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Isoperimetric Inequalities in Parabolic Equations.

J. MOSSINO - J. M. RAKOTOSON

0. - Introduction.

Consider the parabolic equation

in

on .

for

where Q is a bounded regular domain in

aij satisfy the uniform ellipticity condition (with constant one)

c, uo and f are non-negative functions; their regularity will be precised
later on.

Consider also the equation

in

on

Pervenuto alia Redazione il 29 Ottobre 1984.
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where D is the ball of RN, centered at the origin, which has the same measure
as Q, and ’!!:o (resp. jf(~’)) is the rearrangement of ~o (resp. f (t, ~ )) in f2, which
decreases along the radii. This rearrangement is defined as follows.

If v is a real measurable (1) function defined in [1, the decreasing rear-
rangement of v is defined in tJ* = [0, ~,~~], by

where Iv &#x3E; B~ = meas {x E £2, v(x) &#x3E; 0} (for any measurable set E, we denote
IBI its measure). The spherical rearrangement of v in S2, which decreases
along the radii is

for

where aN is the measure of the unit ball of RN. If v is defined in (0, T) X S~,
and is measurable with respect to the space variable x of Q, we consider
its rearrangement with respect to x :

C. Bandle [2] proved that every strong solution u of problems (1) satisfies

which leads to

J. L. Vasquez [9] obtained the same result, if u is a weak solution of a

degenerate parabolic equation, the equation of porous media:

in ~ 

for

where cp : R+ -&#x3E; R+ is increasing and continuous, = 0. He used the

(1) In the whole paper, we consider the Lebesgue measure.
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semigroups theory, y and the isoperimetric inequalities for elliptic equations
(see [7] for example).

In this paper, we give a direct proof of (6), (7), valid for every weak
solution of problems (1) (see Section 2).

Our method relies on the calculation of the directional derivative of the

that is v*u = lim ((u + ~,v)*- u*)/Â. This calculation was

made first by J. Mossino and R. Temam [6], with a direction v in 
In the first section, we extend their result to functions v in 

(1  p  + o). Moreover we prove that, if u belongs to T ; 
then u* belongs to T ; Lp(Q*)) and

Besides, is shown to be constant on every set where u(t,.) is

constant. The last formula is a crucial point in Section 2.

1. - Directional derivative of the rearrangement mapping.

In this Section 1, we assume that S~ is a measurable subset of RN 
 oo, N &#x3E; 1). For the sake of completeness, we first recall some properties
of rearrangements (see the proofs in [7] for example), y and a result of [6].

1.1. Properties of rearrangements.

Let u be a measurable function: Q -+ Rand u* be its increasing rear-
rangement, defined by (2) and

An essential property of rearrangement is that u and u* are equi-measurable:

which implies

for every Borel measurable I’’: R - ll~+. Here are some other properties
of the increasing rearrangement mapping.
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(a) If are two measurable functions such that u., - U2 almost

everywhere, everywhere.

(b) For all constants

(c) More generally, if 99 is an increasing function from R into R, then
(99(u))* = 99(u*) almost everywhere.

(d) The mapping ~c~ ~c~‘ applies into It is

contracting and norm-preserving.

(e) If u is in Lv(D), v in then

This inequality is due to Hardy and Littlewood.
We shall use a slight extention of (d) :

1.1. Let u : f2 ---&#x3E; R be measurable, v in Then

belongs to L1J(Q*) and

This lemma was proved in [7]. For convenience, we reproduce the proof
here.

(i) If p = oo, we have

By properties and (b) above,

that is

(ii) If p  ao, we use the truncation
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Then f n(u) and f n(u + v) are in By (c) and
these functions are in and

(as f n is contracting). Then, using Fatou lemma,

1.2. Directional derivative of the rearrangement mapping. Relative rearran-
gement.

First, we shall recall a result due to J. Mossino and R. Temam [6].
Consider a couple of functions (u, v), u: S2 -* R is measurable, v is in

Lp(Q) (1  p s oo), and a parameter A &#x3E; 0. By Lemma 1.1, (u + ÂV)*- u*
belongs to Lp(Q*), and we can define

Thus, By Lemma 1.1.,

We are going to show that tends (in the sense of distributions) to
,dwlds, where

otherwise , y
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is the restriction of v to

in [6].

The following was proved

THEOREM 1.1. If n is a measurable function from Q into R, r is in 
then w is lipschitz,

and, when 2 decreases to zero,

that is uniformly ;

in weak 4: . 0

We shall extend Theorem 1.1 to functions v in

THEOREM 1.1 bis. Let u, v be two measurable functions from Q into R, 17
in Then w belongs to 

and, when A decreases to zero

in the sense of distributions:

(In particular, - dwjds in if 1  p  00, in 1’(D*)-
weak * if p = oo) . CJ

PROOF. Consider wn in wÀ,n, wn are associated to (u, v.,,) as in

(1.4), (1.6). We have

By Lemma 1.1,
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and, clearly,

Then

By Theorem 1.1. (i), w~,~ tends to wn in
zero,

NVhen A decreases to

We deduce (i). Evidently (ii) follows, y as, with 99 in

(by (i))

Now, we shall, prove that is in Lp(Q*), and satisfies (1.7). Taking
again q in we have by (1.5)

From ( i ), it follows

If p &#x3E; 11 is the dual of Z"’(D*)y and we get immediately (1.7). In

any case (p &#x3E; 1), we can use the following argument. Let wn be a sequence
in L’(D). As previously, y one can prove that

-for any p &#x3E; 1, and, consequently, y (passing to the limit) for p &#x3E; 1. Now
consider vl, v, in (p &#x3E; 1), vin (i = 1, 2) in vin - vi in 

.wi7 w;n are associated to (u, Vi) and (u, vi,,) respectively as in (1.6). By (1.8),
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dWin/ds is a Cauchy sequence in Lp(Q*). As
win tends to w, in (£°([0, IS21]), dWinfds --&#x3E; dwilds in Lp(Q*), and, by passing
to the limit in

we get

With we get evidently (1.7). D

Relative rearrangement.

DEFINITION. According to J. Mossino and R. Temam [6] the function~

dwjds is called the rearrangement o f v with respect to u, and is denoted by 
The usual rearrangement of a function is also the rearrangement of

this function with respect to a constant (u: = u*) or with respect to itself
(u* = u*). More generally, if a Borel function .F’ : R ~ R, and a measurable
function u : S~ -~ 1~, are such that is in then F(u*) is in 

(by (1.2)) and (~(~))~==F(~). In fact with

if

otherwise,

with

if

otherwise

(by (1.2))
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However, generally, v* is not an increasing function, the property of equi-
measurability and properties (c), (e) above, for the usual rearrangement, do
not seem to have their analogue for the rearrangement of a function with
respect to another one. But we have, if v is in (1  p  oo), u: Q - R
is measurable

implies

In fact, with 99 in

by property (a).

(b’ ) For all constants

In fact, with 99 in Z(S2*),

(by property (b))

(d’ ) If u : Q - R is measurable, the mapping is a contraction

from into as we have seen in (1.9).

( f’) Besides, the mapping preserves the in-

tegral :

One can also define another rearrangement v*u which is relative to the
directional derivative of the mapping u - u* (the decreasing rearrangement
of u):
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(the limit is taken in the sense of distributions),

(by (1.1)). Thus

1.3. Symmetrization of a f amity of functions.

In this Section, u: will be a function defined every-
where in [0, T], and almost everywhere in For all t in [0, T], we
denote by u(t) : Q - R, the function u(t)(x) = u(t, x). (For a fixed t, if no

confusion is possible, we shall sometimes write u instead of u(t).). We as-
sume that u(t) is measurable for every t in [0, T]. Then, we can define the
function u* : [0, T] xD* -~ R, the increasing rearrangement of u with respect
to the x variable in Q, that is:

We consider now another real function v defined almost everywhere in
Q = such that, for almost every t in (o, T), v(t) is in 

(1  p  -f- o). Then, we can define as in Section 1.2, (v(t))*(t), which is
in 

We denote the function defined almost everywhere in Q* = (0, T) x S2*
by

The aim of this Section 1.3 is to study the regularity of u* with respect
to t (assuming a certain regularity of u with respect to t), and to compute
8u*j8t. We have

THEOREM 1.2. If u belongs to then u* belongs
to and

Moreover

(in the sense of distributions)
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where

otherwise .

PROOF. As (by (1.2)), we have

Besides, by (1.12), (1.13)

Thus, we have only to prove (1.15), (1.16). Our proof uses the following
lemma (see its proof in the Appendix).

LEMMA 1.2. Let u be in .

Consider a fixed number E &#x3E; 0. When h tends to zero, rh tends to zero in

with a = Min (p, 2),

Let 99 be in and let s &#x3E; 0 be such that the support of cp is included
into Consider 0  h  E. We have
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The first integral in the right hand side is where

a.e. t ,

(by Theorem 1.1 bis), and

with llp + 1 (by property (d’) above). Using Lebesgue theorem

The other integral is majorized by

with

which tends to zero with h, by Lemma 1.2. Thus

But, classically y

We conclude that, in the sense of distributions,
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A direct consequence of Theorem 1.2 is the following

PROPOSITION. Assume u belongs to Hl(O, T; .Ll (SZ)) . Then, for almost
every t in (0, T), is constant (almost everywhere) on any set where
~c(t, ~ ) is constant (almost everywhere).

PROOF. If, in the proof of Theorem 1.2, we consider h  0, we get

which tends to Thus, one has, in the sense of dis-

tributions,

and

with

otherwise.

The last integral is also

Now, fix t in (0, T), such that awlas = ow’ /08 (in (this is true for

almost every t in (0, T)), and consider a flat region of u(t) :
Set As one

has
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for all s in Q*. Moreover, y for all s in one has, by definition of w
and w’,

In particular,

that is is constant almost everywhere on Pe(t). D

We shall give now the application to parabolic equations.

2. - Isoperimetric inequalities for linear parabolic equations.

Let us consider first the parabolic equation

in

on

in

where S~ is a bounded regular open set in RN,

We denote by A(= A(t, x)) the matrix (aii(t, x)), as well as the bilinear
form on RN associated with A., and we assume that A satisfies the unifomr
(with respect to (t, x)) ellipticity condition:
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Furthermore, we assume that the data satisfy:

uo are non-negative functions; c, are in 

aaijlat are continuous in Q, f is in L2(Q), and uo is in H’(92).

Then, the solution u is in is in

pp. 113-114, and [4] if 

Let us introduce the problem

in

on

in

f2, 1, yo are as in the Introduction.
We are going to compare the solution u of (2.1) with the solution U of

(2~1). More precisely, y we have

THEOREM 2.1. With the assumptions above,

where W e deduce

PROOF. For a fixed t E [0, T], we denote for convenience u = u(t),
f = f(t) .... We argue as for the elliptic problem (see [8], [7]). By the
maximum principle, we 0. For any 0 &#x3E; 0, we get from (2.1),

Thus, as in [8], [7], a simple derivation gives:
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The uniform ellipticity condition and the Cauchy-Schwartz inequality
lead to

where and, by (2.5),

Using a result of Fleming-Rishel, and the isoperimetric inequality for the
perimeter in the sense of De Giorgi, we find

Hence, combining (2.6), (2.7),

By the inequality (1.3) of Hardy-Littlewood,

if we set

For almost every 0, ju = 6j = 0, and = 0 because u* is continuous
in ]0, (as u is in non-negative, then g is in Ho’(f2), see [7], for
example). By Theorem 1.2
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with

Thus

if we set

Thus

From (2.8), (2.9), (2.12), we get

As is continuous in D*, then, the function H(t, -) defined
in S~* by

is continuous in ]0, IDI]. By integrating (2.13), we get, for any

Thus, as in [7], one has for almost every s in Q*,
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Ilence, k satisfies

Let where U is the solution of (2,1). We are
u

going to show that the equality is achieved in (2.16) for .K instead of k.
By the maximum principle, U(t, ~ ) decreases along the radii in and

(2.1 ) can be written

in

By integrating between 0 and s, using the fact that = o(S)
when s tends to zero (see the remark below) we obtain

in

REMARK 2.1. Using Cauchy-Schwartz inequality in the first line of

(2.16), we get

Now, setting

a.e. in

The first inequality in (2.2) will result from a maximum principle for X:
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LEMMA 2.1. Let One has y  0

everywhere in Q*.

PROOF OF LEMMA 2.1. Multiplying the inequality in (2.17) by
we get

a.e. in

For fixed t, we shall for simplicity, instead of 2~(t), X(t) ....
We shall also denote by [ ] a function of t, independent of s. First we prove
that i - 

is in In fact, by Remark 2.1,

On the other hand

Thus,

which belongs to By integrating by parts, we are going to prove
that is non-positive. For a &#x3E; 0, as X belongs to W2° (ac,

*

IQI) by (2.19 ), the following integration by parts is justified

(we used the fact that by (2.17)). When a tends to zero,
the two integrals tend respectively to ds and ds

as X, belongs to Now we prove that tends to zero
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with a. One has

(by (2.19)).

By (2.20),

which tends to zero with a. From (2.21), we get

From (2.18),

It follows in

Now we shall prove the second inequality in (2.2). Let us consider the

equation satisfied by .g in Q* :

Thus

By integration, we find

Now, (2.3) is a simple consequence of a lemma in [2] (p. 174), for all r
in [1, oo[, and then for r = oo.

REMARK 2.2. If f ,~ (t) is absolutely continuous in [0, for almost

every t in (0, T), then we can obtain an isoperimetric energy inequality:
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we get from (2.1)

(by Hardy-Littlewood inequality)

(by Theorem 2 .1 )

Using the uniform ellipticity-condition, we have

and, by integration

Appendix.

In the proof of Lemma 1.2, we shall use the following lemma, whose
proof is easy (see [1] for example).

LEMMA A..Let v in If we have
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PROOF OF LEMMA 1.2. If u belongs to . then u and

belong to

and

that is

We can apply Lemma A, with For we have, with

By integrating over ,~, we get

1) If p &#x3E; 1 (then oc &#x3E; 1 ), it is easy to prove that in

weakly. Then, classically, y by I in . for the strong
topology.

2) If p = 1, then ot = 1. There exists a sequence un in
such that in Let

We have, with the norms,

We have just seen (case p &#x3E; 1) that rAn ~ 0 in L2(Qs) (and consequently
in Besides, by Lemma A,

Thus

which tends to zero with n. It follows that rh ~ 0 in and Lemma 1.2

is proved.
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