
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

MICHAEL GRÜTER

JÜRGEN JOST
Allard type regularity results for varifolds with free boundaries
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 13,
no 1 (1986), p. 129-169
<http://www.numdam.org/item?id=ASNSP_1986_4_13_1_129_0>

© Scuola Normale Superiore, Pisa, 1986, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1986_4_13_1_129_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Allard Type Regularity Results for Varifolds
with Free Boundaries.

MICHAEL GRÜTER - JÜRGEN JOST

1. - Introduction.

In this paper, we investigate the behaviour of rectifiable n-varifolds

near the free boundary. Assuming the varifold V intersects a hypersurface
in orthogonally (in a generalized sense) and that its mean curvature
vector lies in some L? witm p &#x3E; n, we show that V is a submanifold of Rn+k

(with boundary) with tangent spaces varying Holder continuously, locally
diffeomorphic to a half ball provided it is already close to a half ball in the
sense that the mass of V inside small balls centered at the free boundary
is not much larger than half the volume of the n-dimensional ball with the
same radius and the density of V is at least one at almost all points
of its support. For a precise statement of the main result, see Theorem
4.13. Some of our lemmata, like the reflection principle 4.11 (iii), or

the monotonicity formulae, 3.1, 3.4, 4.11 (ii), should also be of independent
interest.

As the title already suggests, our work may be considered as an extension
of earlier results of Allard [AW1], [AW2]. We also use some of the tech-
niques presented in the lecture notes [SL] of Leon Simon.

Recently, free boundary value problems for minimal surfaces have at-
tracted much interest, and with the help of the results of the present paper,
we can actually solve a well-known geometric problem, namely to show the
existence of a nontrivial minimal embedded disk inside a given convex
body in R3 which meets the boundary of this body orthogonally. This is

carried out in our companion paper [GJ].
This work was carried out at the Centre for Mathematical Analysis in

Canberra. We thank Leon Simon for inviting us to Canberra and thus

Pervenuto alla Redazione il 15 Febbraio 1985.
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making it possible for us to work in the very enjoyable atmosphere of this
Centre. We are also grateful to him as well as to John Hutchinson for several
helpful discussions.

2. - Notation and basic definitions.

We shall deal with rectifiable n-varifolds in which can be described

as follows. For further information the reader is referred to [AWI], [AW2]
and especially to [SL]; the general reference concerning geometric measure
theory is of course [FH].

If is countably n-rectifiable and JC*n-measurable, and 6&#x3E;0 a

locally Jen-integrable function on if we define the rectifiable n-varifold
v(M, 0) as the equivalence class of all pairs (M, 6), where M is countably
n-rectifiable with u M)) = 0 and where 6 =6, Jen - a.e.
on if r1 lit.

As usual we call 6 the multip Zicity f unction of v ( M, 0).
is a C 2-submanif old of dimension m - 1, we use the following

notation.

For b E B let

and

where A1 denotes the orthogonal complement of a subspace A c 
For convenience we denote by 7:(b) and v(b) also the orthogonal projections

of Rm onto these spaces. We assume that x &#x3E; 0 is the smallest number such
that

whenever b, b’ E B, and if a E Rm we set e(a):= dist (a, B). x-1 may be

considered as a radius of curvature for B. If and if there exists

b E B with = la- bl, then b is unique and is denoted by ~(a), so that ~
is the projection onto B.

For the proof of the following lemma the reader is referred to [AW2],
Lemma 2.2.

2.1 LEMMA:

(i) ~ is defined and continuously differentiable on an open set.
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is symmetric, and

2.2 REMARK. We use two equivalent norms on Hom (ltm, If

A E Hom (Rm, Rm) we set

and

we have the inequalities

We now assume so that

well defined.

In this case we set

then x is the reflection of x across B and we note that

and

If w E Rm we set

Then ix is an isometry with
If b E B we get from (*)

which implies for

where
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If we have for

because" :!.
This on the other hand implies

as well as

We denote by wn the volume of the n-dimensional ball of radius one.
In the course of the paper C will denote different constants. The pa-

rameters on which C depends will be obvious from the context.
We often write x E as

and denote this orthogonal splitting of Rn+k by

Also in this notation

3. - Monotonicity results.

Let be a C2-submanifold of dimension n -~-- 1~ - 1
having the following properties (compare section 2 for notation):

(i.e. B has no boundary inside B1(0)) .

Then for each a E B1(O), ~(a) E B is defined and thus consists

of two open components B1(O) and B1(0).
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In this section we assume V= v(M, 0) is a rectifiable n-varifold such

that

whenever with for and where

From now on we write Il = pv. .

The aim of this section is to prove monotonicity results for V (up to
error terms involving integral norms of H and curvature bounds for B).
Compared to the interior regularity theory, y here an additional difficulty
arises from the fact that the balls we are looking at in general intersect
the free boundary but are not necessarily centered on it. Since for several

reasons it is not convenient at this stage to reflect the varifold across the
free boundary, our idea is to reflect the balls across this boundary and add
the mass of V in such a ball and its mass in the reflected ball and prove

monotonicity formulae for this sum.
We now fix and choose for (7) the vector field

with and where is such

that

for

for

and where e &#x3E; 0 is such that dist

Note that because of the definition of x, ix this vector field is admissible
in (7).

Using the properties of the previous section we get by a simple calculation
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analogous to the one in [SL, § 17] for for which Tx M exists

div

where and where

 , , &#x3E; has to be interpreted appropriately.
Thus (7) leads to the following integral identity.

Now take 0 EF 01(R) such that for for and
for all t and use (8) with Noting that

we get

where
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Multiplying by we get

By letting ø increase to we obtain (x always denotes characteristic
functions)

This is the fundamental monotonieity identity which reduces to the well
known corresponding formula used in the interior regularity in case e  e(a)
= dist (a, B), because then p(Be(a)) = 0.

By the inequalities of section 2 we have the following estimates

As a first consequence of (9) we get

3.1 THEOREM. If

where

and dist

then
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whenever or and if C ~ c .R we have

PROOF. We only have to show (13), because (12) is just the statement
of [SL], 17.7.

From (9) we get, using Holder’s inequality,

By (11) we have

and

Thus we get the differential inequality

Integration from a to e yields

Integrating by parts we may estimate

Rearranging terms and letting § increase to we get (13). 0
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3.2 COROLLARY. If for some p &#x3E; n, then the

density

exists at every point x E B1(O), and

is an upper-semi-continuous f unction in B1(0).

PROOF. For xEB1(O) we have = 0.

If x E we get by (12) (note that p(ifj(z)) = 0 for J C ~ (x )) that

is non-decreasing for a  ~O (x), and thus exists and equals
0"(p, x). 

ITO

Now if x E B we argue as follows.

First we note that by (13)

exists.

With and 1,(or) as in section 2 we get

Using lim li(a) = 1, i = 1, 2, we can now easily check that x)
cr 0 ï

exists and that

It remains to show the upper-semi-continuity of 8~(~u, x). This is well

known if x 0 B.
Now for B1(O) (as 0&#x3E;0y we only have to consider such y)

and for y  (1, ix - y  E and O and E small enough we get from (12) and (13)
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Letting we get on the left hand side of this inequality [on(li, 
Now let 6 &#x3E; 0 be given and choose first e &#x3E; 0 and then 0  e  e so

that the right hand side of the inequality can be estimated by

This yields

provided ly - xi  s(b). Thus the corollary is proved. 11

3.3 REMARKS:

(i) If in . then for each

(ii) If with and

such that dist then we have for

provided where

In fact by Holder’s inequality we have

On the other hand letting in (12) and (13) we get

Another application of the monotonicity identity (10) is

3.4 THEOREM. If and if

f or all where dist then
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is non-decreasing on (0, R] and furthermore we have

whenever 2vhite if we get

Here c, c’ are positive constants depending only on n, k.

3.5 REMARKS:

(i) In the situation of 3.3 (ii) we see that (15) is true with
and C as in (14).

(ii) As in [SL], 17.6, we get the reverse inequalities corresponding
to (16) and (17) if we replace

by

provided 

PROOF. Because of [SL], 17.6, it is sufficient to prove (17). Denote

and

Then (10) and (15) imply together with (11)
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which implies

Multiplying by exp and integrating from o~ to ~ we
deduce (17). C1

Before concluding this section with a technical lemma concerning den-
sities we have to make a different choice of the vectorfield X in (7).

If with we use

in (7) if dist
As

we get (compare the derivation of (10))

whenever while for we have

3.6. LEMMA. Suppose
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such that dist and suppose

with
I

and where q is

the orthogonal projection of Rn+k onto Rk. Then

where

The statement of the lemma can be illustrated in the following way:
If, for simplicity, x = 1~ = 0 and the mass of V in BR(a) is close to the mass
of a half ball, then we cannot have points in the support of V with parallel
tangent planes whose connection is almost vertical to these planes.

Later on in 4.2, when we want to represent V as a graph over a tangent
plane, Lemma 3.6 will be used to control the gradient of this representation.

PROOF. In the proof, we shall apply the monotonicity formula twice.
Once we use 3.4 with radii « C ~ and ~ == y, z and let T - 0 to get the
densities on the left hand side. On the other hand, we use (19) (or (18))
with radii a  e and a cut-off function h which equals 1 on the cylinder
over B§($) and 0 outside the cylinder over B’(~). The gradient of h then
contributes the integrals A careful choice of a and e finally
gives the desired inequality.

Here are the details.

Because of (*), Remarks 3.3 (ii), 3.5 (i) we may apply Theorem 3.4
with ~ = y or z instead of a and with (1- instead of .R. We thus get
that

is non-decreasing on Since we

get for

where and or
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We now combine (18) and (19) choosing where

with

for for

and

Noting that for I we have and for I we have

(cf. section 2), we get for and

where we have used the fact that

Combining (**) with this estimate, letting and using (14) of Re-

mark 3.3 (ii) we get for a = and e = (1- after adding up

Collecting terms we deduce the desired result. CJ
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4. - The regularity theorem.

In addition to the assumptions made in section 3 we assume the following
for the next theorem

where E (0, 1). Furthermore we define

4.2 THEOREM (Lipschitz Approximation). Suppose v(O) c R". Under the

assumptions of section 3 and of 4.1 there exists y = y(n, a, k, p) E (0, 2 ) such,
that if l E (0, 1] there exists f = (fl, ..., f k) : B;R(O) --* Rk with

where

4.3 REMARK. As before

PROOF. We first apply 3.6 with a = y = 0 and z E n spt,u,
where we define P = lzllb and h = lq(z)IIB, so that we may take I = hff1°
(we may assume fl, h E (0, 1)). Using 4.1 and Cauchy-Schwarz we get

We now pick so that for we have
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which implies

Now we would get a contradiction if we had

for some small 3. Thus for some c as in (1) we get

which finally implies for any z E BYIR(O) n spt,u

Let now 6, 1 E (0, 1) be arbitrary. Then we may assume

because if .RnEt-2n-2 is not small the claim follows trivially by setting
0 and choosing c suitably, as long as 6 = 3(n, oc, k, p). Now let p E (0, 2 )

and consider the set

Next observe that by the monotonicity formula 3.4 and by 4.1 we have
for any; E SPt p r1 and any 0  (1 (1- ).R

if 6, # are small enough. Note that the appropriate choice of 6 indeed depends
only on n, «, k, p by 4.1.

Now let y, Z E G. We again apply 3.6 with a = y and .R’ = z ~
instead of .R and 1/(l + 1) instead of 1, and conclude (note that 
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for fJ, ð small enough, using an easy argument by contradiction,

or

By Kirszbraun’s Theorem we get a function with

such that

Thus, taking (3) into account, we get (1) for any y min and

it remains to prove (2).
We now want to control spt ,u ~ G. The idea is clear: Since on the

complement of G,

is large, this set has to be small, or, more precisely, its measure is controlled
by E.

By the definition of G we have for each ~ E spt it r1 BP.R/20(O) - G a radius
a(~) E (0, Rf10) such that

and by (5) we therefore get

If however en (9) is trivially true for some
small ~(~).

By a well known covering argument we can now select points ~,,
~2’ ... E BpR/20(0) - G such that ~B~(~~)(~~)~ is disjoint and ~B5a(~~)(~~)~ still

covers B~R~2o(O) ~ G.
Summing over j we get
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Since for we get using (8) and incorporating
3-1 into the constant c

To estimate the measure of the remaining set we take any

and pick (0, such that and

This implies ~ J
and 3.4 in connection with 3.5 (ii) yields (F = graph f )

Now, using the fact that v(O) c l~n and that
we get
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Here we used the fact that

as well as

By the properties listed in section 2 we have

and the above inequality follows easily.
Since we can assume we may conclude

Now the condition together with (5) ensures that

Writing we see that (11) and (12) imply

This is true for any and the covering
lemma gives

Here (10) was used together with Since

Lip the theorem is proved with
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4.4 DEFINITION. The tilt-excess is defined as usual by

where is a rectifiable n-varif old, and T an

n-dimensional subspace of 
It measure the mean L2-deviation of the tangent planes of M from some

fixed plane.
We have the following lemma concerning tilt-excess and height.

4.5 LEMMA. Under the general assumptions of section 3 we ,have : If
and T is an n-dimensional subspace of Rn+k such that

then

for some constant

PROOF. We may assume T = R" and consider the vector-field

where with in spt and

As for we see that X is admissible. By the definition of
divM and because of we get for

Here and in the following (eii) and (Tij) are the components of the

matrices of and 1’.
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Now we observe that ((Ei» being the matrix of 

so that by (7) of section 3 we have

where

and

Using the estimates for D~ from section 2 we get (13). C7

The following « Tilt-excess-decay-Theorem » is the main step in the proof
of the regularity theorem.

We consider the following assumptions

where T an n-dimensional subspace of Rn+k , and where
is defined by
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4.7 THEOREM. 2 any oc E (0, l)y &#x3E; n there are constants (0, l)
depending only on n, p, k, DC such that the assumptions (4.6) imply

for some n-dimensional subspace where

4.8. REMARKS:

(i) Such automatically satisfies

as one sees from 4.7 and 3.3 (ii), using

(ii) The condition 8 c 1 -)- ~ can probably be dropped. This was

recently shown in the case of interior regularity by J. Duggan
in his thesis [DJ].

PROOF OF 4.7. We may of course assume ~ = 0 and T = Ign. By the

Lipschitz-Approximation-Theorem 4.2 there is and a

function : satisfying

and

where

The scheme of the proof now is as follows:

We let H:(O) denote the half ball where v(0)
is chosen to point into E* then controls the integrated difference
between Vmfj and and we derive
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and that fi is close to a harmonic function in the sense that for a test func-
tion C 1

(cf. (28) and (27)). Therefore, f can be approximated by a harmonic func-
tion uj with vanishing normal derivative on {.y:.r’(0)==0} the mean

Dirichlet integral of which is likewise controlled by E,~ . Standard estimates

for harmonic functions then imply that on smaller half balls uj is close to a
constant. This in turn yields enough information about f to prove the claim.
Note that this is the old device of De Giorgi.

The details are as follows. Because of the height estimate (3) in the
proof of 4.2 we get for j = n + 1, ... , n + k

~o that by assuming we have

This implies

Now let and note that

agrees with a function ( in a neighbourhood of i

Consider the vector-fields

and

We get

were

Since this can be written as
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Now p - a.e. on lii = ~ r1 graph f we have where

and therefore

Thus we get

The terms on the right hand side are now estimated as follows. By (14)
we get

and 4.6 implies

In order to estimate D,(~) we observe that

because of and the usual estimates for Di. Combining these
estimates we arrive at

Since we see that (18) yields

Using and we get
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and hence (19) and (13) imply

By the same argument we deduce from (20)

By the area formula we see that (21) and (22) imply in view of (13)
.and (14)

as well as

where and Since

and we conclude

and

Now let where e is chosen in such a

way that it points into and define the half-ball

For we get

dist

so that

dist



154

This yields

which implies

Thus (25) and (26) respectively imply

and

Applying Lemma 5.1 of the appendix to we see that for any given
6 &#x3E; 0 there is Eo = Eo(n, k, 3) such that if 4.6 holds there are

harmonic functions u1, ..., uk : ~ R with the properties

and

where cr = fle and denotes the normal derivative. Defining li by
li(x) = + x · grad Ui(O) we note that (29), (31) imply for 17 E (0, -1],
using standard estimates for harmonic functions, y

Thus we get by (30)
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Since sup implies

Now let I = (t1, ..., lk) : Rk and let S be the n-dimensional subspace
graph (t - 1(0)). Note that (31) implies v(O) c S.

Note furthermore that we also get by (26a)

if we assume

But (35) now implies

where 7: = (0, 1(0)).
If we assume : we get by (34) that so

that (4.5) and (37) imply

To complete the proof of 4.7 we argue as follows.
Let 77 E (0, 2] such that c1}2:1 (y/4)2(1-n/p) and 6 &#x3E; 0 such that cq-"-2 3

 I (r~~8/4)2(1-’~m&#x3E; (in both cases c is the constant from (38)). Finally choose
Eo such that for all the conditions required in the proof hold as well as

CEO  1 (n#/4)2(l - n/v) (in particular 80 must satisfy the conditions leading to
(16), (29), (30), (36), (37) and (38)). Thus we get for 7y = qflf4

Since we trivially have
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as well as we conclude

and this finishes the proof of Theorem 4.7. 1:3

We are now in a position to prove (one version of) the Regularity Theorem.
It will follow rather easily from iteration of 4.7.

4.9 THEOREM. Suppose a E (0, 1) acnd p &#x3E; n are given. There are constants

and such that if (4.6) holds with

as well as the general assumptions of sections 2 and 3, then
there is a C1 ~a function such that

x graph u for graph u,

and

where and

PROOF. By the monotonicity result 3.4, Remark 3.3 (ii) we see that for
and for we get (using 4.6)

so that for fl, s small enough we have

for and
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At first let us consider the case

By the Tilt-Excess-Decay-Theorem 4.7 and (41) (replace e by (1, a by 
by ) we know that there are E and q such that for 6 c and’ as in (*)

if So c is any n-dimensional subspace with v(~) c So and Si a suitable
n-dimensional space c JLgn+k with 11(’) c 81. By induction we get a sequence
of n-dimensional subspaces v(’) c 8i such that E*(~, 6, So)  é
implies

and by Remark 4.8

Now note that for So = v(~’) -E- T~, where and for

~ E B r1 B(l/2(O), we get c So as well as

which implies for this choice of So and a = e/2

If thus 4.6 holds with ~ = 0, T = and c-1 E in place of 8 (c as in (45)),
we see that (45) in connection with (43) and (44) yields

for with So = v(~) -~- T~. Obviously (47) implies the existence
of an n-dimensional subspace c R"+k satisfying v(C) c such that for
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all

in particular we get for j = 0

If r E (0, Q/2) then (46) and (48) yield in the usual way

for and each 0 C r c ~O/2. Notice that (49)
and (50) imply for 

If now on the other hand

we get (cf. [SL]) from the interior regularity

if as well as

Now let such that and choose

such that
.. - - ~=

Then (52) and (53) respectively imply
with To (Si as in (46) depending on ~) and Si+i = Tj

and

As above this implies the existence of an n-dimensional subspace S(,)
such that for 
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and

We also get analogous to (50) and (51) for 0  r c and I as in ( **)

and

Thus we get for sufficiently small 8 (by (51) and (59)) that if G is as in
the proof of 4.2 (with I = 811(2n+3)) then G) = 0 (fl, 8 small enough) :
That is

where is Lipschitz with f (0) = 0 and

We shall now show that we even have

Suppose there is a Since 0 E spt ,u
there is 0 such that

now take If B we see that (63),
(60), (61) and 8 c 1 -E- ~ imply ~*)  1 (if 8 is sufficiently small) which
contradicts the fact that for any Note

that we make use of the upper semicontinuity of On. If on the other hand

C* E B we know that ~*) ~ 2 . But since both ~ and I* are in (63)
would again imply 8 n (,u, ~* ) C 2 . Thus (62) is established.

Using the area formula we see that (62) implies for any n-dimensional
subspace = graph 1, where I : is linear with Igrad = 1,
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and

by (49), (50) and (57), (58) respectively this implies that for each

there is a linear function R" - Rk such that

for

If then for small enough r we
have. so that (64) yields, letting r~0, grad
The only other case to consider is Be-

cause of (61) and our assumptions about B we get
which also implies grad

Now, using (64) again, we conclude

if and This clearly implies

for The theorem now follows
with

Let us finally show that the conclusions of the Regularity-Theorem
remain true if we make the following assumptions

for some

where is to be specified.
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Repeating the argument which led to (41) in the proof of (4.9) we get
for and

if I and is small enough (j is defined by

and we have used c Be (0 ) ) .
Thus to show that the assumptions (4.10) imply the assumptions (4.6)

we have to find a suitable subspace T such that .E(~, 6, T) can be made as
small as we wish. In view of Lemma 4.5 it is sufficient to bound the height
appropriately. This will be done in the next lemma.

Let us first make some important remarks.

4.11 REMARKS:

(i) Let us first show that the assumptions (4.10) imply

for some f1 = &#x3E; 0 and 6 &#x3E; 0 small enough. From (67) and the upper
semicontinuity of 6n(,u, ~ ) (c.f. Corollary 3.2) it follows that

for Since 0 &#x3E; I /-z - a.e. we get (*). Thus from now

on we may assume

(ii) We consider the total first variation of V = v(M, 0), defined as
usual as the largest Borel regular measure ~~ such that for all open
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We are now going to show that ~~ is a Radon measure on B1(0). As
in [AW2, 3.1] this will follow from a monotonicity formula for tubular
neighbourhoods of the supporting surface B. We proceed as follows.

For any V c- C’(B,(O)), y &#x3E;0, we consider the vector-field

where is decreasing and satisfies (0  h «1)

Obviously X is admissible and a simple calculation yields

Here we used the fact that

As in section 3 we take such that for

for t &#x3E; 1, §’ 0 and set Setting

we get the equation

which after multiplying by h-2 can be written as
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Letting we obtain the following monotonicity identity for tubular

neighbourhoods of B

Integrating (68) from h to h’ (0  h h’) and letting h§0 we get the
existence of h(~), defined by

Note that 11 Q 
From the representation (69) we see that r is a distribution, but since r

is positive it induces a Radon-measure on B1(0), i.e. it can be defined for

Now consider any and any with 0 ~ spt cp’ .
Defining Xv and XZ by

we get

furthermore we have

Letting suitably and using the fact that p(B) = 0 we get

Since grad we get

this yields
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Together with the considerations made above we get that ~~ is a

Radon measure on Bl(0) and that we have the inequality (1’ as in (69))

By well known representation theorems there exists a  Y 11 -measurable
function such that for any

(iii) In the special case where H = 0 and B is a hyperplane we have
the following reflection principle (cf. [AW2], 3.2). First we note that (70)
implies

for any - such that Consequently we
have spt 11 c B and

for IlðV11 - a.e. x E B.
If we now consider the reflection across

B and the reflected varifold we get

for Thus we see that is stationary in B,
i.e. for any we have

We are now ready to prove the final lemma.

4.12 LEMMA. For any one-dimensional subspace Y c and any 8 &#x3E; 0

there exists 6,, &#x3E; 0 such that the following is true.
If B and V satisfy the general assumptions made at the beginning of section 2

and additionally = Y as well as (4.10) ðo then there exists an
n-dimensionaZ subspace T with Y c T such that
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PROOF. We may assume (! = 1 and argue by contradiction. So suppose
there is E &#x3E; 0 and a sequence of B i , Tr2 such that for any n-space T with
Y c T we have

and such that (4.10) holds with e = 1 and bi = 1/i. Passing to a subsequence
(again denoted by i) we get the existence of a varifold C such that = C

in the space of n-varifolds and such that the corresponding Bi converge to
B = in an obvious sense. We conclude that C is a rectifiable n-varifold

in J5i(0)~~ satisfying

for any with because any such X can be

approximated by Xi such that and for

From (67) we conclude that

and by [AW1, 5.4] we get

for yc - a.e. x E B1(0). Note that the condition lim inf ~~ ( W )  oo for

any open easily follows from the representation of 1~ in (69).
Since B is a linear subspace is increasing on (0, 1- R) if

x E B r1 BR(O) (the vectorfield used in the proof of the interior monotonicity
is admissible!). Thus for any  1- 2-1/n = : R* and x E B n BR(O)

because of (72). In view of (75) this implies

By the reflection principle, Remark 4.11 (iii), we see that C’= C -f- 
is stationary in BR.(O) and that Using again the monotonicity
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as well as (72), (75) we get

for By [AW1, 5.3] this implies the existence of an

n-space such that

It follows that

for and since

we conclude and thus

By the definition of P we now see that Y = B1 c T. Now (71) implies
that there is a sequence

Since sptu, c T we get for i large enough

where c is independent of i (use monotonicity); as 6 &#x3E; 0 can be made

arbitrarily small by choosing i large enough we get a contradiction.
This proves the claim of the lemma. 0

Altogether, we have proved

4.13 THEOREM. For any there exist

with the following property.
If is a hypersurface of class C2 with
and the curvature of B satisfies
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and if is a rectifiable n-varifold with

f or all with and

then there is a and an isomery 1
of Rn+k with

graph u for

and

5. - Appendix.

In the proof of Lemma 4.7-cf. the argument leading to (29) and (30)
we needed the following simple lemma concerning harmonic functions. It

is an easy consequence of Rellich’s Theorem.

5.1 LEMMA. Given a%g 6 &#x3E; 0 there is a constant 8(n, ð) &#x3E; 0 such that if
satisfies
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and

f or acny then there is a harmonic function u on H satisfying
on such that

and

PROOF. If the lemma were false there would exist 6 &#x3E; 0 and a sequence
such that for any

and

but

whenever u is harmonic on and

If then

by the Poincaré inequality. By Rellich’s Theorem there is a subsequence
such that f k, - ~k, --~ ?,v ( -~ means weak convergence in ~H2 ) and

in L2(g), where
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By (1 ) we have

f or any This implies that w is harmonic on Hand
on xn = 0. With we get

This contradicts (3) and the lemma is proved. C(
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