normal vector to 80 for all x E 9H.

Then in view of Lemma A.3 and the continuity of the derivatives C9u
and au we get from (A.7)

where 6 is a positive constant and r is an open connected neighborhood of aS2
in n (since an is connected, we can choose r to be connected.). Of course,

8 and IVU21 [ &#x3E; 5 on r. Therefore it follows from the regularity theory
of the elliptic partial differential equation (see [9]) that ui and U2 belong to
Coo (r). Furthermore we have from (A.9)
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for all numbers t (0  t  1). Thus we obtain from (A.8) and the mean value
theorem

where

(A.10) we see that L is a uniformly elliptic operator on r. Consequently, we
have

Then, by using Hopf’s boundary point lemma for uniformly elliptic
operators (see [9, Lemma 3.4, p. 33]), we get

Therefore, in view of the continuity, combining this and the assumption
that u1 - bU2 &#x3E; 0 in 0, we have

for some positive number 17. This contradicts the definition of the number b (see
(A.6)). Thus we see that there exists a point z E ~2 where ul - bU2 vanishes.

Next we show that there exists a point z- E r where bU2 vanishes.
Here r is the open connected neighborhood of an in f2 in (A.9). Choose a
bounded subdomain 0- of 12 with smooth boundary an- which satisfies

Then we have a point z- E where ui - bU2 vanishes.
Indeed, suppose ul - bU2 &#x3E; 0 on By the continuity we get

for some r &#x3E; 0. Since the function w = bU2 + T satisfies

in the weak sense, we have
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Then it follows from Lemma A.2 that

Since z E Qi so &#x3E; w (z) = This contradicts uI(z)-bu2(Z) = 0.
Thus we have a point z E ao- c r where ul - bU2 vanishes.

Observing that

we obtain by the strong maximum principle for uniformly elliptic operators
(see [9, Theorem 3.5, p. 34])

Here we define the number 6" by

It follows from the same argument as above that

Since ul is positive in r, combining (A.12) and (A.14) we get bb"’ = 1.

Therefore, observing that ul - bu2 &#x3E; 0 and U2 - (1/b)ul &#x3E; 0 in f2,
we obtain ul = bU2 in ~. This shows that ul and U2 are proportional. The
proof is completed.
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