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The Spectral Distribution of a Globally Elliptic Operator

FERNANDO CARDOSO - RAMON MENDOZA

0. - Introduction

The aim of this paper is to extend some results about the spectral
distribution of the harmonic oscillator to more general self-adjoint positive
globally elliptic pseudodifferential operators Q, of order two, in 7K’~, as

considered by Helffer in [10].
We start by recalling, in Section 1, a few facts about the positive square

root of the laplacian in S’ 1 and the harmonic oscillator in ~. Although these are,
in some sense, the simplest examples we may think of, they already give us a
hint of the main features and results that can be obtained in the general compact
(without boundary) and non-compact contexts, respectively. In Section 2, we use
the approximation of the unitary group exp(-itQ) by a global Fourier integral
operator (see, [10]) to show that if the hamiltonian flow of the principal symbol
q of Q is completely periodic with minimal positive common period T and the
average of the subprincipal symbol of Q, subQ, over these Hq solution curves
is equal to a constant 1, then the principal symbol of the pseudodifferential
operator exp( ~iT Q) is given by

where a is the Maslov index of the "lifted" bicharacteristic of T + q(x, ~) which
passes trough the point (0, -q(x, ~); x, ~; x, - ç).

Using (1), we can give a geometric meaning to formula (3.3.8) in Helffer,
[10].

We know (see [11]) that the singularities of the spectral distribution of Q

(*) Partially supported by CNPq (Brazil)
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where S’p(Q) denotes the countable set of the eigenvalues of Q, are located in
the set ,GQ of periods of periodic bicharacteristics of q, of energy one, i.e.,

In section 3, we study the behavior of SQ at a singular point T under the
assumptions that T is an isolated point of LQ and the set of bicharacteristics of
q of period T is a "good" manifold. We also compute the principal symbol of
SQ at [T, -1 ]. This is the analogue of Poisson’s formula of Chazarain, [5], and
Duistermaat-Guillemin, [8]. These results were also established by V. Guillemin-
S. Stenberg, [9], and by L. Boutet de Monvel, [4], by indirect methods which
consist of making transformations that lead to the case of elliptic operators on a
compact manifold, [9], or the case of Toeplitz operators, [4]. However, whereas
our proof seems to be adaptable to quasi-homogeneous operators, such as the
anharmonic oscillator, their methods do not lead in this case to operators whose
spectrum has already been studied.

In Section 4, we discuss the geometrical interpretation of the principal
symbols of exp(-iTQ) and of SQ. We compare them with that of Duistermaat,
[7].

1. - The spectral distribution of Po and Qo

We denote by Po the positive square root of the laplacian in S 1 and let
Qo = ~(-9~+~) be the harmonic oscillator in R ; in both cases the eigenvalue~
and the respective eigenfunctions are well-known.

Let us consider the spectral distribution of Po

where Sp(Po) is the set of all nonnegative integers. We use the following
identities in P’(11):

Substituting (1.2) in (1.1), we get
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From formula (1.3), it is clear that the restriction of Sp,, to a small neighborhood
of the singular point Tj = 27rj, i an arbitrary integer, is a Fourier integral
distribution belonging to where &#x3E; 0}. Of course,
Tj is the period of a closed geodesic in 6~ I and we obtain, after localization,
the following residue formula

The eigenvalues Aj = j, j = 0, 1, 2,... are equal to the sequence of numbers

where T is the minimal positive geodesic period and a and are as in the
Introduction. Of course, in our example, T = 27r, ~ = 0, and a = 0.

In the case of the square root of the laplacian in a compact riemannian
manifold or, still more generally, of a positive elliptic selfadjoint operator P of
first order on a compact manifold (see [8]), one can not get a formula like (1.5)
for its eigenvalues. In fact no general formula is known at all. Nevertheless,
under the same assumptions as above, about the bicharacteristic flow of P being
completely periodic, the eigenvalues of P will cluster, in a certain sense, around
the vj, that is, they will be given "approximately" by formula (1.5).

We consider now the harmonic oscillator Qo; it is well-known that its

eigenvalues, all of multiplicity one, are of the any natural number.

Therefore

If we note that

then we obtain

One can see directly from (1.7) that the singularities of SQ,, are located at the
periods Tj = E Z, of the closed bicharacteristics of the principal symbol
of Qo; here we consider qo = 2 (~2 + x2) as the principal symbol of Qo. It is also
clear that SQ, restricted to a small neighborhood of Tj, belongs to I1 ~4( ~~ , AT, ).
After localization we can prove that
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Formula (1.8) allows us to distinguish between the odd and even periods of
the closed bicharacteristics. In fact, (1.8) is equal to i3 for j odd and to i for

j even.
The eigenvalues of Qo still satisfy (1.5) since now T = 27r, ~ = 0 and

a = 2 (see the appendix). It can be shown that, for general Q, its eigenvalues
Aj cluster around the vj, defined by (1.5), in the same way as already observed
in the compact case (see [ 11 ]).

2. - The unitary group exp(-itQ)

Let Q be a globally elliptic pseudodifferential operator, in of order two,
classical, selfadjoint positive, whose symbol q verifies (see [10], for definitions):

.

with q2-2j homogeneous of degree (2 - 2j) in (x, g) e B (0) .
It is shown in [10], how one can approximate exp(-itQ), for all t e ~l,

by a classical global Fourier integral operator whose class is also introduced
there.

We shall make the following hypothesis:
(2.2) The flow associated to the hamiltonian

is completely periodic with minimal positive common period T &#x3E; 0, i.e., we
have:

It is then known, [10], that exp(-itQ) is a pseudodifferential operator in

G°’~~(~~ n), whose symbol is of the form:

where is homogeneous of degree (-2j) for Ixl + 11] I ~ 1. The aim of

this Section is to compute its principal symbol ao (x, ~) and put into evidence
its geometric meaning.

The starting point in the approximation alluded to above is the following
fact
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It is well-known (see [10], [11]) from the theory of Hamiltonian-Jacobi that the
Schwartz kernel, U = U(t, x, y), of exp(-itQ), may be represented (locally in t,
e.g., for It  To) as a classical global Fourier integral depending in a COO way
on the parameter t :

where the phase

and the amplitude

with a-2j(t, x, rJ) homogeneous of degree -2 j in (x, q), 1. Furthermore,
is a solution of the eikonal equation:

whereas a-2j(t, x, r~), j - 0, 1, ..., are solutions, for It I  To, of the transport
equations with initial conditions 1 ~ "if j = 0 and 0 if j &#x3E; 0. In particular, we
obtain

Just as in [2], we put, for It  To,

and let ~1t = Ao, be the image of Ct under the mapping

The set Ct C R3n is a Coo submanifold of codimension n and At c 
is a regularly embedded submanifold under the mapping i of dimension 2n,
such that for |t|  To,

(2.8) At = graph(4/)-1 i.e., the set of all points



148

We have a volume element vt 0 on Ct such that

Consider the following diagram (always for It  To)

We choose To small enough so that the matrix ~, r~ ) is invertible for

It  To. Consequently, all arrows in (2.9) are diffeomorphisms 
1 is

a symplectomorphism whose graph is At. We may, therefore, use y = (y, , ... , yn)
and the dual coordinates, n = n1, ... , n1 ) as coordinates in Ct. We see that

This never vanishes on Ct. We know (see [2] and [12]) that the principal symbol,
a(U(t)), of U(t), is a section of the half-density bundle of At tensored with a
section of the Maslov bundle, L~t of At, corresponding to ao/ct R under the
diffeomorphism i. We consider intrinsic trivializations of both of these bundles.
In fact, for the half-density bundle, the projection

is a diffeomorphism, hence

is a nowhere vanishing half-density. As for we are interested in finding a
trivialization given by a constant section. To see that such a section exists (it
is unique up to scalar multiples), we note that the subset Ao of T * ( ~ n x ? n) is
identical with

Since N* (0(._. ~ 2n)) is a normal bundle, 2n)) possesses a canonical constant
section s, corresponding to the identity operator - (i.e.,
a(I)(y, r¡; y, -q) = s. Now extend s to a global section, denoted by
u, by requiring it to be constant along each bicharacteristic
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We conclude then, from (2.6) and (2.10) that, for It  To,

being a continuous closed curve. Observe that at t = 0 the left and right-
hand side of (2.13) are equal since both are equal to the symbol of the

identity map. Moreover is invariant under the Hamilton flow so the right-
hand side satisfies the transport equation for u(U(t)) induced by the equation

+ Q)U(t) = 0. This proves the equality for all t  To.( 
at 

Q) ( ) P q y

Denote by the vertical space at A(t), i.e., the tangent space at

A(t) to the fiber of T * ( ~~ n x ~) over where 7r, 1 is the base projection
from T*(-’,~’ x ~~ n) onto :R n x J11’~, and by M2(A(t)) the tangent space to At at

A(t). Choose a continuous curve in the lagrangian-grassmannian A(T * (~~ n x ..~~ n))
over 7"C~ x~):

where the lagrangian subspace
= 1, 2. The meaning

is transverse to

where w/ = v-), t = 1,..., 2n, is a basis of M2(A(t)), (v.) being a basis of
T (T * (..~ n )) at (y, -,q). Observe that the set of vectors is a basis of
the tangent space to At at the point A(t). We remark that because of hypothesis
(2.2), (2.14) remains valid for t near T. If we write

and choose v, = i

hypothesis (2.2):
we obtain from (2.14) and the
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Recalling the definition of the Maslov bundle and denoting by 
the Hbrmander index, where M9 = M~ (~(o)), j = 1, 2, (2.15) yields

Since is a symplectic transformation in T*(3i’~), we may consider the
closed curve of lagrangian subspaces:

We can equip A(T*(-~’ x -Z’)) with manifold structure by using local charts in
y 2n . Then we can subdivide A into a succession of Ar each contained
in some domain of local coordinates. We assume that the endpoint of Aj is the

starting point of and that The local charts enable us to transfer
each Aj as a smooth arc of curve, Aj, in A(2n), the lagrangian-grassmannian of

We connect by a smooth curve the endpoint of Aj to the starting point of
for each j = 1,..., r. This yields a closed curve A in A1(2n) whose Maslov

index is, by definition, the Maslov index a of the curve A. It is easy to show
that (see Section 4)

It is shown in [7] that a is also the Maslov index of the curve

where V is the vertical space of T*(:~Zn) at ~t(y, r~). Moreover, if

and

one can show (identifying T - 0) that the Maslov index of A with respect to
C’, is equal to

Indeed, at each point a(t) E C’, 0  t  T, consider the homotopy between the
lagrangian subspaces
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and

given by the space generated by the following 2n + 1 vectors

where Wi 1  i  2n, (vi) being a basis of T(T*(~ n)
at (y, r~). The Maslov index of clearly equal to the Maslov index of
X(t) = graph (d~t(y, r~)]-’ . This is a consequence of the fact that we may choose
the fundamental cycle A’ (M) in A(2n + 1), with M = m 0 M, in such a way
that m n (HT) = 0. Hence (2.21) holds.

It is possible to relate a with the Morse index of the bicharacteristic of
q2, through (~/,~) and with the reduced (mod. 4) Maslov index as defined
in Treves, [14].

Finally, from (2.16) and after the obvious identifications, we may state:

THEOREM 2.1. Under the hypothesis (2.2),

Note that subQ is real, since Q = Q*. Hence -1 is a real function and,
= 1, as it should.

Assuming that

is independent of

we can derive from (2.22), using the argument given in [ 11 ] (see for example
[10]), the following result:

THEOREM 2.2. Under the hypothesis of Theorem 2.1 and 2.23, let

Then thei"e exists R &#x3E; 0, independent of k, such that the .spectrum of Q i.s
contained in the union of the intervals centered at Vk and radius R/k.

3. - Poisson’s formula

In this Section we study the singularities of
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and compute its principal symbol at the points (T, -1) where T belongs to LQ,
the set of periods of the closed bicharacteristics of q2, of energy one, that is

We shall assume throughout that: 
° 

(3.3) T is an isolated point of LQ.

Using our knowledge of U, from Section 2, we can give an interpretation
of S’Q = Trace U. If A denotes the diagonal map

and x denotes the projection then we get

where A* is the pull-back of functions functions on R x 

suitably extended to certain distributions, and 1r* is the pushforward, i.e., the

integration over x.
We recall (see [ 11 ]) that the singularities of SQ occur at £Q. If the Hq2

solution curves of energy one and period T form a "nice" submanifold we
can obtain more precise information on the singularity at T. We first need a
definition (due to Bott, [3]): 

DEFINITION 3.1. Let M be a manifold and let ~: M ~ M be a

diffeomorphism. A submanifold Z c M of fixed called clean

if for each z e Z, the set of fixed points of Tz (M) equals the
tangent space to Z at z.

’ 

It can be shown that if M and Q are symplectic, Z possesses an intrinsic
positive measure (see [8]).

If we want to write SQ as a Fourier integral operator, near T, we must
choose first a description of exp(-itQ) by means of the classical generating
function:Any point of AT has a neighborhood of
the form I1 x rt, with I1 (resp., rt) a conic open neighborhood of 
(resp., of in «;~ç B 0 (resp., in 7i)J§~ ) 0) such that AT n (I1 x rt) is

the graph of We remind that, here, to say that r~ is conic
means that

By homogeneity and compactness, we can select a finite open conic covering,
of ~.~~y,~~ B 0 such that X covers AT. Let 77),

0  k  rrL, be a Coo function with conically compact support contained in rY,
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positive-homogeneous of degree zero with respect to (y, r~) such that 1

in ~~)B0. Of course,

We consider the operator The wave front set of its

Schwartz kernel is contained in the set ~T (rY ) x (r§)’ where (r§)’ = { (y, r~ ) E
~~B0: (y, -1]) E r} }. By eventually shrinking r§ (this might of course force us
to increase the number m) we can make symplectic changes of coordinates in
r§ and respectively, in such a way that (see [1]) there exists a function

defined in the xn-projection of x r} which is homogeneous of
degree two with respect to (x, ~ ), such that is given by (,5~~ , r~ ) -~ (x, 
and det 0, that is Sk(X, 1]) is locally the generating function for the

canonical transformation Next, we take S k, for t near T, as the solution of
the Cauchy problem

The symplectic changes of coordinates alluded to above can be generated
respectively by mappings of the form:

the other coordinates being left fixed, which by a particular case of a general
result of I. Segal (see [13]) on the action of the metaplectic group by conjugation
over the pseudodifferential operators, corresponds to quantizations by Fourier
transformations with respect to yj and xi respectively. Hence, if lk denotes
some partial Fourier transformation with respect to (y, x), and the superscript
"w" indicates that we are using the Weyl calculus, the Schwartz kernel of the
operator

can be represented in the form:

where bk admits an asymptotic expansion (see [10]):
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with 77) homogeneous of degree -2a with respect to 
Since, evidently,

we may focus our attention on Uk(t, x, y).
In order to compute the principal symbol of 5’A at (T, - 1), we may choose

the function g(t) = T - t which evidently satisfies g’(t) = - 1, g(T) = 0, and take
a cut-off function 0(t) E O(T) = 1, supp 0 C ]T - ~, T + ~ [, and

supp 0 n ,~Q = {T}. We obtain

We recall here an extension of the theorem of the stationary phase, due to Colin
de Verdière, [6].

THEOREM 3.1. Let Y be a riemannian manifold. Let a E Co (Y) and ~ in
C°°(Y) be a real-valued phase function. We assume that the critical points of
ø in the support of a, make up a compact connected submanifold W of Y of
codimension v and that W is a non-degenerated critical manifold for 0 (i.e.,
for all yEW, the hessian 0"(y), restricted to the normal space Ny = TyY/TyW ,
is a non-degenerated quadratic form. We denote by u its signature). We get the
following asymptotic behavior:

where p(p) admits for p ---~ oo an asymptotic development of the form:

with

where dwy is the measure induced by the riemannian structure over W.

We apply Theorem 3.1 to (3 .11 ), where the phase
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and the amplitude is 
The main contribution to (3.11) comes from the critical points of the phase

function Øk, contained in the support of the amplitude. These critical points are
given by the equations

They are in bijection with the points of C’ of the form

and, according to the definition of C’, this means that t E ,CQ; but t E supp 0
and, consequently, t = T.

We denote by Z’ the set of fixed points of (DT and by Z the intersection
of Z’ with the cosphere q2 = l. It is obvious that Z is in bijection with the set

of critical points of Ok- We shall decompose Z into its connected components:

We can now state:

LEMMA 3.1. non-degenerated critical manifold for Øk if and only
if each Zj, j = 1,..., 7-, is a clean fixed point submanifold of T*(R n).

Proof. The hessian of Ok restricted to the tangent space of T*(,-’~1) is given
by the matrix

evaluated at points (T, x, r¡) E L4Jk . Using formula (4.12) of [7], we can prove
that the bilinear symmetric form defined by (3.19) is similar to the bilinear

symmetric form (see [7] for its definition)

where H is the "horizontal 0}, V is the "vertical space"

~ (s~~; Sx = 01 and A is the diagonal of T*(‘~n) x r~). From its definition we
derive that
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which shows that the nullspace of (3.19), at the point (T, ~, r~ ), is exactly the
set of fixed points of that is, the tangent space to Z at (x, r~ ), and
thus the lemma holds.

It can also be shown that ~~ is a clean phase function with excess dj in
a neighborhood of points (T, x, r~ ) with (z , q ) E Zj.

In order to simplify the notation, we shall assume temporarily that Z is
connected and, consequently, we omit the subscript j. Under the hypothesis of
Lemma 3.1., we may apply Theorem 3.1 to (3.11) and obtain

where dm is the riemannian measure induced from on 

At this point, we use the results and notations of [10] (see also (2.4) and
the arguments which follow it). Let Tl  To/2 (one may eventually diminish
Tt) and let

such that ]T - 6, T + 6[c Ih. One can then approximate, exp(-itQ), for t E Ih,
by the Fourier integral operator 0(h)), that is,

where the phase is given by:

and the amplitude bh is given by:

Moreover, by Lemma 3.3.1 of [10],
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The composition theorem (see [10], Theorem 2.5.2) yields:

where

with

and

where ao is given by (2.6). Let

The definition of Sk, (3.9), (3.25), (3.27), (3.28), (3.29) and formula 2.10.21 of
[10], imply that, in I

where a and 7 are defined in Section 2. We have used the fact that (see [10],
formulas 3.3.13 to 3.3.15):

The factor i-a in (3.30) is the Maslov factor picked up by the amplitude as in
[8], page 68. On the other hand, a simple computation shows that

and an argument similar to that which led to formula (6.16), in [8], yields:
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Substituting (3.30), (3.32) and (3.33) in (3.21) and taking into account
Lemma (4.4) in [8], we obtain that the principal symbol of SQ at (T, -1 ) is

equal to (recall that we are assuming that Z is connected)

REMARK 3.1. When Z is not connected, we evidently get:

where -Ij = denotes the average of sub Q over the periodic
bicharacteristic curve of q2 through (y, r~ ) and aj 0" - 1 ’) 1 (d./ - I ),
with sgn 0"IN(ITI x Zj). Furthermore, in case Z is connected it follows that

~(6~)(r,-l)~0 and, consequently,

To sum up we have proved the following theorem, analogous to Theorem
4.5 in [8].

THEOREM 3.2. Assume that the .set of’ periodic Hq2 solutions l)f’
period T is a union of connected submanijÓlds ..., Zr n the cosphcre

= 11, each Zj being a clean fixed point ,set pf d_j. If’ T l.s

an isolated point of’ LQ, then there is an interval around T in no other

period,s occur and on .such interval we have

whej-e

with

and
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From Theorem 3.2 we can obtain, as in [8], the residue formula

generalizing (1.8).

4. - Geometrical interpretation of the principal symbol of exp (-iTQ)
and SQ (t)

We refer to the comments and notations of Section 2. We shall relate the
H6rmander index s(MO, M2; L’, LT ) (see formula (2.16)) with the Maslov index
of the closed bicharacteristic a, through the point Ao = (0, -q2(Y, r~); y, r¡; y, -r~)
of C’ (here we identify 0 with T), and also with the Maslov index of
t ~ where V is the vertical space of at 

Let us consider the following picture:

We recall that L’ is a curve of lagrangian subspaces connecting Lo to
LT , which is transverse to both the vertical M~ of T * (:~~ x ~~ n x ~~ n ) and to the
tangent space M2 to C’ at ~(t). Consider the closed curve starting at LO, given
by Lt, followed by the segment from LT to Lo transverse to M° at ~o. The
latter is contained in the set of lagrangian subspaces over Ao. We obtain in this
way a curve that over each point j (t) is transverse It is not difficult to
see that the Maslov index of these two curves must be equal; in fact, we may
choose continuous vector fields ei (t) and i = 1, ..., 2n + 1, such that these
curves are given by

where fez(t), fi(t)~ is a symplectic basis of the tangent space to
at We define:
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This is a homotopy in x jlB~1)) between H(t, 0) = Lt and

H(t, ~r~2) - ~ (t).
We shall look now at the following picture:

We observe that the first curve from left to right is transverse to the vertical

space M~ at each t; since the latter is identified, in any coordinate system in
x ..~~ n coming from a coordinate system in :~ x J( n with

a fixed lagrangian subspace (actually i :~B 2n+l), we conclude that the first curve
from left to right in (4.2) is contained in Because this set is simply
connected., it follows at once that the Maslov index of the alluded curve equals
zero. We then get that the Maslov index of the middle curve is equal to the
Maslov index of the third curve and hence to the Maslov index of # . Recalling
the definition of UC (A), we have shown that

which together with (2.21), proves (2.18).

Appendix

Consider the harmonic oscillator Qo = )(-8) + x2) and denote (after
identifying ’~ 2 with the wave front set of the Schwartz kernel U(t, x, y)
of by

The tangent space at A E A is generated by the vectors
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where

e- tt = cos te2 - sin t f2 and similarly for te-" and ie -itz. We remind that the
symplectic form wn in Cn is

Let

be the lifted bicharacteristic curve of i-’ at + Qo through the point (0, -1 ; 1 + i;
1 - i) c A and consider the curve p(s) of lagrangian subspaces:

It can be shown that

where
and

Let

We easily verify that

Since H(u, s) defines an homotopy of lagrangian curves between

and the curve s H (0, s) can be symplectically transformed into the curve:

the Maslov index cx of p(s) is equal to the intersection number of u . In order
to find this intersection number, we choose a fixed lagrangian subspace, say

and consider the fundamental cycle A1(i_~3) _ ~ N E n Z* - - I = 11. It

is easy to see that a intersects A I (i - 3) at (f 1, 62,63), i.e., precisely for s = "’ 

2
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and 327 . Take L such = 0 , for instance, L2 2

may be chosen equal to (el, f2 - e2, f3 - e3). A straight computation gives (we
use the notation of [7])

where L is the unique linear mapping such that

Therefore,

The derivative of this function at both s = ’~ , 31f 
is equal to 1, which allows

2 2 
q

us to conclude the Maslov index a is equal to 2.

REFERENCES

[1] V. ARNOLD, Les méthodes mathématiques de la mécanique classique, Editions Mir,
Moscou, Traduction française (1976).

[2] K. ASADA - D. FUJIWARA, On some oscillatory integral transformation in L2(Rn),
Japan J. Math., 4 (1978), pp. 299-361. 

[3] R. BOTT, On the iteration of closed geodesics and the Sturm intersection theory,
Comm. Pure Appl. Math., 9 (1956), pp. 176-206.

[4] L. BOUTET DE MONVEL, Opérateurs à coefficients polynomiaux, espace de Bargman
et opérateurs de Toeplitz, sem. Goulaouic-Meyer-Schwartz 1980, exposé n° II bis.

[5] J. CHAZARAIN, Formule de Poisson pour les variétés riemanniennes, Invent. Math.,
24 (1974), pp. 65-82.

[6] V. COLIN DE VERDIÈRE, Spectre du laplacien et longueurs des géodésiques périodiques
II, Compositio Mathematica 27, (1973) pp. 159-184.

[7] J. J. DUISTERMAAT, On the Morse index in variational calculus, Adv. in Math. 21,
(1976) pp. 173-195.

[8] J. J. DUISTERMAAT - V. W. GUILLEMIN, The spectrum of positive elliptic operators
and periodic bicharacteristics, Invent. Math. 29, (1975) pp. 39-79.

[9] V. W. GUILLEMIN - S. STERNBERG, The metaplectic représentation, Weyl operators
and spectral theory, J. Funct. Anal. 42, (1981) pp. 129-225.

[10] B. HELFFER, Théorie spectrale pour des opérateurs globalement elliptiques, Notas
de Curso n° 19, Universidade Federal de Pernambuco (1981). See also Astérisque,
112 (1984).



163

[11] B. HELFFER - D. ROBERT, Propriétés asymptotiques du spectre d’opérateurs
pseudodifferentiels sur Rn, Comm. in Partial Differential Equations 7, (1982) pp.
795-882.

[12] L. HÖRMANDER, Fourier integral operators I, Acta Math. 127, (1971) pp. 79-183.

[13] L. HÖRMANDER, The Weyl calculus of pseudodifferential operators, Comm. Pure

Appl. Math. 32, (1979) pp. 359-443.
[14] F. TREVES, Introduction to pseudodifferential and Fourier integral operators, Plenum

Press, Vol. 2 (1980).

Department of Mathematics
Universidade Federal

de Pernambuco

Brazil


