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On Stable Solutions of

Quasilinear Periodic-Parabolic Problems

E. N. DANCER - P. HESS

Introduction

Recently Matano [14] proved that if v and v are time-independent strict
sub- and supersolutions of an order-preserving nonlinear semigroup T(t) and if
v  v, then there is a stable stationary solution w between v and v . (Of course
there are some technical assumptions as well.) This result is very useful as it is
one of the few general techniques for producing stable solutions. In applications
these are by far the most important stationary solutions. Matano [13,15] and
Matano and Mimura [16] have applied these ideas to a number of weakly
nonlinear second order elliptic equations and certain systems of such equations.
In this paper we use related arguments to prove a corresponding theorem for
the existence of stable T-periodic solutions of a single quasi-linear second order
parabolic equation having T-periodic coefficients. For such equations we prove
a natural analogue of the result of Matano. There are two ways this problem
could be attacked: one can work with the Poincare map or one can proceed
more directly. Either approach can be used, but we prefer the second one.
We remain entirely within the framework of sub- and supersolutions and the
monotone iteration schemes they induce. It seems that for quasilinear problems
the employed iteration schemes were not known before; in the elliptic case the
setup of these schemes has been suggested by the result of Hofer [10].

We also deduce the existence of a stable stationary solution in the
autonomous case by showing that, in this case, a time-dependent periodic
solution must be unstable. The stability proved in Matano tends to be a stability
in very strong norms. We show certain autonomous cases that this implies
stability in much weaker norms. This depends upon work of Weissler [21]. It
seems probable that this result can be extended to apply to much more general
situations.

We further prove a variant Matano’s result where we do not require that
v and v be strict sub- and supersolutions and obtain a solution stable with

respect to perturbations of the initial conditions in the order interval [v, v]. This

Pervenuto alla redazione il 7 Febbraio 1986.
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is sometimes useful because it may happen that stability relative to the order
interval is the natural stability in a particular situation. We show this in our

application to a type of Fisher’s equation occurring in population genetics.

1. - Statement of the results

Let Q (N &#x3E; 1) be a bounded domain with boundary 8Q of class

be a uniformly parabolic linear

differential expression with

We assume that, for fixed T &#x3E; 0, the coefficient functions ajk = akj and ao are
in the real Banach space E := { w E C~~~~2 (SZ x :~~ ) : w is T-periodic in t } . Further
let (3 e be an outward pointing, nowhere tangent vector field on

8Q and b e C1+/J(ðOo), b - &#x3E; 0. Define the boundary operator B = B 

either by Bu = u (implying Dirichlet boundary conditions, abbreviated DBC),
or by Bu = + bu (implying Neumann or regular oblique derivative boundary

conditions, abbreviated NBC). Finally, denote by (x, t, ~, r~) a generic point of
x F&#x26; and let the continuous function g: 0. x ~~ N+2 such that

is T-periodic in t and of class C~‘~~~2(S~ X ,~~ ) in (x, t) uniformly for

(Ç,11) in bounded subsets of R x 1.. N, , and such that 2013 and ( i = 1,..., &#x3E;. N )8£ 8qj .

exist and enjoy the same properties as g. Moreover suppose there exists a

function c:~ 2013~ ~ such that

for every I
We consider the quasilinear periodic-parabolic boundary value problem

Problems of this type arise naturally, e.g. in population dynamics, if one looks
at the population density in a non-homogeneous medium and assumes that both
diffusion and growth rate are subject to seasonal variations. In such situations
stable periodic solutions are of particular interest. Here we define the solution
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u of (*)‘ to be stable provided to arbitrary - &#x3E; 0 there exists 6 &#x3E; 0 such that,
if vo E satisfies

then for the solution v of the associated initial boundary value problem with
v(., D) = Vo we have  E (where := {w e =

0)). By a solution of (*) we mean a function u belonging to 

DEFINITION. The function v e [0,T), where

T &#x3E; T, is called supersolution for problem (*) provided

A supersolution is a strict supersolution if it is not a solution. Correspondingly
subsolution and strict subsolution are defined by reversing the inequality signs.

It is well-known that between given order-related sub- and supersolutions
v  v of (*) there exist a minimal solution u and a maximal solution u in the
order-interval [v_, v] ([2, Thm. 1.2]).

THEOREM 1. Suppose v_and v are strict sub- and supersolutions of (*),
respectively, with v  v in 0 x [0, T]. Then there exists at least one stable
solution u of (*) with v  u  v.

With minor modifications in the proof we also get

THEOREM 2. Suppose u 1 and U2 are solutions of (*), u 1  u2 . Then there
exists at least one solution u with uj I  U  U2, which is stable with respect to
the order interval [u 1, u2] .

(This means that we only admit initial conditions vo E satisfying
u1 (.,0) :S vo C u2(·~ ~)~)

Next we consider the quasilinear elliptic boundary value problem

where A = A ( x, is a uniformly linear differential expression of the form
(1.1) with time-independent coefficient functions belonging to and

g : 0. x ~~ N -~ :i~ is a function as above, but independent of t. The

following result are consequences of Theorems 1 and 2.
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THEOREM 3. If v and v_ are stf-ict sub- and supersolutions of (**),
respectively, with v  v in Q, there exists at least one stable solution
u : v_  u  v, of (**). 

’

THEOREM 4. Suppose uj I and U2 are solutions of (**), u j I  u2 . Then there
exists at least one solution u of (**) with ul 1  U  U2, which is stable with

respect to (u 1, u2] .

The paper is organized as follows. In Section 2 we construct the iteration
schemes needed in Section 3 for the proof of Theorems 1 and 2. In Section’4
we discuss the autonomous case, while in Section 5 we obtain a better stability
result. In Section 6 we give an application to the following model equation
in population genetics, a spatially inhomogeneous periodic version of Fisher’s
equation.

Here a and s are functions of the space E, a is positive on Q x 7i, and n
denotes the normal to It is assumed that h E C’ (~~ ) satisfies h(0) = = 0,
h ( ~) &#x3E; 0 for 0  ~  1, and h’(0) &#x3E; 0, h’ ( 1 )  0. Moreover the function
s is assumed to change sign in Q x [0, T] (selective advantage/disadvantage).
Problem (* * *) admits the two trivial solutions 0 and 1, and only solutions
u : 0  u  1 are of practical interest. From Theorem 2 it follows that (* * *)
has always such a solution which is stable with respect to [0, 1]. We study the
stability question for (* * *) in more detail by employing the notion of "principal
eigenvalue", as it has been introduced for periodic-parabolic problems in [4,12]
and in particular [3]. (For a discussion of the existence of nontrivial equilibrium
solution of (* * *) if a = 1 and s is independent of t, cf. [5,19,20].).

2. - A monotone iteration scheme for quasilinear
periodic-parabolic problems

Besides E, we employ in the following the real Banach space F/1 {w E
0 on 8Q x a:. and w is T-periodic in t } , 0  1,

ordered by the cone of pointwise nonnegative functions. We use the standard
notations for positivity in an ordered Banach space with positive cone P : w &#x3E; 0
iff w E P, w &#x3E; 0 iff w &#x3E; 0 but w =I 0, and w » 0 iff w E int(P).

Without loss of generality we may assume that the coefficient function
of order zero of A, ao &#x3E; Eo &#x3E; 0 x ~~ . It is proved in [3] (at least
for DBC, for NBC the proof is similar) that the realization L in E of the
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differential expression ,G subject to the boundary- and periodic condition, has
domain D(L) = F~ and is bijective: F~ --~ E. Since L E £(FJ1’ E), it is a closed

operator in E with compact inverse. Moreover L -1 : E -+ J~, (in case of DBC)
and L’’ : E - E (in case NBC) is strongly positive by the parabolic maximum
principle. We set QT := Qx ]0, T[.

LEMMA 2.1. For every b E E there exists a unique solution u E F,~ of the
equation

PROOF. Note that the constants ±M, where M = Co Illbllc(Q T)’ are sub-
and supersolutions of problem (2.1), respectively. Hence by [2, Thm. 1.2] there
exists at least one solution u of (2.1 ), with M. Now [ 1, Thm.
2.4] implies that 

QT) -

In order to prove the uniqueness of a solution of (2.1), suppose u 1 and U2
are solutions and set w : u2. Then w and Lw = bi7(ui + U2) - Vw.
Thus Lw = 0, where L := L - + U2)’ V. The maximum principle and the
periodicity of w imply w = 0.

Let the function g : S2 satisfy the hypotheses formulated in
Section 1. By G(u, z) we denote the composition operator corresponding to g,
depending on u E C(Q x I) and z E C(S2 x ~, , ~~ N), that is, G(u, z)(x, t) . :=
g(x, t, u(x, t), z(x, t)). Obviously u is a solution of (*) having the desired

regularity properties iff Lu = G(u, Vu).
To g we associate a function ~y: Q x - J. defined by

and set

Then both functions

and
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are strictly monotonically increasing in ~ (for fixed (x, t,,q)), and enjoy the same
smoothness - and growth properties as g. Let H and r denote the composition
operators induced by h and i.

LEMMA 2.2. For given (v, r) E E x E there exists a unique solution
u = S(v, r) of

and S : E x E -~ F, is strictly increasing in both arguments.

PROOF. For M &#x3E; 0 sufficiently large, the constant function ±M are sub-
and supersolutions of problem (2.4). Thus [2, Thm. 1.2] implies the existence
of a solution of (2.4) M.

The uniqueness of a solution and the positivity property of the solution
operator S follow from the subsequent consideration. Let vi and ri (i = 1, 2) be
given elements of E, with v2 &#x3E; v 1 and r2 &#x3E; r I , and let u2 be the associated
solutions:

Then w := u 1 - u2 satisfies

Since

and

with (Holder-)continuous coefficient functions bo » 0 and bj, and similarly

we conclude that

where It follows from (2.5) and the assumptions

on vi and ri that w  0 and w « 0 if either v2 &#x3E; v l or r2 &#x3E; ri.
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Since sub- and supersolutions to problem (*) need not be periodic
functions, we have to use a separate argument in the first step of the iteration
schemes. For that we need

LEMMA 2.3. Let v and r be functions in Ci,,i,12 (QT). There exists a unique
solution

and u = S(v, r) depends strongly increasingly on both arguments.
PROOF. The existence follows similarly as in Lemma 2.2; we employ the

argument of [2, proof of Prop. 5.1 ] to show that the Poincare operator n is
a compact self-map of the order interval [-M, M] in 0  v  ti. A

fixed point of n is a solution of (2.6), and its regularity follows by [2, Lemma
4.2 and Remark 4.3]. The monotonicity of 9 - and hence the uniqueness of
a solution of (2.6) - is proved in the same way as in Lemma 2.2, using the
parabolic maximum principle [17, pp. 173-174 and the Remark on p. 174].

Let now v  v be strict sub- and supersolution of problem (*), respectively.
We set up the iteration scheme as follows:

the (by Lemma 2.3 unique) solution of

By the regularity properties of v l we can extend vl 1 to a function (again denoted
by v I) in E. We then define vn (n &#x3E; 2) by

vn E FJl is uniquely defined by Lemma 2.2.

LEMMA 2.4. (i) The sequence is (pointwise) strictly monotonically
decreasing in SZ and convergent in Fv (0  v  ti) to the minimal solution
u of (*) in L~,v].

- 

(ii) The functions vn (n &#x3E; 1) are strict supersolutions of (*).

PROOF. (i) By Lemmas 2.3 and 2.2 the sequence is strictly
monotonically decreasing and bounded below by Q, and thus converges
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(pointwise) to a function u &#x3E; v. We write

where

 const., Lemma 2.1 implies that const.

By compactness of the embedding Cl+,O,( 1+,o)/2 (QT) C C1,O(QT) we infer that
in C1,O(QT)’ Hence the sequence ( f n) converges in C(QT) - and thus

in with p &#x3E; N - to some element f. By [10, p. 342] and a standard
argument (e.g. [1, proof of Thm. 2.4]) we conclude that vn - u in 
and hence (by continuous embedding) in C’1+~,(1+,~)/2(QT). By continuity of the
composition operators (*) it follows that f in Cvw/2(QT) for 0  v  ~,
and consequently in Fv. By passing to the limit n --+ oo in the defining
equation (2.7) we see that u solves (*). That u is the maximal solution in [v, v]
follows by well-known arguments.

Assertion (ii) is an immediate consequence of the positivity results in
Lemmas 2.3 and 2.2.

If we start the iteration similarly at the strict subsolution E, we get an

increasing sequence (vn ) of strict subsolutions converging to the minimal solution
v_ in [v_, v].

3. - Proofs of Theorems 1 and 2

For the proof of Theorem 1 let v  v be strict sub- and supersolutions of
(*). With the iteration schemes introduced in Section 2 we have

,where the vn and vn are strict sub- and supersolutions lying in F, and converging
in Fv (0  v  ti) to the minimal and maximal solutions of (*) in [E, v],
respectively.

DEFINITION. We say a solution u of (*) is strongly stable from above if
there exists a strictly decreasing sequence (vn) of strict supersolutions vn E 
converging to u in Fp,/2’ Strong stability from below is defined analogously.

(*) Though claimed in various publications, it is not correct that a Nemytskii operator
G:G(u)(x)=g(x,u(x)), where is uniformly Lipschitz in ~ and CP in x, is a continuous mapping of

into itself (a simple counterexample has been constructed by A. Kennington). It is however
continuous: for This weaker result suffices for our purposes.
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The minimal and maximal solutions u and u are thus strongly stable from
below and above, respectively.

REMARK. Our notion of strong stability differs slightly from others (e.g.
Matano’s). This is however only of technical interest here. Since »

u(., 0) in CB(S2) by the strong maximum principle, the comparison theorem
guarantees that strong stability from above implies stability from above.

Let 5 := ju : u = solution of (*) with u  ~}, and Qonsider the subset
51 := tu is strongly stable from below}, provided with the natural
ordering in C(Q x R). Clearly u E S1.

LEMMA 3.1. 51 is inductively, ordered: every totally ordered subset T c S,
has an upper bound in Si.

PROOF. Let T c Si be totally ordered. The assertion is clear if T contains
only finitely many elements. In the other case set u := sup v (pointwise). Since

vET

T is totally ordered, we can select a sequence (vn) in T converging pointwise
increasingly to u, hence converging in Lp(QT) and therefore in (cf. the
proof of Lemma 2.4). We infer that u E S. In order to show the strong stability
of u from below, we note first that in FJl/2 by the strong maximum
principle. To each vn we choose a strict subsolution 1  vn,

Then 4Jn / u in Fp,/2, which proves that u E S1.

By Zom’s lemma 51 has a maximal element u 1. Let now 52 := 1

u &#x3E; ul, u is strictly stable from above}. Since u E S2, we conclude by the same
argument that S2 has a minimal element U2- Obviously

We distinguish between two cases.

Case A: If u I = u2 = : u, then u is strongly stable from above and from
below, and hence stable. In this case Theorem 1 is proved.

Case B: ul I  u2. We first observe that there exist neither strict sub- nor
strict supersolutions of (*) in ~2]. In fact, assuming for example the existence
of a strict subsolution V), we could construct a solution w : u 1 
iteration from the subsolution 0. Thus w would be strongly stable from below,
contradicting the maximality of u 1.

LEMMA 3.2. Let u 1  u2 be solutions of (*) such that there is no strict sub-
and supersolution in [Ul, u2] . Then there exists at least one solution U E]u 1, U2[ [
of (*).
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PROOF. Assume there is no solution of (*) in ]Ul, U2[. Let k : 
R I be a function satisfying the same smoothness - and growth assumptions as g,
T-periodic in t, and such that k(u, Vu) = 0 for all u in a F~~2 - neighbourhood
of u2, while &#x3E; 0 (note that u 1 « u2 in F,,12)- Consider the equation

Then u2 is a solution of (3.3), while ul is a strict subsolution of (3.3).
Hence there exists a solution w of (3.3), u 1  w  u2, obtained from u 1 by
monotone iteration vn / w in F~~2.

If W  u2, w can not be a solution of (*) by assumption. Thus w is a
strict supersolution of (*) since k(w, Vw) &#x3E; 0.

If w = u2, Vvn) = 0 for large n. The Vn are strict subsolutions of

(3.3) and hence of (*).
In both cases we arrive at a contradiction to the hypothesis of the lemma.

LEMMA 3.3. Let again u I  u2 be a solution of (*) such that there is
neither a strict sub- nor a strict supersolution in [ui, u2]. Set S := lu:u =
solution of (*) with u E [u 1, u2] } . Then S is totally ordered and connected in
C(QT), and u E S B stable from below, u E S B {u2} stable from below.

PROOF. (i) S is totally ordered: let u, u* E S, and assume they are

not order-related. Define w e E by w(x, t) := Then
u  w  u2 and Lu + r(u, Vu) = H(u, Vu)  H(w, Vu)  H(U2, Vu). Let u
be the solution of Lu + r(u, H(w, By Lemma 2.2, u ~: ~ ~ u2
in F,,, and similarly u* « u  u2. Hence w  u in E. We conclude that

Lu+r(u, Vu) = H(w, Vu)  H(u, Vu) and thus Lu  G(u, i.e. u E [ul, u2]
is a strict subsolution of (*). This contradicts the hypothesis.

(ii) 9 is compact in C(QT): this follows by the same arguments as in the
proof of Lemma 2.4.

(iii) S is connected in C(QT): suppose not. Since S is totally ordered and
compact, then there exist v,  v2 in 9 such that there is no solution in between.
This contradicts Lemma 3.2.

(iv) We can now identify 9 := {ue: ue = solution of (*), 1  0  2}. Let
us look specifically at the case of DBC, for NBC the proof runs similarly. Note
that 81  82 implies uel « ue2 in F, and hence UOI (., 0) « ue2 (·, 0) in CJ (0.). Let
1  8  2; we show the stability of uo from above. Given &#x3E; 0, there exists
61 &#x3E; 0 such that Itllo+hl - UOIlC(QT)  6-. We find 8 &#x3E; 0 such that Vo C 

uo(e, 0), and Ilvo -  6 imply uo(-, 0)  vo  U0-6j (o, 0). By
the comparison theorem and the periodicity of the solutions ue, the stability
follows.
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Since in case B the solutions ul and u2 are by definition stable from
below and above, respectively, all elements of S are stable solutions of (*).
This proves Theorem 1 also in this case.

The Proof of Theorem 2 necessitates only minor modifications: we set

u := := u2 and define the sets Si and S2 using strong stability from below
and from above only with respect to [Ul, U2]. Then trivially u G Si and u2 E S2-
The rest of the proof remains unchanged.

REMARK. If G is real analytic as a mapping C(QT), it can
be shown that, under the assumptions of Theorem 1, there is an asymptotically
stable solution u such that v  u  v. The idea here is to use the real analyticity
and bifurcation theory to show that there cannot be a totally ordered connected
set 9 of periodic solutions in [E, v-1. Matano’s result [14] can be similarly
improved if the equation for the stationary solutions is real analytic between
suitable spaces.

4. - The autonomous case "

In this short section we prove Theorem 3 and 4. We assume that ,~ and

g are independent of time and prove that the stable periodic solutions we have
constructed are stationary states, that is, time-independent solutions.

Let v and v be time-independent strict sub- and supersolutions of problem
(*) such (though the time-independence is not really necessary). We
show that any stable solution u of (*) with v  v is in fact an equilibrium
solution. This obviously suffices to prove Theorem 3. Theorem 4 can be proved
by similar arguments.

It is convenient to work in this section in the space X := Lp(Q) with
p &#x3E; N. It is well-known (e.g. [6, p. 101]) that A:

generates a sectorial operator A in X with domain D(A) = being
continuously inbedded in Solutions u of our problem are classical
solutions and hence they are mild solutions of our parabolic equation in X
(in the sense of Browder, e.g. [7, p. 55]). In particular, it follows from [7, Thm.

3.5.2] that c X’ for each t &#x3E; 0, and that t ~--~ au. is locally3.5.2] 
at 

(., t) E Xa for t &#x3E; 0, and t 
at 

(., t) E 
_ 

IS 

Holder continuous (here we choose a e]0, 1[ [ such that X" C Thus,

using [7, Lemma 3.3.2] we can deduce as in [7, Lemma 8.2.2] that w = aii isg[’ ] 
. 

[’ ] 
at

a T-periodic solution of the linearized equation. In other words, w is a solution
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of the linear periodic-parabolic boundary value problem

where

Note that, since u is T-periodic in t, w must change sign in Q x R provided
u is not constant in t. It is known [3, Thm. 1] ] that the eigenvalue problem

has a real (principal) eigenvalue A1 1 such that all the eigenvalues of (4.1 ) lie
Re A &#x3E; and such that the eigenspace corresponding to a 1 is

one-dimensional and spanned by a positive eigenfunction.Now suppose u is not

constant in t. Since w = (9ii changes sign and corresponds to the eigenvalue zero,at , g g p g

A, 1  0. Let z &#x3E; 0 be the (principal) eigenfunction of problem (4.1 )corresponding
and let U = be the evolution operator associated with the linear

initial value problem

in X (where A’ is induced by A’). It is well-known (e.g. [2, p. 25]) that

U (t) := u (t + T, t) is a compact positive irreducible operator in C(Q). Since

and since the integral on the right is a negative element of as a 1  0, it
follows that the spectral radius spr &#x3E; 1 by the theory of positive compact
operators in ordered Banach spaces. Hence &#x3E; 1 ~ Q and we
can apply [7, Thm. 8.2.4] to deduce that there exist (mild) solutions v of the
original nonlinear initial value problem such is small

is the natural norm in Xa = D(Aa)), but v(*, t) is not close to the
set r := s), s E [0, in the Lp(K2)-norm for some large t. (To see that the
solution v(., s) is not close to r in the Lp-norm rather that in the Xa-norm, we
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use that the Lp-norm and the XO-nonn are equivalent on a finite-dimensional
space and examine the proof of [7, Thm. 8.2.4].) Now, since the embeddings
Xa c C (Q) and c Lp(Q) are continuous, this implies that u is not stable
in the original norms. Thus, if u is stable, it must be independent of t as

claimed.

REMARK. 1. The above argument actually shows more, namely that

orbitally stable periodic solutions u of the autonomous problem (*) are stationary
states.

2. It is possible to give a direct stationary proof of the existence of a
stable solution of problem (**) by using a time-independent iteration scheme.
Alternatively (and this applies to much of this paper) one could work in Sobolev
spaces rather than in Holder spaces and obtain our results under slightly different
regularity assumptions.

5. - An improved stability result

In this section we concentrate on the semilinear elliptic equation (**) with
Dirichlet boundary conditions. The solution we have constructed in Theorem 3
is stable only in a very weak sense in that changes of initial data
imply that the solutions of the initial value problem are C(Q)-close for the later
time. In this section we show that one can sometimes deduce a much better

stability property, namely stability with respect to small Loo(Q)-changes of the
initial values. Our assumptions are rather strong and it seems likely that they
can be considerably weakened.

We thus assume that the equation in autonomous, and that g is independent
of Vu. By a solution of the initial value problem satisfying u(., 0) = uo (where
uo C we mean here a function u E Loo([0, T’] x S2) for some T’ &#x3E; 0, u
satisfies the equation for 0  t  T’ and such that the map t H u(·, t) is weak*-
continuous in and norm-continuous in Li(Q) at t = 0, with u(., 0) = uo.
One readily deduces that t ~ u(e, t) is then norm-continuous in Lp(K2) at t = 0,
VI  p  oo. (This map can however not be norm-continuous in at t = 0

if uo is continuous in Q and uo(x) =I 0 on It is now easy to see that u is
a mild solution of the initial value problem in the sense of Weissler [21], and
we can argue as in [21] to show that there can be at most one solution in this
sense. (Note that our solutions are uniformly bounded and thus we do not need
the growth conditions employed in [21] to ensure uniqueness.)

Next we prove that there exists a solution in our sense. We can reduce
the problem to the case where our given stationary solution is the zero function.
Hence g (., 0) = 0 on SZ. Choose M &#x3E; By truncating g &#x3E; M, we
can use the results in [21] to obtain a solution u of our initial value problem with
g replaced by its truncation gM, which is norm-continuous at t = 0 in with
the correct initial condition. Suppose we can prove that this solution u has the
property that there exists - &#x3E; 0 such that e Q, t E [0,6r]}  M.
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Then the solution satisfies our original equation on ]0, e] and is weak*-
continuous in Loo(Q) at t = 0 (by the dominated convergence theorem). This
function can then be extended for t &#x3E; ~ as a solution of the original equation,
by standard results (since u(., e) E n 

In order to prove the existence of such an E- &#x3E; 0 we first note that the
solution mapping Weissler constructs in order-preserving. Thus it suffices to

assume that uo is a positive constant, without loss of generality. Moreover, it

suffices to prove the above estimate for the function 0 replaced by-K ç,
where the constant K is chosen such that gM(X, ~)  K ~, b’x E S2 and ~ &#x3E; 0.
(The point here is that, if we solve the initial value problem by the obvious
iteration on the integral equation, then each of the iterates becomes larger.) Thus
if u is the solution when gM(X, ~) is replaced by K~, then 0  u(x, t).
Hence we have reduced our estimate to the linear case. Now we have only to
show that U-(x, t)  uoeat on S2 if 0  t and a &#x3E; K. Suppose uo,n are non-

negative COO-functions with compact support in S2, such that  Uo in 0. and

uo,n - Uo in Since the linear initial value problem generates a positive
Co-semigroup on if 1  p  oo, it suffices to prove that uoeat
on S2 x [0, oo [, where un is the (classical) solution of our linear problem with
initial value UO,n- Since is a supersolution of this equation and un(·, 0)  UO

in Q, the result follows by the classical maximum principle.
To prove the stability in of the given solution (which is reduced

here to the zero function), we see from the positivity of the corresponding
semiflow West) (which follows from [21]) and from the known stability from
CJ (Q) to that it suffices to prove that, if vo is a small positive constant,
then where w is small in By the same comparison
arguments as in the previous paragraph we see that it suffices to establish
this assertion when g(x, ~) is replaced by K~. In this case the required result
follows from standard analytic semigroup theory since the evolution operator
is a continuous map of into W5’P(Q) n Wd,p(Q) and thus into col (- L2) if

p &#x3E; N. 
_

Hence we have the claimed stability in LOO(Q).

REMARK. If 2013 has polynomial growth in E, we even get stability from
8£

to for p large.

6. - A model equation in population genetics

We now turn to problem (* * *). Theorem 2 implies the following.

PROPOSITION 6.1. Problem (* * *) admits a solution u : 0  u  1 which
is stable with respect to [0, 1].

In order to be more precise we first investigate the stability of the trivial
solutions. Appealing to a somewhat more general situation, let £ be a periodic-
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parabolic differential expression as in Section 1, with 0, and let B = 2013.P P o 
9p

Then L 1 = 0. Suppose the periodic (in t) function g is independent of Au and

satisfies 0) = 0 t E Let m(x, t) := 09g (x, t 0), and let M E leE)gW(x,t,0)=0A (x,t)= 
a 

(x,t,o 
denote the multiplication operator by the function m. For Q E R we look at the
eigenvalue problem

in E. To each a there exists a unique principal eigenvalue A 1 = 1 (Q ) with

positive eigenfunction z = e F,. By the principle of linearized stability the
trivial solution u = 0 of (*) is asymptotically exponentially stable if A}(1) &#x3E; 0

and unstable if a 1 ( 1 )  0.

We list the properties of the function u ~ (cf. [3,8] for proofs under
DBC).

1. Ai(0)=0, with = 0) = 1.
2. a 1 is an analytic function of a, and also z : ~ ~ F~, can be chosen to

depend analytically on a (by the implicit function theorem).
3. a 1 is concave.
We introduce the quantities

and moreover

with strict inequalities provided m depends nontrivially on x E Q.

In order to derive and expression for the derivative 
dA1 

(0), we considerp da 
( ),

the operators Al (t) := A(t) + I in X = Lp (Q) and let s) denote the evolution
operator for the initial value problem
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in X. Set U 1 := and observe that U 1 is a compact positive irreducible
operator in the space C := C(SZ) with spr(u 1 ) = e-T ([2, p. 25]). By the Krein-
Rutman theorem there is a unique 0,, E C*, 0* &#x3E; 0, normalized = 1,
such that = e-To*. Let J : E --i be the linear functional defined by

PROOF. Differentiating the equation

at a = 0, we obtain (with

We perform the transformation q(t) := e-tp(t) to get

thus

Since q(T) = e-T q(0), we arrive at

The application of 0* to (6.2) gives the result.

As a consequence of the above listed properties of Ai I we have

PROPOSITION 6.3. Suppose N(m)  0  P(m). Then:
(i) if J(m)  0, there exists besides a = 0 a unique a I = a 1 (m) &#x3E; 0 such

that  0 and a &#x3E; ~ 1;
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(ii) if J(m) &#x3E; 0, there exists besides o, = 0 a unique a 1 = (J 1 (m)  0 such
that = 0,  0 for u  Q 1 and u &#x3E; 0; (iii) if J(rrL) = 0, (J = 0 is
the only zero and 

We now apply Proposition 6.3 to the model problem (* * *). For the
nonlinearity g(x, t, ç) := s(x, t)h(~) we have

and recall that &#x3E; 0, h’(1)  0.

Assuming that N(s)  0  P(s), we conclude:
(i) if J(s)  0, the solution 0 is stable if Q 1 (mo) &#x3E; 1 and unstable if

 1; the solution 1 is always unstable;

(ii) if J(s) &#x3E; 0, the solution 1 is stable if 61(ml) &#x3E; 1 and unstable if

 1; the solution 0 is always unstable;

(iii) if J(s) = 0, both trivial solutions are unstable.
In these three cases, if both trivial solutions are unstable, we can construct

strict sub- and supersolutions v  v in ]0, 1 [ (cf. [18, p. 991 ]). Theorem 1 then

guarantees the existence of a stable periodic solution between.
If N(s)  P(s) but P(s)  0 or N(s) &#x3E; 0, either the trivial solution 0

or 1 is stable. The same is true if N(s) = (Then is a linear
function and A 1 ~ 0.) If = P(s) = 0, we are in an exceptional situation since

0, for both weights mo and rni. In this case we search for spatially
constant solution u = w(t)1 of (* * *) and reduce the problem to the ODE

in :~3 , with w being T-periodic. It is easily seen that for each initial condition
wo [ for t = 0, the solution w of (6.3) is T-periodic, and all the

corresponding solutions u = w I are stable solutions of (* * *) by the comparison
theorem.

The full force of Theorem 2 is needed if N(s)  0  P(s) and 0" 1 (mo) = 1

or 0" I (m 1) = 1. 
’

REMARKS 1. Looking at the nonlinear eigenvalue problem Lu = ish(u)
c R) associated with (* * *), if h e C3 and  0, we have bifurcation to
the right of an unbounded continuum of positive solutions (’~,u), from the line
x 101 of trivial solutions, at The continuum lies entirely in the
strip ]0, oo[x]O, 1 [ of x F,~ . In the neighbourhood of (0" 1 (mo), 0) the nontrivial
solutions are stable. A corresponding result holds for the line ~~ x {1}. (See
[19] for a proof in the stationary case.)
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2. If Q is convex, a = 1 and N(s) = P(s) (i.e., s independent of x E SZ),
it follows from the result of [9] that stable solutions of (* * *) are spatially
homogeneous.
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