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Existence Results for Embedded Minimal Surfaces

of Controlled Topological Type, II.

JÜRGEN JOST (*)

0. - Introduction.

In the first part of these investigations, hereafter referred to as [I], y we
developed boundary regularity results (at free and fixed boundaries ) for

varifolds arising from minimizing the area among embedded surfaces, , and
we then proceeded to produce embedded minimal surfaces under certain
boundary conditions via a minimizing procedure, and we imposed as much
control on the topological type of these surfaces as the topological and
geometric data of the respective problem allowed.

In the present second part, we want to combine these techniques and
results with saddle point arguments in order to produce embedded minimal
surfaces of controlled topological type solving free boundary problems where
the minimum of area would degenerate into a point as therc is no topo-
logical or geometric constraint preventing this.

These saddle point or, as they are often called, y minimaxing methods
originated from the work of Pitts [P] and were further developed by Simon-
Smith [SS] to prove the existence of an embedded minimal two-sphere in
a Riemannian manifold diffeomorphic to the threedimensional sphere.

The present article will start in a rather technical vein by constructing
.a certain deformation of a minimaxing path of surfaces. The setting will

always be a subset A of some threedimensional manifold (occasionally
restricted in later applications to be Euclidean space) where we require
that the closure of A is diffeomorphic to the threedimensional ball, and we
look for embedded minimal surfaces inside A that meet the boundary of A

orthogonally. We then combine one consequence of this deformation, , the
existence of a varifold satisfying a certain «almost minimizing &#x3E;&#x3E; property

(*) Supported by SFB 72 at the Universitat Bonn.
Pervenuto alla Redazione il 6 Maggio 1985.
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(see § 1 for the precise definition), with the regularity results of [I] and
show that if aA has positive mean curvature w.r.t. the interior normal

vector, then A contains an embedded minimal disk meeting aA orthogonally
(provided there exist no embedded minimal two-spheres inside A). This

result generalizes the main result of [GJ2].
This result of course raises the questions what happens if we drop this

requirement on the mean curvature of aA. Our point of view can be clari-
fied by discussing a recent paper of Struwe [St]. He treated the corresponding
parametric free boundary value problem (assuming that A is a subset of
Euclidean space) and showed that there exists a parametric minimal disk
meeting aA orthogonally at its boundary which, however, need neither be
embedded (actually not even necessarily immersed) nor contained in A,
i.e. is allowed to penetrate aA in an unphysical way. It seems that from

the point of view of [St], this result cannot be much improved (apart
from showing that the solution is immersed), because in general one cannot
expect that A contains a disktype minimal surface without imposing curva-
ture restrictions on aA. For this reason, we allow a somewhat more general
topological type, namely look for a surface of arbitrary (finite) connectivity, y
but still of genus zero, i.e. topologically a disk with holes. Working in this
more general class ivc are able to show that there exists a minimal surface
meeting aA orthogonally which is embedded and, what is even more impor-
tant, confined to lie inside A. (We note that the control of the genus of
the limit surface depends on the arguments of[SS]).

Actually, , from the famous results of Lusternik and Schnirelmann on
the existence of three closed geodesic without selfintersections on any com-

pact surface of genus zero, one should expect that there exist not only one
but three embedded minimal surfaces solving the free boundary value
problems considered in the present paper. The basic technical problem
one has to face, however, when attempting to prove this is that the solutions
of a higher order saddle point construction might just be a multiple covering
of the solution obtained in the first step, thus not being geometrically dif-
ferent. While we are not able to resolve this difficulty in its full generality,
we nevertheless do show the existence of three embedded minimal disks

meeting aA orthogonally under the assumption that aA is a strictly convex
surface in Euclidean space and that if Rl is the radius of the largest ball
contained in A and .R2 the radius of the smallest ball containing A the ratio

.R2/.Rl does not exceed V2. An important role in the demonstration of this
result is played by the following estimate: The area of any embedded minimal
disk in A meeting aA orthogonally is at least :zR’ IL if aA is strictly convex ( 1 ) .

(i) This estimate already appeared in [Sm]. We shall give a different proof.
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We shall also use the topological arguments of Lusternik and Schnirelmann,
and we shall avail ourselves of the coincise presentation of this theory in
the appendix of Klingenbcrg’s book [Kl].

Finally, we want to mention that if A instead is a simplex in Euclidean
space, i.e. having a boundary consisting of four planar pieces, then the exist-
ence of three embedded minimal disks was recently shown by Smyth [Sm],
thus taking up an old investigation of H. A. Schwarz. Because of the more
special nature of this boundaiy configuration, this case can be dealt with
by rather elementary methods, , quite in contrast to ours which seems to
require an elaborate machinery.

1. - Notations, definitions, and preliminaries.

Inlq, the q-fold Cartesian product of I with itself we define for t =

and for

We let A be a bounded open subset of a threedimensional Riemannian

manifold X. We assume that A is diffeomorphic to the threedimensional
ball B and that aA is of class C4.

Let U be an open subset of X. We consider two situations:

1) aA has positive mean curvatures w.r.t. the interior normal. In this

case, we define

isotopy of class C’

(in particular BK - id for some .K cc U

and all t E [0, 1] ,

injective of class C2,

~(D) meets aA transversally} .
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2) Here, we assume no curvature condition on aA and define

isotopy of class 01,

,K - id f or some _K cc U and all v

cÂ(,2:== {«p(D):9’ :D-7 X injective of class C2, cp(D) r1 A # 0, 4p(aD) c aAl .

Note that here we do not require that q(D) c A or that q(8D ) = p(D) r1 aA.
Also, in the second case, we do not require that the surfaces intersect aA

transversally. Note that 11(U) also depends on A, but we have suppressed
this dependence in our notation, y in order to gain a uniform notation for
both cases. When we shall use a subscript l in the sequel, it can take

either the value 1 or 2 and will refer to the corresponding situation.
If Z is a rectifiable surface hi X, we put

For we define ( a &#x3E; 0)

for all t E [0, I]}.

Furthermore, for

If x: X --&#x3E;- X is a diffeomorphism, we also define supp x as the closure of
the set of x with z(x) # x.

Let

open,

dist ( Ui , UJ»min fdiam ( Ua ), diam (Uj)) for all i, j c- 11, ..., m}, i =A jl ..

Moreover,

By the Nash embedding theorem, X can be isometrically embedded into,
some Itn, and as usual, we have the corresponding inclusion for the space
of k-dimensional . varifolds on X.
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On Vk(RII), we have the flat metric

= sup 

If M is a submanifold of X, we denote by

v(M)

the associated varifold. Vice versa, a I-arifold V gives rise to a measure

Ii ’P 11 on X with support spt 11 ’P 11.

DEF. In case 1), a varifold
ist called e, m almost minimizing i f for each E &#x3E; 0 there exists a &#x3E; 0 and

1: E Mi with and, f or any

for at least one i E fl, ..., m}. We also say that (for this i) V is almost mini-
mizing on U,.

NOTE. This notion is different from the original notion of almost mini-
mizing of Pitts [P]. It is a modification along the lines of [SS] and [GJ2].

We shall usually suppress the dependence on o and m in the notation,.
Let u(O, 0) as sign to t E I the set

Let e’(r) be the positive rotation by yr’r around the xi-axis. We let u(O, 1)
assign to a pair (tl, I t2) E 12 the set

and u(l, l) assign to a triple (tll t2, t,) E 13 the set

Finally, , we assign to each (ti, t2, ts) E 13 an orientation of U (11 1) (tl t2, I t3)
in a continuous way. A change of orientation will be denoted by a minus
(-) sign. This also induces an orientation1 of u(O, 1)(t,, t,). In particular
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and also

and

Let l iB -+A be a diffeomorphism, existing by assumption, and let v(,i j)
be the image of u(i, j) under A, e.g.

We consider Tr(o, 0), the class of v that can be obtained from v(O, 0) by a
homotopy h with the following properties:

with

Furthermore, we require that there exists a Cl-mapping

and that

k(r, t) ) is a diffeomorphism from D onto h(z-, t) for each Tel and tEl.

Thus h(r, t) assigns to t E (0, 1) an embedded disk meeting .A. and to

.t E fO, 1) a point in 8A . We let Y’( o, 1 ) be the class of v that can be obtained
from v( 0, 1) via a homotopy h satisfying

with

for all

We again require the existence of a 01-map k
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so that k(í, tt, t2, .) is a diffeomorphism from D onto h(r, ti, t2) for í, t2 E Ir
o

t1 E I.
Finally, V(l, 1) is the class of v that can be obtained from v(l, 1) via.

a homotopy h satisfying

with

for all (1’, t1, t2, t3) E 14, and of course

Again, we require the existence of a covering of h by a C1-map

for which k(r, t,, t2, ta, .) is a diffeomorphism of D onto h(-r, tI, t2, t3 ) for

T7 t2 7 t3 C 17 tl C- -LT-
We note that each vc-V(i, j) is a 7G2-cycle of X, mod 8A (re8A here

is considered as a surface degenerated into a point), for, if e.g. v Ey’(1, 1),

and

because of (1.5) and (1.6).
We put
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We define the corresponding sets C(i, j) of critical varifolds as

where

A corresponding sequence Vk(tk) is called a minimaxing sequence. We let

O;(i, j) be the set of (e, m)-almost minimizing varifolds (for m = (3Q)3a,
.q == i + j + 1; e will be specified later on) contained in O(i, j) and

If ’ I and we put

We sliall need the following selection lemma.

LEMMA 3.1. Let
. (for a given N E leT) be a standard partition of I a into

-cubes.

For each Q E Q q, let A(a) be a collection o f m : _ (3 Q) 3q open subsets IT i , ... , U,.
-of X and dist (Ui, Ui) &#x3E; min (diam Ui, diam Uj) for i, i e {I, ..., m}, i =A j.

Then there exists a function oc(a) assigning to each a an element of A(a)
with oc(a) n oe(-r) - 0 whenever (1 n í =,p4- 0.

PROOF (following Pitts [P, 4.8 f . ] ) . We can divide Q a into 3tz classes

-El’ ..., Ea’l so that each Bi ( j = 1, ..., 3 a) satisfies :

if (1, í E Ej, or =1= í, and (1 n A =1= 0 for some A E Qg, then r r) A _ 0
(i.e. no two elements of the same class have a common neighbour).

For a E Qa, we put

First for each r E .El and r E u(a) we want to choose Å1(T) C A(r) with

(3Ql’-1 elements so that

is a disjointed family.
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Given (1, we put

We choose ui as an element of A’(J) of smallest diameter. Then, for

each T C- U(Or), there is at most one U E A(í) with

Let

We then choose an element U2 of smallest diameter in U A(1)(í). Again,
f6M(y)

for each í E u(u), there is at most one U E A(l)(í) with

Let

We choose U3 E U A(2)(r) of smallest diameter and repeat this procedure,
1’eu( a)

until, for some r, we have chosen (3Q)3q-1 elements from .d(t). These ele-

ments then form A,(T), and we can discard the remaining elements of JL(r).
We then proceed until we have chosen (3q)3q-1 elements for every re U(CT).
In the same way, for each a E E2 and r E u(a), we choose A,(-r) c A,(r) with
(311) S"-2 elements so that

is a disjointed family.
If we repeat this construction, then .Å3i(7:) contains precisely one element,

and letting a(i) be this element, we have proved the lemma.

2. - The deformation.

From the definition of 0;(1:, j) we infer

with _

m and



410

with

Furthermore, by a redefinition of the parameter s, we can also achieve

Since massbounded sets of varifolds are compact in the F-topology, for
given 21 &#x3E; 0, we can find Vl , ..., Yk E Ce ( i, j ) with

If 1 we can take q = 0.

Let

Furthermore, by a standard compactness argument, there exists

with the property that

if sup and

for v E V(i, j) and t*’E I" then

Let

so will be specified in § 5. It can be assigned an arbitrary positive value
in §4.

Let v E V’(i, j) satisfy
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v will be fixed for the rest of this section. Then, if

and

then

for some k e fi, ...I KI by (2.6), and there exist sets Ui(v(t), Ft!, Vk) and
isotopies 1jJi E I L(v(t), TIi, 8 2) satisfying (2.1)-(2.4).

Furthermore, we can find A =- A(87 t) &#x3E; 0 so that for all -c c- IQ with

It--ri 1, all s E [0, 1[ and all I G (1 , ..., m}

(Here, we use the smoothness of v E Y(i, j) following from the properties
of the homotopy h in § 1 ), and also

We choose t1,..., tQ, using compactness, satisfying

We choose N as the smallest positive integer with the property that for

any t E Iq there exists j E (i, ..., Ql so that

As in Lemma l.ly we choose a partition of I q into cubes of side length 11N.
We denote these cubes by Rz, t = 1, ..., Nq, and their centers by tl, i.e.

Rl = {r E Iq: Ii - tl’ : 1 IN} . For each I , we choose j === j(l) E {I, ..., Q} so
that Rz c R(t;, Âj). If (2.8) and (2.10) hold for t = t9 (j E {I, ..., Q}), we
have corresponding sets Ui(v(tj), 82, Yk) =: Ui(t;), i = 1, ..., m. If (2.8) or

(2.10) is not valid for t = t;, we choose any sets ( Ul(t; ), ..., Um(t;)) E 9.Lm.
Then if,
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we put

The function a of Lemma 1.1 assigns to each RI an open set a(Ri) e A(R,)
so that

whenever B, r) R,:A 0 i.e. the sets assigned to neighbouring cubes are dis-
joint.

Furthermore, it is clear from the above construction and the proof of
Lemma 1.1 that this assignment can also be required to satisfy the boundary
conditions (1.4)-(1.6), i.e. that for example for q ---- 2 the same open set

is assigned to the cubes containing the point (t1, 1) and (1 - tl, 0), resp.
Let s : Rl - [0, 1] be a smooth function with

(Here, we use again the sup-norm

If Rl c R(tj, Åj) and if for some t E Rz

then by (2.11) for s = 0,

If on the other hand

then for t E R,

Moreover, by (2.12), if for some t c- B,
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then

Now, if for some t e R, (2.13) and (2.17) hold then we choose y’ = y’
.(v(t,), 82, Vt), where j = j(l), i is the index with a(Ri) == Ui(v(tj}, 82, Vk)
and k comes from (2.10).

On a(Ri), we then replace v(t) by

If (2.13) or (2.17) does not hold for any t E Rz, we put

v(t) = v(t) on this cube R, .

Outside , we have of course also

Since 8(t, - t) = 1 on R,,

by (2.11), for t c- Ri, if (2.13) and (2.17) hold for some t c- R,. On the other
hand, on each neighbouring cube

Therefore, since each cube has 3q - 1 neighbours, we have for each cube R,
containing some t for which (2.13) and (2.17) hold

Since (2.7) was assumed, we therefore have on eaeh cube B, containing a
t satisfying (2.17)

for all t E Ra.
The construction guarantees that
As a first consequence, we note

LEMMA 2.1. for any



414

PROOF. Otherivise, the above deformation would yield © EY(i, j) satis-

fying (2.22), thus contradicting the definition of x(i, j). (Note again that
we were allowed to take ?y = 0 in the above construction if Ce (i, j ) = 0).

Other consequences will be derived in § 5.

3. - Regularity and control of the topological type of almost minimizing
varifolds.

LEMMA 3.1. Any almost minimizing vacri f old Ve Ce (i, j ) (p &#x3E; 0) corre-

sponds to a disjoint collection of embedded minimal 8urfaces,

where nj E N and Mi is an embedded minimal sur f aee in A meeting aA ortho-
gonally, or Mj is a closed embedded minimal surface inside A (jE{l, ..., il).

PROOF. This follows from §§ 3f of [GJ2] if we replace § 2 of [GJ2] by
Thm. 5.2 of [I] in case aA has positive mean curvature w.r.t. the interior
normal and by Thm. 5.1 of [I] in the general case.

LEMMA 3.2. Let A c X, A being diffeomorphic to the unit ball. If aA has
positive meacn curvature W.ft.t. the interior normal then each Mj occuring in
(3.1 ) is diffeomorphic to a disk or a two-sphere.

PROOF. We can apply the arguments of § 5 of [GJ2] (which were taken
from [SS]) verbatim to demonstrate the claim. Note that we have to use

the assumption that A is diffeomorpllic to the unit ball in order to conclude
that M;, since embedded, has to be orientable.

LEMMA 3.3. Let again A be di f f eomorphic to the unit ball. If we do not
require a curvature condition f or aA, then we can still conclude that each M;
in (3.]) is an oriented sur f ace o f genus zero, i.e. topologically a disk with holes
or again ac two-sphere.

PROOF. Again, Mj is orientable. The argument of § 5 of [GJ2] now
shows that for each simple closed curve y in Mj there exists l E N so that

ly can be homotoped into aA or to a point. Since Mi is orientable, the same
holds for y, and the claim follows.
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4. - Existence results.

THM. 4.1. Suppose A is a bounded open subset of a threedimensional
Riemannian manifold X, A being diffeomorphic to the unit ball, and let aA
have positive mean curvature w.r.t. the interior normal acnd be of class C4.

Suppose that A contains no minimal embedded two-sphere.
Then there exists an embedded minimal disk M in A which meets aA

orthogonally.

PROOF. Lemma 2.1 implies that 0’,(0, 0) =A 0 (for any e &#x3E; 0). The result
then follows from Lemmata 3.1 and 3.2.

THM. 4.2. Suppose A is a bounded open subset of a threedimensional Rie-
mannian manifold, A again being diffeomorphic to the unit ball and aA E C4,
and suppose that A does not contain an embedded minimal twosphere.

Then there exists an embedded minimal surface in A meeting aA ortho-
gonally which is of genus zero, i.e. topologically a disk (possibly) with holes.

PROOF. The result this time follows from Lemmata 2.1, 3.1 and 3.3.

REMARK. The existence of embedded minimal two-spheres in A is

excluded if A has nonpositive sectional curvature, or, more generally, if it
carries a strictly convex function.

5. - Exnbedded minimal disks in convex bodies.

The purpose of this section is the demonstration of

THM. 5.1. Let A be a bounded open subset of R3 with strictly convex boundary
aA E C4.

Let R_l be the largest positive number for which there exists a ball B(x1, R,)
with

acnd let R2 be the smallest positive number f or which there exists a ball B(x2, R2)
with

and suppose

Then there exist three embedded minimal disks in A meeting aA orthogonally.
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We shall first derive some auxiliarly results.
Let w : I --a- tÂt&#x3E;1 be a continuous path. Since w(t), t E I, is an oriented

surface, it divides A into two parts Å1(t), Å2(t), where say, Å1(t) lies on the
side of w(t) determined by the positive normal vector. More generally, we
also consider paths where we allow that zv(o) and w(1) are points in 8A.

LEMMA 5.1. Let w: I --* -K, or w : (I, aI) --* (.X,, aA) be a path with

A,(l) = A2(O). Then, if B(0153o, r) is any ball contained in A, we have

PROOF. If B c A, then we denote by

the 2-dimensional cycles in B mod aB with coefficients in a group G. It

forows from [A] that

and furthermore that the nontrivial elements in n,(Z,(A, 8A ; G), (0)) are
precisely those represented by paths w satisfying

This also implies that a nontrivial element of n,(Z.(A, 8A ; G), {0}) induces
a 110ntrivial element of nl(Z2(B, aB; G), (0)) by restriction onto B c A.

Thus, in particular, y w induces a nontrivial element in nl(Z2(B(xo, r),
aB(x., r) ; G), {O}), and (5,I ) then is well-known (A nonelementary proof can
also be given along the lines of this paper: a minimaxing procedure over
nontriyial paths yields an embedded minimal disk in B(xo, r), cf. [GJ2] ,
and each such disk is planar and has area nr 2 (cf. [N]) ; therefore

where the lllfimum is taken over allllontrivial paths v) -
The following lemma si essentially due to J. Steiner.

LEMMA 5.2. Let A c R3 be a bounded open set with a strictly convex
b,oundary aA of class C2. Let M be an embedded oriented minimal surface
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in A meeting aA orthogonally (in particular aM = M r1 ô.A). Let n(x) be a
unit normal vector at x EM, consistently chosen with the help of the orientac-
tion. For E E R let

be a parallel surf ace. Then, if Ie I is suffi()iently small, e # 0, Me is an
sur f ace with embedded

and

PROOF. (5.2) follows since aA is strictly convex and M meets 8A ortho-
gonally. The second variation formula gives

where .g is the Gauss curvature of M, and (5.3) follows from K  0 and (5.2).

LEMMA 5.3. Let A c R3 again have a strictly convex boundary aA. Let M

be an embedded minimal disk in A meeting a..A,. orthogonally. Then thereex ist8
a path v EV(O, 0 ) with v(l) == M and

PROOF..M’ divides A into two components Å(M) and A,(M). For

i E {1, 2), we define

, isotopy of class C’ (in particular

and

The claim easily follows if we can show p, = 0 for i = 1, 2. Thus, let us
assume

Lemma 5.2 implies
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and therefore Lemma 1 in § 4 of [GJ2] shows that the constraint 11ps(M) I
 JMJ for all s E (0, 1) in the definition cf J i plays no role for minimizing.

Thus suppose that we have a sequence y’ E Ji i with

After selection of a subscqucncc, we get varifold convergence

and the arguments of [I], in particular § 1, Thm. 5.2, Thms. 6.1 and 6.2,
imply that 

-

where nk c- N and M, arc mutually disjoint embedded minimal disks in

A i (note that in order to guarantee that the Mk are oriented we have to
use that there are no unorientable surfaces in the unit ball meeting its
boundary transversally, and in order to guarantee that there arc no closed
components we have to use the Euclidean structure (or at least the non-

positivity of the curvature of) the ambient space). Also, each M,, meets
8A orthogonally.

The minimizing property of Mk contradicts Lemma 5.2, however, , and
thus (5.4) is not possible, and the claim is proved.

LEMMA 5.4 (2). Let A c R3 again have a strictly convex boundary aA. Let

B(xo, .R) be a largest possible ball contained in A.
Let M be an embedded minimal disk in A meeting aA orthogonally. Then

PROOF. By Lemma 5.1, for any v eV(Oy 0)

and hence the claim follows from Lemma 5.3.

(2) Cfr. [Sm].
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REMARK. It is more elementary to prove

where .R is the largest number with the property that for each y E aA
there exists a ball B (x, R) c A with y e 8B(z, R). We can use Kister’s
estimate ( [Ku] , improving the estimate of Hildebran dt-Nitsche [HN])

with 1:= length (8M) together with the isoperimetric inequality

to derive (5.6).

We can now carry out the proof of Thm. 5.1.
Lemma 2.1 implies that corresponding to m(O, 0), x(O, 1), and x(1, 1),

we find almost minimizing varifolds Vo,., v;.,1 and Yl,l. By the regularity
results of § 3,

where n,, c- N and M:,; 3 are embedded minimal disks meeting aA ortho-

gonally.
Obviously,

On the other hand, by Lemma 5.4

Therefore, if R1/R2 &#x3E; I/V2, in each sum, there is only one nontrivial sur-
face, and this surface is of multiplicity 1.

If R,,/B, = I/V2, we can find a path v e V(I, 1 ) so that each v(t) is the
intersection of A with a plane and
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If X(j, 1) = nR2, it follows that there exists t c 13 for which v(v(t)) is

almost minimizing, i. e. it meets aA orthogonally, and we see again that
in each sum there is only one nontrivial surface, of multiplicity 1 as before.

If on the other hand x(1,1 ) ;rR’, then this property is deduced as before.
Therefore, the result follows if we have the strict inequalities

Thus, ,ve only have to discuss the cases where instead of (5.7), we have

equality somewhere. For this discussion, y we need the constructions of

Lustermk-Schnirelniann theory. We shall use the presentation in the ap-
pendix of [Kl].

We suppose that v c- V(O, 1) satisfies (2.7), i.e.

We then apply the deformation of § 2 to construct a path v E V’(o, 1)
satisfying in particular (2.22).

Let

be continuous with and

Then vol is a 1-cycle mod 2 of tÅt1, homologous mod 2 to viI X {0} modulo
aA, which is seen as follows. ,

Let

with

Thus

modulo 8A, since ;eoLI{01 Xl is a curve in aA

mod 2

because © satisfies the boundary condition (1.1) (via (1.4)).
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We now assume x(0, 1) = x(07 0) = : x.
We discuss two cases:

for some positive values of the parameters e, q, eo (note that the deforma-
tion leading to v did depend on these parameters). We then look at all w
that can be obtained from vol via a homotopy h of the following type

and we require that there exists a 01-map

so that k(r, ffJ, .) is a diffeomorphism from D onto h(T, 99) for (7:, q) E I’.
We denote the class of such w by W.
Let

Since any WE W satisfies A1(1) == A2(0) because of (5.9), Lemma 5.1 implies

The deformation of § 2 can be used with x’ instead of x(i, j) and W

instead of V(i, j) to yield the existence of a e, 27-almost minimizing
varifold V (for any e &#x3E; 0). By the regularity results of § 3, V yields an
embedded minimal surface M, of genus zero meeting aA orthogonally
with multiplicity m &#x3E; 1.

Lemma 5.2 implies

Since on the other hand
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we infer m = 1. The same argument shows that the support of Y’ is con-

nected, i.e. V yields precisely one embedded minimal disk. Also, since

we infer

for all positive n, eo. 
"

We let N’(G,(O, 1), ?y) be the image of V (V (12 r1 N(Cf (0, 1), q) under
the deformation of § 2.

We want to show that 0;(0, 1) contains arbitrarily many elements if p is
chosen small enough. Thus, in particular, by the regularity results of § 3,
we can obtain infinitely many embedded disks.

Let us assume on the contrary that card (Ce(o, 1)) is bounded from

above independently of e. Since each element of 0;(0, 1) corresponds to
an embedded minimal disk (using § 3, as already mentioned) of area (at
most) x, we can find a ball B(xo, 4r) c A with

supp (

for some ) and all

(Note that if , I
We now fix

We then choose n so small that for all with

for some prescribed
By (2.11), if then for all t E Rl

We 110W let

If thus 
"

and hence for t E B,

for all

using (2.2) (note that in the deformation of § 2, we had chosen 6 = 82).
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Hence f or t with

We then choose Il and 80 (and consequently q and 8; note that 880) small
enough to guarantee

Therefore, if i since then
,

we have

Let

Because of (5.11),

Since the boundary conditions (1.4) lead to an identification of 1 X {0} and
I &#x3E;C {1} making J2 into a M6bius strip, and therefore any two nontrivial
1-cycles in general position intersect in an odd number of points, (5.15)
implies that Q carries a nontrivial 1-cycle. (Clearly, we can make the cons-
truction smooth enough that every connected component of Q is path-
connected.) This means that there exists a map

so that

Since voÂ represents a nontrivial path, however (5.14) contradicts Lem-

ma 5.1.

This proves that in case 2), we get infinitely many embedded minimal
disks.

Similarly, let v E V’(1, 1) satisfy

sup 1,

The deformation of § 2 yields v E V’(1, 1 ) satisfying (2.22).
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Let

be continuous with

and

and

Then

mod 2

since the second and third term together give rise to a trivial cycle.
Thus, vol1 is homologous mod 2 to lY)I2 X{01 modulo aA.
Also, 001 is homotopic to VI{I{XI2. We are now able to discuss the case
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As before, we distinguish two cases

Then we again look at the class W1 of those w that can be obtained from
volt through suitable homotopies (satisfying the appropriate boundary and
smoothness conditions; we omit the details). Let 

’

We note

Thus, the previous construction implies that we can find two distinct

embedded minimal disks of area x ".

(for all positive e, q, Eo ) .
Then one finds again a nontrivial path with image in :

. (this time, the path is homotopic to
Therefore, again the set of almost minimizing varifolds and hence of em-
bedded minimal disks has to be infinite.

This completes the proof of Thm. 5.1.
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