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Biholomorphic Equivalence of Bounded Reinhardt Domains.

TOM BARTON (*)

Introduction.

A domain D in a complex Banach space L~’ with basis (e,JnEN is said to
be .Reinhardt (w.r.t. (en) ) if it contains the origin and is invariant under
the transformations

It is known that E contains a bounded Reinhardt domain precisely when
(en) is unconditional. In this case, an appropriate diagonal linear isomorphism
T: E -+E normalizes D, i.e., I

and

where D = TD. E may then be given an equivalent norm 11.B1 )) for which

co(D) is the unit ball and (en) is 1-unconditional.

Let D and 1) be bounded normalized Reinhardt domains in E and,
w.r.t. the 1-unconditional bases (en) and (i.). D and D are said to be
biholomorphically equivalent if there is a biholomorphic map 1p: D -~ l~.
In [10], Sunada has shown that for finite dimensional and R, D and 15
are biholomorphically equivalent iff there is a surjective linear isomorphism

which is basic, i.e., there is a permutation a so that T (en)
= e(Jcn) dn. We extend this result to infinitely many coordinates.

The methods used in [10] are Lie algebraic and peculiar to finite dimen-
sions. We’ll deduce the theorem instead by using the D skew-hermitian
operators on .E to examine the II. II isometric structure induced by D on

(*) Current address: Dept. of Math. Sciences, MSU, Memphis, TN 38152.
The results of this article are contained in the author’s Ph. D. thesis, written

at Kent State University.
Pervenuto alla Redazione il 4 Dicembre 1984 ed in forma definitiva il 28 ot-

tobre 1985.
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the coordinate subspaces of E. Specifically, we’ll find a maximal partition
of N such that Ec = [ei : is isometrically Hilbert space and Dc = D

is the Hilbert unit ball Yo G lf, and such that x E D is determined by
the sequence where ll’112 is the Hilbertian norm on E~ is

the canonical projection of x onto jE’c.
For D = B 11 this structure was studied by Schneider and Turner [8] in

finite dimensions and by Fleming and Jamison [4, 5] and Kalton and Wood [6]
in infinite dimensions, where are referred to as the Hilbert

components of E. Stach6, using different methods, re-discovered Hilbert
components in [9]. The papers of Vigue [12] and Barton et al. [2] using
Jordan theoretic techniques developed principally by vigue [12] and Braun
et al. [3], may be viewed in part as uncovering certain Hilbert components
of .E’ induced by arbitrary bounded Reinhardt domains admitting of a non-
linear biholomorphic automorphism.

In § 1 we’ll use an elementary argument to establish the Hilbert compo-
nents induced by a bounded normalized Reinhardt domain D. The argu-
ment is motivated in part by Auerbach [1], in which it is shown that a

bounded group of linear transformations is a subgroup of a group of unitary
transformations. We’ll see in particular that the Hilbert components induced
by D are generally proper subspaces of those induced by co(D). In § 2
we’ll prove Sunada’s theorem. The argument here is standard; half of it
is similar to that of [5]. The normal. f orm of a bounded Reinhardt domain

(cf. [2]) is described in § 3. This form shows the very special geometric
structure required of a bounded Reihardt domain to support a nonlinear
biholomorphic automorphism. A subset of the Hilbertian components
induced by D can be computed from the parameters of the normal form,
and these parameters furnish a set of biholomorphic invariants of D.

§ 1. We first recall some background (cf. [11]). Let D be a bounded
domain containing the origin, y and let Go(D) be the linear and continuous
automorphisms of D. The infinitesimal transformations of Go(D) are a
Banach Lie sub-algebra g (D)+ of the linear operators on E, called the
D skew-hermitian operators on jE7. g(D)+ is closed under the Lie bracket

Represent f E g(D)+ as a matrix where

and e* is the coefficient functional associated with When D is Reinhardt,
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ia E g(D)+ whenever is a real diagonal matrix (aj) since

Let h be a linear operator on E such that zh E g(D)+. Then for any real

diagonal matrices a and b,

In particular, choosing ak = 1 and ai = 0 Vi -=1:= k, and b = 1, b i = 0 
for some 7~ ~ Z, we find that + hlkelk) E g(.D)+ where eij is the ele-

mentary matrix with a 1 in the (i, j)th place and zeros elsewhere.
Let ~7 be a bounded normalized Reinhardt domain.

LEMMA 1: (compare with [9, Lemma 3.6] and [6, Proposition 4.2]).
Let h; ~ Z. Then the following acre equivalent:

such that

and 1 imply

PROOF. Suppose (i) holds. We may assume + E g(D)+
for some e C with 0. Let g = exp (ith) for arbitrary t e M and

write [ek, et]. Then is the identity and E Go(Do),
i.e., we may assume that D = Do and ih c- By calculating exp (ith),
t E Rt, one easily finds that and where y2 = 

Since Do is normalized,

and

Since E aDo, we may choose 1,11 as near to 1 as we please, and so con-
clude that = 1. Similarly, y = 1. It follows that

The argument of [6, Proposition 4.2] can be easily adapted to complete the

proof of (i) =&#x3E;(ii).
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Now assume (ii) holds. Let = 1, fix and let

for arbitrary Then so This shows

+ E g (Do)+.

REMARK. satisfy (ii), the above arguments shows that any g
in GO(B,:) is naturally in Go(Do), and gtf) Go(D). In particular,
for each x E E there exists g E Go(D) with

Define a relation on N if k = I E g(D)+ with f,, i ~ 0. The
The proof of (i) =&#x3E;(ii) shows that 1 so ~ is symmetric. If

and + pen) are in g(D)+, then so is their Lie bracket,
which is So - is an equivalence relation. Let

denote the induced equivalence classes. For let x, be the canonical

projection of x onto .E~ = [ei : i E c], c c- W. Write D~ = D n E~, and for
each c choose a distinguished ic E c.

If, I for some c and x E E, x, has only finitely many- nonzero co-

ordinates, then the remark following Lemma 1 may be repetitively applied
to find a g E Go(D) such that

where

Let and let such that Then

3Uc E Go(D) such that

By composing the automorphisms g, we get a gn E Go(D) such that

where the summation is over all c c- V with c n ~1, ... , n~ ~ 0. Since Go(D)
is naturally embedded in Go(co(D) ), every g E Go(D) is a 11 - 11 -isometry. Hence,
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if m &#x3E; n, then

So converges in E. Also,

so and consequently both converge to an ele-

ment in D if and only if x E D.
Should for some then 11 y, 11 = Ilgnynll 11 = dn. Hence

II xii ~~ - Summarizing the above discussion, y we’ve shown (compare
with [4, Lemma 4.2]):

LEMMA 2. Let Then Furthermore,

As a consequence we obtain

LEMMA 3.

PROOF. By the normalization of D and Lemma 2 we may consider D,
to be a subset of BZ2. Since D~ contains a relatively open neighborhood of
the origin y 301 such that implies teic E Dc. By Lemma 2,

Hence, the 11 - II and II. 112 topologies on E c coincide. Thus, D
is an open connected subset of BZ2. Since each of the sets

and

is open and nonempty, their union cannot exhaust Dc. Therefore, Vo  t
 1 with t. Another application of Lemma 2 completes the

proof .

It’s now a small step to

PROPOSITION 4.

PROOF. Let g, c- Go(Dc) Vc and let g = Let z c- E. By Lemma 3,
le
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so by Lemma 2

iff

iff

iff

iff

We conclude this section by noting that the embedding of Go(D) into

Go(co(D)) induces an embedding of g(D)+ into g(co(D))+, and so CC refines
the equivalence classes induced by co(D). The refinement is strict in general
as is apparent from the example

where 0  + la212  1. Choosing fall -=1:= la21 I ensures, in particular, that
the map g E Go(Bz2) given by g(e,) = e2 and g(e2) = e1 is not in Go(D).

§ 2. In this section we prove our main result.

THEOREM. Let D and D be bounded normalized Reinhardt domains in E
and -R with respect to the bases (en) and (en). Then D is biholomorphically
equivalent to 15 i f and only if there is a surjective linear isomorphism ~S’: E 
taking D onto .D such that = for some bijection a: 1~T -+ N.

PROOF. Sufficiency is trivial.
Suppose that D is biholomorphically equivalent to D and let y : D - j8

be a biholomorphic mapping. We first show that there is a surjective linear
isomorphism T: ~ 2013~jS taking D onto D. The argument is standard. For
x E D denote the orbit of x under G(D), the biholomorphic automorphisms
of D, by

If f E G(D), then so

Hence,

Likewise,
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Thus,

Kaup and Upmeier [7] have shown that

is a closed complex submanifold of D~ .

Since preserves these properties, is a closed complex submanifold
of D. Hence, 1p(0) E G(.D) ~ 0, and so 3g E G(15) with = 0. By H.
Cartan’s theorem, gy is linear. T = gy is the desired mapping. Observe
that by Proposition 4 and Lemma 1

if and only if

where ihc E g(D~)+ for all c E ~.
List the elements C2, 9... I , and ¡¡ = ~cl , c2 , ... ~ , where each

set is finite or infinite according to the cardinality of ~ and Write

and

where

where

Fix k and Since it

follows that Hence,

for some where 0 is the zero map on EN-,,,. Consequently

for all and

Since T is invertible there is a j with ~~0. Because every

may be written g = .~ hl - h2 , where .~ hl , .~ h2 E g (D~k)+. Hence

(2.1) implies T’yk = 0 for all Since T is invertible, T~,k ~ 0. Thus

for each k there is a unique j with This defines a map

by
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T’s invertibility ensures that T is a bijection. Consequently,

Hence, there is an appropriate choice of so that T is the

desired mapping. N i’

§3. We first recall some notation and background (see [2] and [12]).
Suppose that D supports a nonlinear biholomorphic automorphism, so that

?(J9)’0 D {o}. Then with .E’1= rei: = [G(D) . 0], a partition
of I with and and nonnegative con-
stants with sup so that

where J = a?~ denotes and

We’ll abbreviate these notations by writing

where For each k E J, define

Then and U J. Thus, the distinct members Y
k

of form a partition of J. For j, we write rp,s for the

common value of rp,i and r1J,k, and we write qJs for the function

With these notations,

and
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where xs is the canonical projection of x onto E = [eZ : i c sl - Observe

that, since g~s (x~) depends only on ( ~~ xp ~~ 2 )pE~ ,

Associated with D is its triple We’ll not study
the triple product here, but simply use several properties it possesses,

namely that it is symmetric bilinear in the outer two variables, conjugate
linear in the middle variable, and satisfies

where (- I -) is the inner product on E1). In [3] and [12] it’s been shown that
ih E g (D)+ implies

It may occur that in which case Dl may be decomposed

Assume this process continues at least n times, y so

Write etc., for the quantities and objects associated with Dk-l,
Define
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THEOREM. determines the Hilbertian components
induced by

The theorem is established by the following two lemmas. Note that if
then 3pEØJk with c C p, so

LEMMA 6. If ih E g(D)+, then

PROOF. Choose and Then

So

Now choose 80 and let p and i be as above. Then for y E Eso’

Since = 1, this implies that

for all for which (h(y)),, 0 0. It follows from the definition of 5°i
that ( h ( y ) ) s = 0 Thus VSEY1. In particular, h decom-
poses so that ih E g(D1)+. Hence, the above argument can be repeated
for D1, ... , lJn-1 to yield

Taking intersections completes the proof,..

In view of Lemma 1, Lemma 6 establishes that for each there

is c’ c le with c’ C c. The reverse inclusion follows from
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LEMMA 7. Let CoECCk for some 1 c k c n. Suppose yi = xi Virtco and
that BlYcoll2= Then 

PROOF. It suffices to show that if go E Go(DcJ = Go(Bzs)’ then g =

g. (D E Go(D). Write Co =81() ... r1 8k-1 m Pk for some Efi 
Fix and If sosi, then glB,= id. If s = si, then glR,
= 900+ 7 so g(Es) ç .Es. Hence,

It follows that

and

and

which is implied by E Go(D1). Repeating this argument k - 1 times
we see that

Since the proof is complete.

We conclude this section with the following:

PROPOSITION 8. Let D and D be biholomorphically equivalent bounded
normalized Reinhardt domains in E and R. Then the matrices and

agree up to a permutation.

PROOF. In light of the Theorem of § 2, we may assume there is a basic
isomorphism T : and a bijection -r: V - such that T(Ec) = .,z
Vc By [12, Theorem 2.1], TIBl =..8¡ and TIDl = and if ~ E E¡,
x E E, then

where all quantities with a « -)} above them refer to D. In particular, y
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and Then

Since we have

Using the definition of , it follows that there is a -unique .9, depending on s,
with (T()).0y and that The map s - s(s) deter-

mines a since T is invertible. Evidently, y

REMARK. If D can be decomposed n times, iteration of the above argu-
ment shows that .D can be decomposed n times, and that k,.9,,, and

agree up to a permutation 
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