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On the Order of (1 it).

E. BOMBIERI - H. IWANIEC (*)

1. — Introduction.

Important for number theory, the problem of bounding the Riemann
zeta-function {(s) in the critical strip 0 < Re s < 1 stimulated a lot of work
on exponential sums of the type

M,

(1.1) > é(f(m))

M

where f(x) is a real smooth function on [M, M,]. Since {(s) can be well
approximated by finite sums

(1.2) >m, 8 =g¢ +it,

M

the sums (1.1) with f(x) = (2n)-'tlog # are of special interest. Three basic
techniques for bounding sums (1.1) are known (cf. [9]):

1) Weyl-Hardy-Littlewood method;
2) Van der Corput method;
3) Vinogradov method.

In this paper we develop a new method which uses a bit of each. of these
three techniques. Our main result is

THEOREM. For any t>1 and € > 0, we have
(1.3) (4 + it) = 0(t°*)
with @ = 9/56, the constant implied in O depending on & alome.

(*) Supported by the Institute for Advanced Study, Princeton, N. J. 08540.
Pervenuto alla Redazione il 19 Giugno 1985.
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The sharpest result hitherto proved was due to G. Kolesnik [6];

O = 139/858 — 0.162004 ... .

This was obtained by an extension of the Van der Corput method (expo-
nent pairs theory in several variables). Using computers, on the basis of
certain conjectures, S. W. Graham and G. Kolesnik [4] predicted that the
best constant one can ever obtain by that method is @ = 0.1618 ... while
we have @ = 9/56 = 0.16071 ....

The method works for general sums (1.1), so we carry out the arguments
in a relatively general setting until the end of Section 5 where we specify
f(x) = tlog x in order to use Theorem 4.1 whose proof is elementary. This
resgtriction would not be necessary if we had extended Theorem 4.1 to the
relevant form. But a proof of such a result would require the highly advanced
technique of the spectral theory of automorphic functions [2]. It was our
wish to avoid this at least in the most spectacular case of the sums (1.2).

Our method seems to work for the divisor problem as well. Since this
would require substantial modifications we do not claim any results.

The authors express their thanks to J.D. Vaaler for his helpful sugges-
tions concerning the proof of Lemma 2.3.

Notation and conventions.

e(z) = exp [2miz],
f's s f" denotes the derivatives of order 1, 2 and 3,
19 denotes the derivative of order j,

f = 0(9) means [f|<cg with some unspecified constant ¢, not necessarily
the same in each. formula,

f <g means f = 0(g),

f~ g means ¢ <f/g<c, with some positive unspecified constants ¢,, ¢,,
[#] = max {k € Z; k<ux},

o] = int {lo— k|; k2,

@/c means dfc where d is a solution of the congruence ad = 1(mod c¢),

MW indicates the end of a proof or it means the result is easy.
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2. — Basic lemmas.

In this section we present in a general setting some principles applied
throughout the paper.

LEMMA 2.1. Let N < M and o(x) be a real function such that |o'(z)| <2
throughout the interval [N, M]. For any complex numbers a, we have

»l AT .

> a, e(w(n))i<'

N<n<M

a,.l + 2n!2f'

N<n<M N<n<x

Proor. Follows by partial integration. m

LEMMA 2.2. Let M<N <N, <M, and a, be any complex numbers. We
then have

U2

<IK(0) > ane(fm)|do

M<m<M,

with K(0) = min {M,— M + 1, (=|0])~*, (=0)-2}, so the L,-norm of K(0) is
fK(o) a9 <3log (2 + M,— M).

Proor. The sum on the left-hand side is equal to

D> Gny(m)

M<m<M,

where yx(m) is the function whose graph is

1 — — —

(¥ [©¥+1] (V]  [Mi+1]

The Fourier transform of x(m) satisfies |f(0)|<min {N,— N + 1, (=|0])-,
(n6)-%}. This completes the proof. m

LEMMA 2.3. Let &P be a set of points p € R and let b(p), for p € P, be
arbitrary complex mumbers. Let 6y, ..., 6g, Ty, ..., Tx be positive numbers.
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Then we have

T, Tx

K
x\ -Tk ;l ' ¢
f f -ty < [] (2740 >pngw|b(p>b<pn

-1 —Tx |25l <8,

Proor. Let 6, T be positive numbers. There exists a function f(t),

t e R, such that
1 if jt|<T,
=10 it y>r,

and such that its Fourier transform f(u) has compact support in |u| <d
and

flo) =27 + 6.

Up to a change of variables, this is the well-known Beurling-Selberg func-
tion (for a full account of this and related functions we refer to the exposi-
tory paper by J.D. Vaaler [10]). Since

T, Tx oo =)
f Eb(p)e(p-t)l'dtl...dt,(<f...ffal(tl) o Foxlte) zb(p)e(p-t)l'dt, oo dtg
T - pe? o pe?

the result follows. m

LEMMA 2.4. Let & and % be two sets of points teRE and 1) € RE respec-
tively and let a(x) for x € & and b(Yy) for Yy € ¥ be arbitrary complex numbers.
Let Xy, ..., Xg, Yy, ..., Y be positive numbers. Define the bilinear forms

Ab; X) = Z Z lb(n) b(y")| ,
lve— 11,,{<("X,c)“ k=1,.., K

#0;9) = 2 3 la@)ar)

LeZ y'ex
|, — 2| <(2¥x)?

and
Ba,0; X,9) = > > a(r)by)e(x-y) .
re® ne¥
Imkf<x*= (vklgyk
We have

|%(a, 0; X, Y)|* < (2n* )KH(l + X, Y,)B(b; X)Z(a; 9) .
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PrOOF. We begin with the integral formula

z+s
(2.3) e(wy) — sn—n%tzlnéi) f e(ty) dt .

Put ¢, = (4Y;)* and for Y = (¥, ..., ¥x) €Y put

n=[I,

sin (2’7:31:’.'/1:)
80, for 1) with |y,|<Y,, we have
(2.4) lw(y)|<a®Y,... Y.

By (2.3), letting b*(y) = b(y) w(y) and T, = ¢, + X, we proceed as fol-
lows

zy+ & xpteg

iﬂ(a,b;x,g))l:‘g% a(z)f f (Dequ*(me(t-m)dtl...dtx

ol [ -

by Cauchy’s inequality. Here we have

T, Tk

<fJ‘ P |l2b*(x) e(t+y)

-T, —Tk |a:,,——t,,|<ek

f ”21 <2%e .. ex E Z la(x) a(z')|

la:,c—z,, <2ak

and

2 K
[f|5] <ller+ 6y 3 3 prw o))
) k=1 Ne¥ n'ed

lvs—v;<6s

for any 6, > 0, by Lemma 2.3. Finally taking . = (2X;)"%, by (2.4) one
completes the proof. m

The last result admits an obvious modification. Suppose that for some
K’s all @’ take integral values. Then the norms |y,| and |y, —¥;| can be



454 E. BOMBIERI - H. IWANIEC

replaced by |y,| and |y, — ;| respectively and we put Y, =1 for such
k’s. Such a modified form of Lemma 2.4 can in fact be deduced from the

lemma itself by an appeal to the inequality

la—b]<|a—b].

In the next five lemmas we prepare ourselves to appy Poisson’s summa-
tion to sums which are rather short. The arguments are delicate, though
standard. Being unable to quote sources precise enough, we provide proofs
in full detail. A reader experienced with the stationary phase method may
find his own proofs easier.

LeMmA 2.5. For y>0 we have

oo

f e(2* — 3ya) do = (6v/7)~2 exp [ni[4] o(— 2y°2) + O(y-1) .

0

ProoF. The integral is known as the Airy-Hardy integral, see for exam-
ple [6]. One can show that its asymptotic expansion is convergent for
y¥>1 giving the result. For 0 < y < 1 the assertion is trivial.

Let us give a direct proof for y>1. We have

@ —3yr = —2y¥2 4+ 3Vy(x —VY): + (r —Vy)* .

Hence
fe(m“— 3yx) de = e(— 2y¥/?)y1/? j e((y**(3t2 + 1)) dt
0 -1
= o(—2y*?)y**(I, + L) + O(y™)

where

1

I,= f e(y¥/2(3t2 + 1)) dt

]

and

1
I,= J' e(y2(3t2— 1)) dt .
(1]
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By a change of variable 3¢ 4 > = u, we get

4

I, = |e(y®*u)(6t + 3t2)~1du .
0
‘We have

(6t + 3¢%)~* \/—— + f(u),
with f(u) = ¢, + ¢, Vu + ¢;u + ..., f(22) analytic in |¢| <4, so

I, = e(y**u) 7 -+ O(y—2/?)

(]
-

it Bt

etye) T+ O

wl'

Similarly, we deduce that
I - 3/ 2y) — 0 —3/2
53 f oy ) =+ 0y .

Hence

(=)

f o(a— 30y) dw = 3 1/2y-1/4e<—2y3/2>f w2+ 0.
0
But

o

fe(u) w12 du = 2-12 exp [ni[4]
0

completing the proof. =

COROLLARY. For u>0, ¢>0 and h> 0 we have

fe (‘uws — % w) dr = (%‘uh)mexp [rei[4] e(— Qu—e (57%)8/2) ) (g) ,
0

the constant implied in O being absolute. W
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LEMMmA 2.6. Let u>0, ¢>1, 1<N < N,<2N and let 5(h) be the charac-
teristic function of the interval [3ucN?, 3ucN2]. For any real h# 0 we have

N,
-2 s e
N

+o (min {(,uN)“”, i _}) +0 (min {(,uN)"”,

h
g =

3uN
+ O(efr|7?)

3uNi—-

2 )

the constant implied in O being absolute.

Proor. This follows from Lemmas 4.2 and 4.4 of [9] and from the
Corollary to Lemma 2.5. N

LemmA 2.7. Let g(x) be the function whose graph is

1 — — —

/, AN

N—1 N N, N1

Suppose that either h << 2ucN* or h> 4ucN:. We then have

fg(w) e(;w’—%w) dx < ¢(uoN* + |h|)-1,

where the constant implied in < is absolute.

ProoF. By partial integration our integral is equal to

S Y [ WY R f
278 (3pcac2——-h) e(ya: e’ do <

because the derivative is monotonic in three subintervals. =

eg(x) Y ¢
(3,40902— h) ld"’ < ueNt 1 h|

LEMMA 2.8. For |h| > 4ucN} we have
h
fg(w)e(pxa—?m)dw<< (1 + uN2)e2h2,

where the constant implied in < 48 absolute.
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Proor. Our integral splits into 3 parts (use the formula from the proof
of Lemma 2.7) I,— I, + I,, say, where

__ bpuc? xg(x) s N 2 A2 hg
I, = o I((3ycx2—-h)2 e\pr’— -~ de < uc*N*h2,

by Lemma 4.3 of [4], and similarly

Ny+1
1 A% h
—_—— 2 ___ - 3 - 2 h—2
I, i (3,uw c) e(;zw c:c)dw<<c h,
N

Gathering these together three estimates one completes the proof. m

LemMMA 2.9 (Poisson’s summation). Let f(x) be a continuous function
compactly supported in (— oo, co) and let ¢, d be integers, c>1. We then

have
=5 2 5)()

where f(y) is the Fourier transform of f(x). m

Denote the Gauss sums

Ha,l;0)= 3 e(“dz“le).

d (mod ¢) 4

LEMMA 2.10. If ¢>1 and (a, ¢) = 1, then

al: .
e(—;z) G(a, 0; ¢) if I = 0(mod 2)
Ga,l; ¢) =
alr—1 - - .
e\=%"1 )G(a,a,;c) if 1 =1(mod 2)

and

|G(a, 1; 0)| < (2¢)V2. m
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3. — Incomplete Gauss sums.

Now we are ready to estimate the exponential sum

S(p; a,b50)= 3 0(M%3+%n2+gn)

N<n<N,
which can be regarded as an incomplete (perturbed) Gauss sum (mod ¢).
LEmMA 3.1. Let ¢>1, (a,¢) =1, c<N <N, <2N and 0 <u<N—=2 We
then have
3/2 a 2
]S(,u; a, b; 0)| < z 2(:i: 1)»([”0;&)—1/43 [2,[—1/2 (i) -+ g(ll_j—___}_") ]
3pucN* <R <3ucN; 3¢ c\ 2

+ 012 log N + urN-2),

the constant implied in O being absolute.

ProOF. We have
S(p; ay b5 ¢) = Zg(n)e(un“+%n2+gn)+0(1)

d: + bd
B () o

c n=d (modc)
1 h
=2 >G(a, b+ h; c)fg(w) e(,uws— c—w) dr + 0(1)
h
by Poisson’s formula. The terms with |[k|>16¢ contribute
K V2 K N2

by Lemma 2.8. The terms with || <16¢ and k¢ [2ucN?, 4ucN?] contri-
bute
Lce?logN + u e /2 N-2 K NV2log N + p-N-2

by Lemma 2.7. For the remaining terms with 2ucN2<h<4ucN: f we write

Ny
fg(w) e(}ws-— %w)dw = fe (,uxs-—%m)dw + 0(1)
N

and we appeal to Lemma 2.6. The leading term i.e. the term attached to
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d(h) gives rise to the main term while the total error is

-1
ez Y (1 + ¢h-! - min {(/AN)"”, 3yN2—%

2ucN* <h<4pcN}

2 R
+ |27
<uc 2 N2+ ¢'/2 4 (ueN)=2 4 ¢t log N < N2 log N

unless 16ucN%<1 in which case the summation over k is void and the
final bound remains valid. m

REMARKS. A sgimilar idea of using Gauss’ sums G(a, !; ¢) to evaluate
incomplete Gauss’ sums 8(0; a, 0; ¢) is applied in [3] in a different context.

4. — The distribution of certain fractions.

The problem considered in this section seems to be of independent
interest; thus the results obtained are given in the status of theorems.

Let A>1, C>1, 4, > 0, 4, > 0 and let #°(4,, 4;; A, C) be the number
of pairs {a/c, a,/c,} such that

(4.1) aa~A4, oe~0C, (a,0)=(a,6)=1,
a @

(4.2) . o < 4,

and

(4.3) lac —a,e,| < 4,AC .

THEOREM 4.1. We have
N (4y, Ay A, C) K (AC + A,4,A42C% + A2 A0 4 A, A% + 4,0%)(AC)*

the constant implied in < depending on ¢ and on the constants implied in
(4.1).

Our proof (by induction with respect to certain parameters) forces us
to consider a more general problem. For a given pair of relatively prime
positive integers r, s put

P(r,8) = {aJe; a~A,c~ C, (a, ¢) =1, a = O(mod r), ¢ = O(mod s)} .

Let #(4,, 4,; r, 8) be the number of pairs {a/e, a,/¢,} from P(r, s) satisfying
(4.2) and (4.3). We are going to prove, by induction on rs, the following
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THEOREM 4.2. For any r>1, s>1, (r,s) =1, A>1, C>1, 4, >0 and
A, >0 we have
M4y, Ay 1y 8)
<A(e)(rs)15(A0)¥(AC 4 4,4, 42 C* + A3 A2C* + A, 4 + A,0?),

the constant A(c) depending on ¢ and on the constants implied in (4.1).

On taking » = s = 1 one infers Theorem 4.1.
In order to prove Theorem 4.2 we need 3 lemmas. Denote d = (a,, ¢)
and d, = (a, ¢,), s0 (d,d;) =1 and (dd,, rs) = 1. Put

“lzal/d? “:a'/du
o = ¢/dy, ¢ =c/d,
thus
(4.4) (@ay, ce) =1,

a;=a=0(modr) and ¢ =c=0(mods).

Let My (4y, 45 7, 5) be the number of those pairs {a/e, a,/c,} pertaining
to d, d,. We have

{4.5) M4y, Az 7y 8) = E z /”adl(Au dy51,8) .
a1

@y @
By (4.4) it follows that L] and L] are SL(2,Z) equivalent, i.e.

1

@y x B\l|e
(4.6 H ¢ H
« B

for some 7 = s € 8L(2,Z). In fact v is in the congruence subgroup

4
I'(r, s) = {r; = O(mod r), y = O(mod s)}. All such z’s are given by

o+ @y ck ﬂ-—a,ak)
y+eack 0—ack

with k € Z, therefore one can find = (unique) with

{4.7) — Yo, <y<}ee.
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First we deal with the pairs which differ by a «trivial » transformation

T =(; g), i.e. a transformation with ofyd = 0. Let g (4y, As; 7y 8)
denote the number of these « trivial » pairs.

LEMMA 4.1. We have
(4.8) My (Ayy Ars 7y 8) L (rs) H(AC + A, 42 + 4,C?)

the conmstant implied in << depending on those implied in (4.1) only.
Proor. Consider the four cases:

Case 1: o« = 0. This implies fy =—1, =1, y=—1, ay=c=1,
r = ¢ =1 giving at most O(AC[rs) pairs. m

Case 2: =0. This is similar to case 1 giving at most O(AC/rs) pairs. W
Case 3: f = 0. This simplies a0 =1, a =1, 6 =1 and
a = a, ¢ = ¢(mod @) .
The pairs on the diagonal @, = &, ¢ = ¢ contribute
#{a, = a, ¢, = o < ACrs .
For the remaining pairs, we have by (4.3)
0< [c— o< 4, AC(add,) .
Hence the number of such points is estimated by

#{a,e,0,; @ =0(mod ), ¢ = ¢, = 0(mod 8), ¢ = ¢ (mod 2) ,

0<|c—a|< A0z} K Y A,AC025: K A,0r 1871,
a=0(mod r)

The total number of pairs from case 3 is < (4C + 4,0%)(rs)". W

Case 4: y = 0. This is similar to Case 3 giving a similar bound. ®

Now, we cound pairs which differ by a transformation v = (;‘ g) with

afyd #0. Let My (A, Ay; 1, s) denote the number of these pairs.
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LEMMA 4.2. We have
(4.9) :al(Au Ay 7, 8) L Ay(4y + As)(rs)"(AC)*e

the constant implied in <K depending on & and on those constanis implied in
(4.1).

ProOF. A simple computation shows that
(4.10) @y 0,— ac = aya® + 2Byac + fic® = yaa, + Bee, .
In particular one deduces from (4.10) that
@y o, — ac = Yaa,(Nod cq) ,
(@a)a, e— (@, 2y) ac = yaa,(Mod ccy) ,

@0, — 2, ¢ = y(mod ¢¢,) ,

and
r_z2 & E(‘f_‘i‘)ddl(modl) :
[z < L2 c ¢
Next, by (4.2) and (4.7) one gets
_|z) (2_@)dd,|]< a_a 44, < 4, aa,
L0y cey [/ ¢, [ [
thus
(4.11) ly] <4,ce, 4,02 .
This together with (4.10) yields
(4.12) 18] <4 aa, + O(AC-1) K 4,42,

Here was discarded the term 0(4C-!) because if it dominated then
A> |BIC> C, so 4,A%> |y|C-242> (242> AC! by (411). Now, by
(4.10) and (4.3) we infer

2y e B0 4 dd
(c) T2 Ty S eyl a0

whence
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where z,, 2, are the roots of the relevant quadratic equation (real or com-

plex):
1 —B
2= 1)
Here one factor is >3 [, —=2,| = ||~ |f/y|V?, thus the other one satisfies
a A, dA
4.13 —— 3 == .
1 o 1 Vi 40

The points «/c are (rsd*>C-?)-spaced, so (4.13) implies

4, AC
\/W dd,rs”

(4.14) #lalcp <1+

Finally, by (4.11), (4.12) and (4.14) we conclude that

My Ay, Ay; 1,0 D flalg > (1 + (By)M24,40)(AC):
B - A

which leads to (4.9). =

Lemmas 4.1 and 4.2 are useful only for small dd,. For large dd, we
intend to apply an induction hypothesis. With this in mind we establish

LemMMA 4.3. We have
My (Ay, Ay 1, 8) <20M (244, 2455 vdy, 8d) M (24,, 24,5 1d, sd,) .
Proor. This follows by applying Cauchy’s inequality to
Mo (Ayy Ag; 7, 8) <D > H#{afee P(rdy, sd); |@le—a| < A4;}
o lac —y| < 4,AC
#{a,e. € P(rd, sd,); |@fo,— x| < Ay}

laye,—y| < 4,40

where # ranges over A,-spaced points and y ranges over A4,4C-spaced
points. m

Now, we are ready to prove Theorem 4.2 by induction on 7s. If rs>AC
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we have trivially

AC\2
M(Ay, Ays 7, 8)<<('EC‘) y

80 the assertion is obvious. Let us assume that rs < AC. If dd,>2 by
the induction hypothesis and by Lemma 4.3 one has

(4.15) My (M, Aus 7, 8) <2%A(e)(rsddy) 7' (AC)* 2(Ay, Ay; A, O)
where, for notational simplicity, we put
2A4,, 4,5 A, C) = AC + A, 4,42C* + A1 A2 C* 4 A, A + 4,0°.
Since
Z (ddy) "1 l® (1 4+ f) D-—s/2<(1 -+ g)2D~c12 ,
ddy>D 2 €
we obtain by (4.15)

(4.16) > > Mau, (A, Ay; 7, 8)

dd,>D

<2420 (1 + 2) Do o)1= A 0y 20, 405 4, 0
<3 Me)(r9) 1 (AC)* 2(4,, Ay; 4, O)

on taking D = D(e) such that 24(1 + 2/e)*D-#¢/2 = }.
For dd,<D we apply Lemmas 4.1 and 4.2 getting first

"/{dd,(dxy Ay; 7y 8) K (rs)~1(40)* 2(4,, 4,; A, C)
for any ¢ >0, and then

(417) 3 My Ay, A 1y 8) <o(e)(rs) 1 (AC): 2(4,, 4y; 4, O)
dd, <D
<3 Ae)(rs) "1 (A0)* 2(4,, 4,5 4, O)
by taking A(e) sufficiently large; A(e)>2¢(e).

Combining (4.5), (4.16) and (4.17) one completes the proof of the induc-
tion step and of Theorem 4.2. m

REMARKS. Theorem 4.1 is important for estimating exponential sums
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that are related to the Riemann zeta-function, cf. Section 5. When more
general sums are treated, one is faced with a similar problem, the condition

(4.3) being replaced by
fora(5)—rtevs (2)

where f(r) and g(«) are some smooth functions; f < F, ¢ < G. In order
to study the most interesting exponential sums of type

<4, FG

> e(m' X)

m

it suffices to consider f(r) = #* and g(x) = #*. But even then, unless
x = 24 % 0, the elementary arguments which we have used to prove Theo-
rem 4.1 fail. In such circumstances one should try to apply the rather
advanced technique of spectral theory of automorphic functions. Using
the Kuznetsov trace formula for sums of Kloosterman sums together with
the large sieve inequality for the Fourier coefficients of Maass cusp forms
(cf. [2]) one is able to extend Theorem 4.1 to the case x* 4 A= 0.

5. — Proof of theorem.

We first consider the sums of type

(5.1) 8,(M) =3 e(f(m))

m ~M
where f(x) is a smooth function such that
(5.2) |fO(m)| ~F M
for m~ M and j>1 with some F>1 such that
(5.3) < M < F'?
with the aim of showing that
9

(5.4) S/ M) < FO+eMY2, @ = £5 "

We begin by applying Weyl’s method to reduce the problem to the estima-
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tion of cubic exponential sums. For n>1 we have

8,(M) =3 e(f(m +n)) + O(n)

m~M

and by Taylor expansion
f(m + n) = f(m) + f'(m)n + 3 (m)n* + §f"(m)n® + O(n* M—*F) .
Now average the result over »n in (N, 2N] for some N with

(5.5) F1s M < N<F-1U2 32,

Since the error term O(n*M-*F) is bounded, we conclude by Lemma 2.1
that
S< NS |3 e(fmn + 3 myne + 3 mynd)| + ¥,

m~M 'N<n<N,

with some N,<2N independent of m and #. The innermost sum is con-
sidered as a Gauss’ sum perturbed by the factor e(sf”(m)n®). Traditionally
at this point one applies Cauchy’s inequality a number of times until a
linear polynomial is reached. This procedure sets the limit @ = § in (5.4).
We depart from Weyl’s method so that Cauchy’s inequality is not used.
The key idea is to evaluate the perturbed Gauss’ sum rather than to
estimate it. A direct use of Poisson’s summation is not recommended
because of the great variation of terms, the worst one being the quadratic
term.
Each middle coefficient 17 (m) has a rational approximation

1
cN

a

(5.6) l%f”(m) +4

<

with 1<e<N and (a,¢) =1. Let m(a/c) be the solution of
1,, a
—5f(m) = —.
Then each m satisfying (5.6) can be written as

m = [m(a/c)] + 1

with, |I| <I(c) where L(c) ~ (¢FN)-*M>. Notice that L(c) > 1 by (5.5). The
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terms pertaining to the fraction a/c¢ with small denominators,
1<e<C,
say, when treated trivially, contribute to S,(M)

KNS L) S N<KCMN-.

1<e<C, a~cFM-*
Now assume that C,<<¢<N. Denote
= b(a, ¢) = [cf ([m(a/c)])]

and

n = p(ajo) = &f"(m(afc)) .
‘We find the following approximations to the extreme coefficients

sf"(m) =p + O((cMN)1)
and
f'(m) = f'(lm(afo)]) — 2ac11 - O(I*F M~3)

b — 2al 1 M3
= +0(;+m~—m)-

The second error term is < ¢! provided
Cy=F-1M3N~*
which we henceforth assume. By Lemma 2.1 we conclude

— 2al
nd — ——/n2 T
N<nz<zvl (,u + ¢ )’

+ N+ C,MN—

S;(My< 3 ¢t
Co<e< N a~cFM~t < L)
(a,0)=1

with some N,<2N independent of the variables of summation. Hence,
for some A, C and L with
C,<C<N, A=CFM—2, L~ (CEFN)'M?
we obtain
S(M)< (logN)C> > > |S(u;a,b—2al;¢) +N + C,MN-*.

c~C a~4 <L
(a,e)=1
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The innermost sum S(u; a, b + 2al; ¢) is an incomplete Gauss’ sum
(mod ¢) whose order of magnitude in case y = 0 (no perturbation) can be
exactly determined in a number of ways. Yet, when u is not too large the
Fourier technique of completing the sum works well. This technique has
been applied to prove Lemma 3.1. Now we use this result. The error terms
from Lemma 3.1 contribute to S,(M)

KO3 (N2 + utN-*)(log N)®
a ¢ 1

< C-1ACL(NV: + F-1 M2 N-2)(log N)?
< (MN-V2 4+ F-1 M+ N-*)(log N): .

The main term > from Lemma 4.1 can be simplified a bit in two steps.
h

First remove the factor 2(uch)~V4 by using Lemma 2.1 (partial summation)
and then replace the constraint 3ucN*< h < 3ucN; by a weaker one h~H
with

H = CFM-3N* A<H<O)

by using Lemma 2.2. The resulting inequality is

8,(M) < C-32(FN)-12 M32(log N)* 3
c~0(2:3A <L

3@ LR e e
~H c

c 2

+ (N + MN-2 4 F- M4 N-3)(log N)®

where >* is restricted to h with a fixed parity,
v=1y(a, ¢) = %(3#0) 1/2 _(20f”/(m(a/ )))'1/3~ (CF)~v2 M3z,

and % is a real number which does not depend on the variables of summa-
tion. By Holder’s inequality we get

M9 1/4
(57) S,(M) < ('éw) IOg N ( )

+ (N + MN-V2 F-1 M*N-%)(log N)®.

Here the sum > > > |>*|* can be regarded as a bilinear form of type
H(a,b; X, Y) considered in Lemma 2.4, where a(r) is the multiplicity of
representations of ¢ in the form

4 4 4
£=(w1’x27x3):(i'z - jh;iz’ 52 ]hﬂz h3/2)
1 1 1
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with relevant h; and b(h) is the multiplicity of representations of #) in the
form

ab -+ 21
D= (%, ¥y ¥s) = (a 2 + —{—017’11)

¢ c ¢
Therefore
X = (X, X,, X;)~ (H? H, H¥?)
and
=Y, Y, Y5)=(1,1, Y,
with

Y, ~F-12082 M—32 > H-12

By Lemma 2.4 (see the remarks after the proof) we get
(5.8) (33 3|34 < B 7. 206; 0)%(a; D)
c a 1 B

where, in our particular context, #(b; X) is the number of pairs {(a, ¢, 1),
(a4, €1, L)} such that simultaneously

5 § — (_—l_l —2
(5.9) P < H-?,
(5.10) ab + 21_.@1_1)!1:,2&' <H1,
¢ ¢
(5.11) 'V(a/, 0) —V(dl, 01) < H”“z
c ¢

and %(a; 9) is the number of h’s, 1<j<8 such that simultaneously

(5.12) z (hF—12,,) <1,
4

(5.13) Sy, <1,
1

and
4

(5.14) > (mP—n2) < 52,
1

The second system is investigated, among other things, in a separate
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paper [1] with the result
(5.15) HB(a; P) K< Hite,

It remains to estimate #Z(b; X). By (5.10) we deduce that

®_ab,

(5.16) P

<L
c

(notice that LH~ N, so LO-'~NC-*H-1> H-') and that

#11, L} <(C+ L)LH.
Therefore

(5.17) A(6; X) < (C+ L) LH-* 4 (4, C, H)

where #'(4, C, H) stands for the number of pairs {(a, ¢), (a,, ¢,)} satisfying
(5.9), (5.16) and (5.11). Since the numbers b = b(a, ¢) = [¢f' ([m(a/c)])]
depend on a, ¢ in a very complex way, we are forced to discard (5.16).
This is a place at which our method is wasteful.

So far our arguments have been applicable to quite general sums S,(M).
Now specifying to

(5.18) flx) =tlogz,

1/2
m(aje) = (%)

cv(a, ¢) = $(2ac)31111

80 F =t, we find that

and

thus, ¢ *%(a, ¢) is a function of ac. The condition (5.11) is equivalent to
(5.19) lac —a,¢,| < 4,AC
with A, = (AC)3¥+*H-3/2¢t-1/1+ — -1 Y3 N-3, By Theorem 4.1 we infer
N4, C, H) < (AC + 4,4,420% + A, 42C* + A, A% + A, 0?)(AC):
with 4, = H-2. Here we have

ACKLIM—2C?
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and
A, 4, A2C L1 M3 N-7C2.

The other three terms are smaller, therefore we conclude
(5.20) N4, C,H) K (FM—* + F-*M5N-") C2Fe.
Finally we argue as follows. By (5.8), (5.15), (5.17) and (5.20) one gets

z z z Iz“ L C*MON(FM-2N? + F-1 M5 N-5)1/2 's+e
¢c a il b

This together with (5.7) yields
8,(M) < NV2(FM~-2N* + F-1 M5 N-5)1/s Filss
+ (N + MN-vV2 4 F-1 M*N-3)(log N)=
& (M2 olse - M2 Fu7 - MP-1/7) Fe
< Mz poisste

on taking
N = MF-",

This completes the proof of (5.4) for M in (5.3) and f(x) defined by (5.18).
For 1< M < F?*" we appeal to the exponent pair theory, cf. [7] and [8],
giving
S,(M) <K M FM-1)* .

The pair (%, 4) = (1/9, 13/18) yields
(5_21) S;(M) < _Ml/z(FM)lls & M1/2 Jrio/es

which is stronger than (5.4). Finally (5.4) and (5.21) imply our theorem,
cf.[9]. m
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