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Multiplicity-2 Structures on Castelnuovo Surfaces.

K. HULEK - C. OKONEK - A. VAN DE VEN

0. - Introduction.

In this paper we study « nice » multiplicity-2 structures ? on smooth
surfaces YC P4 = P4(C). Every multiplicity-2 structures in this sense is

given by a quotient N* --&#x3E;- QJy(l) and vice versa. The existence of such

a quotient for given I imposes rather strong topological conditions on Y.
Under suitable conditions the non-reduced structure f leads to a rank-2
vector bundle E on P4 with a section s, such that :Y= {8 = 0} (com-
pare [7]).

Here we are interested in the case where E splits, in other words, where Y
is a complete intersection. We are particularly interested in the case

where Y is a Castelnuovo surface. These surfaces can be characterized

by the fact that, for given degree d, their geometric genus is maximal (at
least if d &#x3E; 6). If d is even, then Y is a complete intersection [3], so we only
consider Castelnuovo surfaces of odd degree d = 2b + 1. Our main result

(Theorem 13 below) is a precise description of those Castelnuovo surfaces Y
which admit multiplicity-2 structures in our sense; then ? is a complete
intersection of type (2, 2b + 1). Many such surfaces exist.

The third author is very much indebted to A. Sommese for useful

discussions.

1. - Multiplicity-2 structures.

Let Y C P, be a smooth surface with ideal sheaf Ip. We consider certain
non-reduced strucutres f on Y, i.e. ideals Ii ç Iy, with the following
properties:

1) ? is a locally complete intersection,

Pervenuto alla Redazione I’ll Giugno 1985.
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2) ? has multiplicity 2, i.e. for every point P E Y and a general
plane E through P the local intersection multiplicity

DEFINITION. A non-reduced strucutre r on Y with properties (1 )
and (2) will be called a multiplicity-2 structure on Y.

LEMMA 1. If Y and r are as above then near a point P E Y there are

.ZocaZ coordinates and I

PROOF. Let E be a general plane through P. Then we can find local

coordinates 1 such that = and.

Now look at the ideal. It is generated by two functions
say We can write

Because of (2) it follows that at least one of the functions 10, f 1, go, g, is a
unit at P. We may assume 10(P) =f=. 0 and introducing xo fo + Xl Is as a new
local coordinate we find that If is generated by functions of the form

where gl = gl (x1, 7 X2 , x3 ) . Now g E Iy since otherwise r would be gener-
ically reduced which contradicts (2). Hence we have g = X2 192 with

91 = g2 (xl , x2 , x3 ) . It again follows from (2) that g2 is a local unit and hence
we are done.

Next we observe that J2 C I, and that we have an exact sequence

which can be interpreted as a sequence of vector bundles on Y. In par-
ticular ? defines a quotient N*yIP4 --*L*. Conversely every such quotient
defines a non-reduced structure ? by setting

Clearly Y fulfills conditions (1) and (2). Hence we can state
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LEMMA 2. To define a multiplicity-2 structure Y on Y is equivalent to

de f ining ac subbundle L ç N Y/P4 .

Since is a locally complete intersection it has a dualising sheaf co:k
which is given by

From now on we assume the following additional property:

LEMMA 3. If (3) holds then

PROOF. We have an exact sequence

Applying we get

Tensoring with Op, (1) we get

Restricting this sequence to Y the second morphism gives us an iso-

morphism

which implies
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REMARKS:

(i) The converse implication (3)’ =&#x3E; (3) is more diincult. It holds

for 1 &#x3E; 0 and if (see [7]). / The latter is automatically satisfied
four I by Kodaira’s vanishing theorem.

(ii) If there exists a quotien , then
This is equivalent to

where d is the degree of Y.

(iii) There are only a few surfaces which admit a quotient &#x3E;

for 1 &#x3E; 0. They are the complete intersections of type (a, b) with 2a = b  51
the cubic ruled surface and the quintic elliptic scroll (see [7]).

2. - Locally free resolutions.

Let Y C P, be a smooth surface and assume that its ideal sheaf Iy has
a locally free resolution

Dualising this sequence and tensoring it with 0p,(1 - 5) we get a resolu-
tion for the twisted canonical bundle wy(l) which reads as follows

We are interested in epimorphisms Iy -&#x3E; wy(l). Every such epimorphism
defines a quotient Njp,= my(1).

LEMMA 4. If there is an epimorphism
diagram

such that the

commutes, then l’ induces an epimorphism
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PROOF. Let ci: = c,(E,) and r: = rank E,. From (4) and (5) we get
the following « standard diagram »:

Here X is the hypersurface defined by the equation g.

REMARK. Assume that H is defined by (4) and that there is an epi-
morphism y: . Let _

then y can be lifted to give a commutative diagram

such that y is induced by 7B Note that if h is generically surjective then
ker-PC kery is invertible. This follows from [4, Prop. 1.1 and Prop. 1.9].

We now want to consider surfaces with a special resolution, namely
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where r &#x3E; 1 and 1  a  b. If r = 1 then Y is a complete intersection of

type (a, b). If r &#x3E; 1 then Y is in liaison with a surface Y’ defined by a
resolution

The union Y U Y’ is a complete intersection of type
(See [11]).

The map is given by an
matrix

where A is an r x r matrix with entries and

PROPOSITION 5. If A is symmetric then there exists a multiplicity-2
structure f on Y such that f’ is a complete intersection of type (ar, 2b

PROOF. Let Since A is symmetric we get
a commutative diagram:

Here T is the projection map. By diagram chasing one sees that
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where Hence Y is a complete intersection of det A with a

hypersurface of degree

REMARK. Since for afl 1 it follows from [7], that there
exists a vector bundle E together with a section s E HO(E) such that

Using the sequence

and the section g E H° (IY (ar)) one finds a section i . Since

this defines a subbundle

which must necessarily split off.

We want to give explicit equations for the complete intersection ?

(Compare [13], [14]).

PROPOSITION 6. The complete intersection Y is given by the equations

where

PROOF. We first want to show the equality of sets:

The surface Y is the set of all points x E P4 where

Since A is symmetric it is at any given point equivalent to a diagonal
matrix. We can, therefore, write
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From this description it is obvious that (8) is equivalent to
We have already seen that j Next we want to show that

To see this note that the map

is given by

where A i is the r X r matrix which one gets from the matrix

by deleting the i-th row. Hence

Since

it follows that Hence g and h define a complete
intersection Y of degree 0 Since both varieties

have the same degree it follows that .

3. - Castelnuovo surfaces.

We now consider surfaces with a special kind of resolution i.e. we-

consider resolutions of type (7) with r = 2, q = 1:

LEMMA 7. The numerical invariants o f Y are
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PROOF. This is a straightforward calculation using the resolution (9)
and its dual.

In [3] Harris investigated so called Castelnuovo varieties. These are

non-degenerate irreducible varieties Va c lPn of dimension k and degree d
with d &#x3E; k(n - k) + 2 whose geometric genus pg is maximal with respect
to all varieties of this type. For surfaces in lP4 he showed that

where

Here [x] denotes the greatest integer less than or equal to x. Harris

showed that every Castelnuovo surface in P4 of even degree 2b:&#x3E; 6 is the com-
plete intersection of a hyperquadric with a hypersurface of degree b.

Moreover every Castelnuovo surface of odd degree 2b + 1&#x3E; 6 is together
with a plane a complete intersection of a hyperquadric and a hypersurface
of degree b + 1.

PROPOSITION 8. The Castelnuovo surfaces of odd degree:&#x3E; 6 are just the
surfaces defined by a resolution of type (9).

PROOF. If Y is defined by (9) its geometric genus is
B /

If Y is a Castelnuovo surface then there is a plane E such that Y u E is
a complete intersection of type (2, b + 1). The plane E has the resolution

Hence it follows from [10, Cor. 1.7] that Y has a resolution:

which gives the desired result.
We call every surface Y with a resolution of type (9) a Castelnuovo

surface.

REMARK. Okonek proved in [8], [9] that

(i) The only Castelnuovo surface of degree 3 is the cubic ruled

surface, i.e. P2 blown up in a point xo and embedded by the linear system
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(ii) For d = 5 the surface Y is a P2 blown up in 8 points i.e.

I embedded by

(iii) Every Castelnuovo surface of degree 7 (where is an

elliptic surface over Pl with Kodaira dimension
Let us now return to the resolution (9). The map s(b + 2) is given by

a matrix

where the entries aij of the 2 X 2 matrix A are linear forms and where

In particular Y is contained in the hyperquadric : (det A
If the degree of Y is at least 5 then this is the only hyperquadric

through Y. For the cubic ruled surface the f are also linear forms and Y
is contained in a net of quadrics.

DEFINITION. A Castelnuovo surface Y is called symmetric if 7y has a
resolution (9) with symmetric matrix A.

PROPOSITION 9. Y is symmetric if and only if it is contained in a corank 2
hyperquadric Qy. This hyperquadric iv unique.

PROOF. Clearly if A is symmetric then Qy == fdet A = o} has corank 2.
Now assume that Q, == fdet A == 0} has corank 2. Then’ there are coor-

dinates xi on P, such that A is equivalent to

where 1 = I (x,,,, x,., x2) is a linear form. By elementary transformations A
is equivalent to

The uniqueness is clear for d&#x3E; 5. Every ruled cubic surface is projectively
equivalent to the surface defined by the matrix
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Hence the net of quadrics is spanned by

and Qy is the only corank 2 quadric in this net.
Our next purpose is to show that there are many smooth symmetric

Castelnuovo surfaces of given degree d = 2 b + 1. This will follow from:

PROPOSITION 10. Let Y be the Castelnuovo surface defined by

where depend only on X3 and x.. Then Y is smooth if the
complete intersection is smooth and does not intersect the line

PROOF. Y is defined by the equations

We put 8;f,: = afilax,: Since f 1 and /2 only depend on x,, and x, the

Jacobian matrix is

Y is smooth if and only if rank J&#x3E;2 for all points x E Y. For a point
x e Y we have rank J  1 only in two eases, namely when

or when (xo , xl , XI) =A 0 and

Since here the matrix has rank 1, this implies that grad f 1 and

grad I. are linearly dependent and is singular at x.
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4. - The main theorem.

Dualising the resolution (9) we get the exact sequence

This shows that my(3 - b) is generated by 2 sections and hence every Castel-
nuovo surface Y admits a fibration

By construction the class of the fibre I’ is

LEMMA 11. The following two conditions are equivalent

(i) There exists a line Lo on Y with L’ 0 = 1- 2b.

(ii) There is a line Lo on Y which is a b-section of 99.

PROOF. Let Lo C Y be a line. Since H. Lo = 1 the condition F. Lo = b
is equivalent to K - L,, = 2b - 3. But by the adjunction formula this is

equivalent to Ll 0 = 1 - 2b.
Our main aim is to characterise those Castelnuovo surfaces Y which

possess a multiplicity-2 structure Y, such that Y is a complete inter-

section.

We start with

PROPOSITION 12. Let Y be a smooth Cagtelnuovo surface of odd degree
2b + 1. If Y has a multiplicity-2 structure r with induced canonical bundle
(,Oi then this structure is given by a quotient N;/P4 --&#x3E;- wy(2 - 2b). In this case
Y is a complete intersection of type (2, 2b + 1). The hyperquadric through Y
is itnique and is singular along a line Lo c Y.

PROOF. By lemmas 2 and 3 every multiplicity-2 structure with induced
canonical bundle comes from a quotient N* - coY(Z). The integer I must

fulfill the quadratic equation

Using lemma 7 this equation becomes
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There are two solutions

It is easy to check that 1+ 0 Z unless b = 1 in which case 1- - 1+ = 0.
One can now use the remark after lemma 4 to construct a diagram

similar to (6’). The only difference is that T*(1 - 5) has to be replaced by
some arbitrary map F’. Nevertheless it follows from this diagram that f
is a complete intersection of type (2, 2b + 1). In particular f is contained
in a hyperquadric. This is clearly unique if d &#x3E; 5. For the case d = 3

see [7]. We now have to show that Qy has corank 2. Again we can restrict
ourselves to the case d &#x3E; 5. Let us assume that corank Qy  1. Let C = Y r1 H
be a general hyperplane section. Its genus is b (b - 1) &#x3E; 0 if b &#x3E; 2. The curve
C lies on the smooth quadric Q, = Qy n H. On the other hand we have
an exact sequence

We claim that this sequence splits which gives a contradiction to [5,
theorem 1]. To show the splitting it is enough to see that

But this follows from

deg (

Hence we have seen that corank Qy = 2. Let Lo be the singular line. Then
.Lo must lie on Y, otherwise projection fron a general point of Zo would
immediately give a contradiction to the fact that the degree of Y is odd.

Now we are ready to prove the main result of this paper.

THEOREM 13. Let Y C P4 be a smooth Castelnuovo surface of degree 2b + 1.
Then the following conditions are equivalent:

(i) Y is symmetric.

(ii) Y is contained in a corank 2 quadric Qy.
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(iii) There is a line LOCY which is a b-section of the fibration
Y---&#x3E; P,.

(iv) Y contains a projective line .Lo with sel f -intersection Lo = 1- 2b.

(v) There exists a multiplicity-2 structure r on Y such that is a
complete intersection of type (2, 2b + 1).

PROOF. (I)«(it) is proposition 9; (i) +(v) follows from proposi-
tion 5 and (v) =&#x3E; (ii) is proposition 12. (iii) =&#x3E; (iv) is nothing but lemma 11.

(ii) =&#x3E; (iii). Assume that Y is contained in the corank 2 quadric Q,.
The singular line .Lo must necessarily lie on Y. The quadric Qy defines a
section in N*,p,,(2) which vanishes along Lo. Hence we get a diagram

Since (ii)=&#x3E;(v) it follows that QycHO(Ii(2)) hence q factors through
M*(2). Since q is injective outside Lo there must be an integer k&#x3E;l such
that

This implies

Since

it follows that k = 1 and hence

From this it is straightforward to compute

(iii) =&#x3E; (ii). We assume that there is a line LO C Y which is a b-section of
the fibration 92: Y - Pl . Since
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the fibres F are curves of degree b which intersect the line .Lo in b points.
This implies (look at all hyperplanes through .Lo) that each fibre F is con-
tained in a unique plane E through Lo. In this way we get an injective
map

Pulling back the universal bundle we get a threefold W which is a P,,-bundle
over lP1 and a map from W onto a threefold V which contains Y. Moreover
there is a surface Y C 9 which is mapped isomorphically onto Y. Let

IV C r be the inverse image of Lo in 9. The fibres of $/-Lo are all iso-

morphic to a rational curve R. Since 17 is a Pa-bundle over Pl we have

Hence the class of Y in 9 is of the form

Since the intersection of Y with each plane P2 is a curve of degree b we
find m = b. Moreover, since Y meets each curve R transversally in one
point we find n = 1, i.e. 

-

Then

This implies H3 = 2 and V must be a quadric. Clearly V is singular along Zo .

5. - Castelnuovo surfaces of degree 5.

According to Okonek [8] every Castelnuovo surface of degree 5 is a Pa
blown up in 8 points:

embedded by the linear system Let Eo, ..., E7 be the
,,-....

exceptional curves on Y. Then Eo is a conic, whereas E1, ..., E? are lines.

PROPOSITION 14. The Cagtelnuovo surface Y is symmetric if and on2y
if the points xl , , .. , X7 lie on ac smooth conic C.
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PROOF. We first note that if such a C exists it must necessarily be
smooth. Otherwise at least 4 of the points x1, ... , x? would lie on a line L
and H-LO. It then follows from

that C does not pass through x, and that it is mapped to a line .Lo çy.
Since Lg = - 3 the surface Y is symmetric by theorem 13.

Now assume that Y is symmetric. The singular line Lo of Qy lies on Y.
It intersects the lines E1, ... , E? as can be seen by projecting from a general
point of .Lo . This also implies Lo 0 Ei and E(, - Ei = 1 for i=I,...,7.
Let Eo be the exceptional conic. Since Lo - Eo  2 and H. Lo = 1 there are
two possibilities :

In the first case L: = - 2 whereas in the second case .Lo = - 3. We know,
however,, from the proof of theorem 13 that L2 0 = - 3 and hence we are
done.

REMARK. The number of moduli for Castelnuovo surfaces of degree 5 is

2 #points blown up - dim PGL(3, C) = 16 - 8 = 8 .

The condition that x,,, ..., X7 lie on a conic is 2-codimensional hence the

symmetric Castelnuovo surfaces depend on 6 moduli.

6. - Castelnuovo manifolds.

We call a codimension 2 manifold YeP n+2 a Castelnuovo manifold of

dimension n if Y has a resolution of type (9), i.e.

Here we want to point out the following remarkable fact.

PROPOSITION 15. The only Castelnuovo manifold Y of dimension n&#x3E; 3
which admits a multiplicity-2 structure r such that -f is a complete intersection
is Pn embedded linearly.
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PROOF. It is enough to prove this for Castelnuovo 3-folds Yc P. Just

as in lemma 2 we see that every multiplicity-2 structure comes from a
subbundle ECNy,p,. If Y admits a multiplicity-2 structure I which is

a complete intersection, then f must be the intersection of a hyperquadric
Q with a hypersurface of degree 2b + 1. The quadric Q must be of corank
3 and the singular plane V of Q must be contained in Y. This can be seen

by taking hyperplane sections and applying proposition 12 and theorem 13.
Our claim now follows from

LEMMA 16. If Y c lP5 is a smooth threefold such that

(i) Y contains a plane V

(ii) There exists a sub bundle LCNyp.IV then Y is P3 embedded linearly.

PROOF. Let Njly = 0.,(a). From the sequence

we find

Now suppose Ny,p.IV has a 1-subbundle 0v(b). Then

and looking at this as a quadratic equation for b, this implies

which implies a =1. Since H.’(Oy) - 0 by Barth’s theorem ([1, Th. III]) we
see that IVI is a linear system of planes on Y of (projective) dimension 3.
Now choose two different points x, y E Y. There is (at least) a 1-dimensional
linear subsystem IV 10 9 [ V[ I of planes which contain the line L spanned by x
and y. Let Vi , I V2 E [ V[° be two different planes containing .L. They span
a space Pa. By construction Pa is tangent to Y along L. Hence all planes
in I Vlo are contained in this Pgy i.e. their union equals this space. Hence

1’3 s Y and we are done.

7. - A remark on normal bundles.

In this section we want to say a few words about the normal bundle

of Castelnuovo and Bordiga surfaces. We first consider a Castelnuovo

surface yç: P4 of odd degree.
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When we speak of stability, we always mean stability with respect to
the hyperplane section H.

PROPOSITION 17..Let Y ç P4 be a smooth Castelnuovo surface of odd degree d.
Then the following holds:

(i) If Y is the cubic ruled surface then its normal bundle N Y/Pc is

semi-stable but not stable.

(ii) I f d&#x3E; 5 then the normal bundle Ny/p4 is properly unstable.

(iii) The normal bundle of Y is always indecomposable.

PROOF. (i ) If Y is the cubic ruled surface we have an epimorphism
N* - coy. Since

it follows that N YIP, cannot be stable. On the other hand the generic
hyperplane section C of Y is a rational normal curve of degree 3. Since

.Nclps = Opl(5)EB Opl(5) is semi-stable, it follows that Nylp, must be semi-
stable too.

(ii) Every Castelnuovo surface lies in a quadric, i.e. there is a section
0 # s E HO(N;/P,(2)). Since

for d&#x3E; 5 the normal bundle Ny/p, is properly unstable.

(iii) If Y is not symmetric then the generic hyperplane section

C = Y n H is a smooth curve lying on a smooth quadric Q. Since C is

neither rational nor a hypersurface section of Q if follows from [5, Theorem 1]
that Nclp. and hence also Ny/p, is indecomposable. Now let Y be symmetric
and consider the sequence

We claim that NY/P4 splits if and only if (10) splits. If Y is the cubic ruled

surface this follows from looking at the rulings of Y. Let us now assume

d&#x3E;5. For every smooth hypersurface section C we saw in the proof of pro-
position 12 that
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and this is the only way NÓ’H can decompose. Hence if N;’P4 = Ll EÐ L2
we can assume that L1IO "’-J M*IO and (o,(2 - 2b)IC. Since q(Y)
= 0 # n we can apply a result of A. Weil, (compare [12, prop. 0.9]) to

conclude that 1,, - -M* and L2 "’-J coy(2 - 2b) and we are done. Hence

it remains to show that (10) does not split. For this purpose we restrict (10)
to the line .Lo with El 0 = 1- 2b. Then (10) becomes

If this sequence splits then

In particular we have a quotient NYIP,(- l)/Lo - OLo and we can argue
as in [6] to conclude that there is a hyperplane .H which contains all the
tangent planes of Y along .Lo . But this cannot be, since these tangent planes
form the corank 2 quadric Q which contains Y.

Let us now turn to Bordiga surfaces [8]. These are rational surfaces

Y C P4 of degree 6. They can be constructed by blowing up P,. in 10 points

and embedding this surface with the linear system

These surfaces have a resolution

One checks easily that

LEMMA. 18. If Y has a multiplicity-2 struct2cre Y which is a complete
intersection, then Y is given by a quotient N;’P4 --&#x3E; (Oy(- 2). In this case r-
is a complete intersection of a cubic and a quartic hypersurface.
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PROOF. Every multiplicity-2 structure ? which is a complete inter-
section is given by a quotient N*ylp, - coy(l). The condition

reads

or equivalently

Hence I = - 2. On the other hand if we have a quotient .
it follows from the remark after lemma 4 and the proof of proposition 5
that Y is a complete intersection of type (3, 4).

PROPOSITION 19. Let Y C: lP4 be a smooth Bordiga surface. Then the

following conditions are equivalent:

(i) There exists ac multiplicity-2 structure f on Y such that is a
complete intersection of type (3, 4).

(ii) There exists a quotient

(iii) N* is not stable.

PROOF. The equivalence (i ) =&#x3E; (ii ) is lemma 18. (ii ) =&#x3E; (iii ) follows since

To prove (iii) =&#x3E; (ii) we look at the normal bundle NO/PI of smooth hyper-
plane sections C = Y n H of Y. C is a curve of degree 6 and genus 3. The
normal bundle of such curves was investigated thoroughly by Ellia in [2].
Now assume that Nyp, is unstable. Then there is a map N;/P4 --&#x3E;- E to a line
bundle Z which is surjective outside a finite number of points such that

If we restrict this map to a generic hyperplane section we get a quotient
Nc*,H --&#x3E; -L I C which makes NCIH unstable. By [2, prop. 7] this implies that

Again we can use Weil’s result [12, prop. 0.9]
to conclude that Since c2(Ny,p,, &#x26; o-)y(- 2)) = 0 it follows

that the map must indeed be surjective everywhere and
we are done.
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REMARK. Since NCIH is always semi-stable [2], it follows that Nylp,
must be semi-stable too.

We want to conclude with the following

COROLLARY 20. The normal bundle of a Bordiga surface Y k P4 is

indecomposable.

PROOF. Assume that Nylp. splits. Then the same is true for all hyper-
plane sections C = Y u H. If, however, C is smooth and NCIH is decom-

posable then Using once more
Weil’s result it follows that But this is a

contradiction, y since

REMARK. We don’t know if there exist smooth Bordiga surfaces with
the properties of Prop. 18.
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