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On the Comparative Theory of Primes.

JANOS PINTZ - SAVERIO SALERNO (*)

1. Knapowski and Turhn investigated in a series of papers ([3]) sign
changes of the functions (in the case of i = 1, 2, 4)

where

and (what we shall always assume without mentioning)

For a general modulus q Knapowski and Turhn needed always the so
called Haselgrove condition (H), that the .L-functions have no real non-
trivial zeros or, in an explicit formulation, they assumed the existence of

(*) This work was written whilst the first named author was « visiting profes-
sor ~ at the University of Salerno with the grant of C.N.R.

The author want to express their gratitude to C.N.R. for making this collabora-
tion possible.

Pervenuto alla redazione il 6 Giugno 1983.
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a number A(q), 0  A(q)  1, such that (for s == or -f- it)

It is easy to see that in the case of the existence of a real zero, being on
the rigth from all complex zeros of all L(s, Z, q) functions, the functions

are of constant sign for suitable pairs for s &#x3E; ~o.

Thus, at the present stage of analytic number theory, a hypothesis of
type (1.4) is necessary in all investigations.

We note that (1.4) has been verified by Spira [6] for all q  25. The

other assumption, the so called finite Riemann-Piltz conjecture (FR-P),

used in many investigations of Knapowski and Turan, is of more technical
nature. The aim of Knapowski and Turan was to achieve effective re-

sults, i.e. explicitly dependent only on q, A(q) (and in given cases on D).
In the case of l1 == 1 or l2 = 1 they were able to find, using only Hasel-
grove condition, infinitely many sign changes of for I-  i  4. (Although
they did not treat the case i = 3, we mention the corresponding results for
i = 3 too, if it is possible to obtain it, using the method applied by them for
the other cases). Also, they could give a lower estimation of the number
TTi( Y, q, Z2) of sign changes of 4,(x) in the interval (2, Y) and an explicit
upper bound for the first sign change (cf. parts I-III of [3]).

For general l1 and 1,, besides (H), they had to assume also the finite
Riemann-Piltz conjecture and even this led to results only for i = 2 and 4
(with other numerical estimates, naturally than in the earlier mentioned
case). In the case i = 1 and 3 they needed the additional assumption that Z~
and 1, would be both quadratic residues or both non-residues, besides

(FR-P) and (H), (cf. parts V and VI of [3]). In the case of i == 4 they suc-
ceeded in showing for general 1’, and Z2 the above mentioned results in a
quantitatively much weaker but (as all the earlier mentioned results) also
effective form, without supposing (FR-P), i.e. only assuming (H) (cf. part VII
of [3 ] ) .

We note that the most important open problem of the comparative prime
number theory is to assure infinitely many sign changes of q, 11, ~2)
for all pairs 1,, l2 with (1.3). This problem seems to be hopeless at present,
even supposing the (infinite) Riemann-Pilitz conjecture, besides (H) nat-
urally. (One has nearly the same difficulties for but this is not so

important from an arithmetic point of view).
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In this work (assuming (H) and (FR-P) in a slightly weaker form) we
shall treat the case i = 4, for general 1,, l2, (and the case i = 3 if 11 and 12
have the same quadratic character) improving earlier results of Knapowski
and Turàn, which we summarize now (in some cases with slight changes)
as follows:

We shall use the notations (x) = exp (exp, (x) ~, expi (x) = exp (x),
= log log, x, log, x = log x.

THEOREM A. Assume (H) and (FR-P) (cf. (1.4)-(1,5)). Then for

one has for i == 2, 4

for all pairs ~1 and l2 with (1.3), where, as always in the following, the generic
symbol c replaces an explicitly calculable positive absolute constant, which

might have different values at various appearances.
Since the opposite inequality clearly holds, by changing the role of 1,

and l2 , one obtains the following

COROLLARY. On the above conditions, for i = 2, 4 one has for the num-
ber of sign changes of d 2(x) the lower estimate

THEOREM B. Assume I

all functions d 4 (x, q, 1,, l2 ) with (1.3) change their sign in the interval

For the proofs of Theorem A and B see parts V and VII of [3], respectively.
In the present work we shall show (roughly speaking) that in the case

of i = 4 (1.7) can be improved to
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thereby obtaining

Furthermore, we get for the first sign change of L14(0153) the upper bound

which improves (1.6). (In the above formulas we neglected some log q,
log (1 /A. (q) ) and log log Y factors).

Due to the lower estimate (1.11) by the strong form of the prime number
theorem of arithmetic progressions, we obtain the same results in the case
of i = 3, if tl and l2 are both quadratic residues or both quadratic non-
residues. (In Knapowski-Turàn’s proof this needs relatively many addi-
tional efforts, as can be seen from part VI of [3]).

Finally we remark that by ineffective methods (essentially due to Lan
dau [5, § 197], Grosswald [2] and Anderson-Stark [1]) one obtains that if

for a non-trivial zero iyo of an L(8, X, q), function one has 
and

(where denotes the multiplicity of ~Oo as a zero of L(s, y)), then for
every with (1.3)

This is valid for too, if li and l2 have the same quadratic character,
or in case of for every pair ll, l2 with (1.3). However, this theorem
does not yield any localisation of sign changes or lower estimation of

We further note that the method of Knapowski and Tur£n, (also in the
present refined form) does not furnish better lower estimates than (essentially)
1/Y, even assuming the existence of a zero eo with Po &#x3E; !, Yo =1= 0 and

~o)~0.

2. In our results, we shall always assume that the Haselgrove condi-
tion (H) and the fiuite Riemann-Piltz conjecture (FR-P) hold, the second
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one up to a level D with

where co is a sufficiently large positive absolute constant.
Here and in the sequel, we shall denote by Ci, i = 0, 1, ... explicitly cal-

culable positive absolute constants; moreover, the generic simbol c, and the
signs » , 9 «, 0, replace such constants ; exp (x) = ex, log2 ¥ = log log Y.

We shall also assume without any further mention the trivial condition

(1.3) on ll, l2.
Our results are the following:

THEOREM 1. Assume (H), (FR-P) and let be such that

Then, there exists x with

such that

COROLLARY 1. Under the assumptions of Theorem 1, for Y verifying (2.2)
we have at least one sign change of d4(x) for x belonging to the interval (2.3).

Hence, we obtain

THEOREM 2. Assume (H), (FR-P) and let

Then, there exists x with

such that
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Using the fact that the error term given by the Prime Number Theorem for
aritmetic progression (see for instance Prachar [5, pp. 297-298]) is smal-

ler than the lower bounds (2.4), (2.7), we obtain

COROLLARY 2. The statements of Theorem 1, Corollary 1 and Theorem 2
eontin2ce to be true without any change also for J,,(x), if II and 12 are both quadratic
non-residues or if they are both quadratic residues (mod q).

Actually one can assure (2.2)-(2.4) also for i = 3 if G is a quadratic non-
residue and Z2 a residue. However, in this case we canuot guarantee the

opposite inequality, which follows in the earlier cases just by changing the
role of Zl and ~2.

3. We introduce

We have

where

if there exists no Siegel-zero, as assured by (H).
Furthermore, let

Whcre mx(O) denotes the multiplicity of ~
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where the sum is performed on the non-trivial zeros

L-functions (mod q).

PROOF. W 3 use the following integral formula

and the fact that, by partial summation

Then, we have

Since the following well-known estimate holds:

we obtain

Now, by Cauchy’s residues theorem, we get
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and, in view of (3.11),

Moreover, y using the trivial estimate d 4(x) « x, we obtain

where we have introduced in the integral the variable y = log x - 
and we have used &#x3E; It &#x3E; 9K. 

Since a similar estimate holds, completely trivially, also for j ,

we get 
1

Now, our Lemma follows collecting together (3.9), (3.13) and (3.15). 0

Since the main part of (3.6) can be written as a powersum, our problem
is reduced to give a good lower bound for it. This is accomplished by means
of a « one-sided » powersum theorem of Knapowski and Turan (see Theo-
rem 4.1 in part III of [3]). In order to obtain sharper estimates, we shall
need this result in the following slightly modified form:

LEMMA 2. -1’ with
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Then for any h with 1  h  n and for any m ~ 0, there exists an integer v with

such that

where

PROOF. Following the lines the theorem of [3] quoted above, we obtain
the following inequaliry, in the case IZ11 = 1,

for a suitable v verifying (3.18) and for every 6 with

Then, (3.19) follows by choosing

unlike to Knapowski-Turan’s choice

According to (3.19), in our applications we shall need a non trivial lower
estimate for E. This requires a modification of the coefficients in the power-
sum, ffurnished by the following Lemma:

LEMMA 3. There exists a prime P - Z1(mod q) with

such that, for i we have
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where

PROOF. Since the finite Riemann-Piltz conjecture is assumed to be true,
the prime number formula of arithmetic progressions, truncated at D, as-
sures the existence of a prime P _--_ Z1(mod q) verifying (3.24). Then, the
function has a jump log P at the point P and we have

for

Now, we use Lemma 1 with J
This choice implies

since P is large enough by (3.24) and (2.1). 
’ ’

Thus, d 4(x) = in the above interval and, using Lemma 1, and
.setting x = exp (,u + we obtain:

Owing to I we get from this

which implies Lemma 3.

In view of the application of Lemma 2 to the power-sum appearing
in (2.6), it is also necessary to assure the argument condition (3.16), and
this is made by means of

LEMMA real numbers f or j = 1, ..., n with 0 and
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Then, for every H there exists an yo with

such that, for any integer K and for every,

PROOF. For fixed j, (3.33) can be false for I~ in an interval of length
at most -~-- 1/2n)/2n; for fixed K, leaving j fixed, this can happen
for y in an interval of length at most 1/2nlajl.

Thus, the total Lebesgue measure of y for which (3.33) is false for fixed j
is majorised by

Summing over j = 1, ..., n, we obtain our Lemma.

Now, we are in good position to apply Lemma 2.
We introduce the following position :

given by (3.5) and .Ko, ,uo furnished by (3.26).
Furthermore,, let

Let B be a real uumber to be chosen later with

and let v be an integer to be chosen later with
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LEMMA 5. With the positions (3.35) to (3.40), we have

e I

for suitable values of v and B satisfying (3.38).

PROOF. By our definitions, we have

Moreover

and so we have only to considcr

Here, the number n of terms is clearly

Now, we apply Lemma 4, setting

Using Jensen’s inequaiity, we have by A(q)  1 and A &#x3E; q,

so, in view of (3.44), condition (3.31) holds with

Hence, Lemma 4 says that there exists a B in the interval (3.37) such
that, for every j = 1, ..., n
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Since in our case this means that

Now, we order the numbers z. according to (3.17) and, in view of (FR-P),
we choose h of Lemma 2 as the largest index corresponding to a zero g
with 

Since

with constants implied by the « sign, independent of co appearing in (2.1),
we have by Lemma 3 

- -

for every set 8 containing all zero8 g with 
Finally, we have

because ~oo is on the critical line, and (by (3.40) and Â &#x3E; 2D)

Recalling (3.44), (3.49), (3.51), (3.52), (3.53) and choosing m as m = (L - po)iB
in view of (3.38), we obtain by Lemma 2 for suitable B and v :

from which our Lemma immediately follows.

4. We formulate the results of Section 3 as:

THEOREM 3. Assume (H), (FR-P) and
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Then there exist

such that

PROOF. The thorem follows immediately from Lemmas 1 and 5..

PROOF OF THEOREM 2. We set, with the notations of Theorem 3

Then we obtain, by easy calculations from 1 and so

We set also

By Theorem 3, we have for suitable p, K verifying (4.2), (4.3),

Since, as it is easily verified,
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and inequality (4.8) yields

In order to optimise the lower bound (4.10), we choose

which satisfies (4.1), in view of (2.6) and (4.5).
Thus, by (2.1), (4.5), (4.6), (4.10) we obtain

and

which proves Theorem 2.

PROOF OF THEOREM 1. We set now also (4.5) and similarly we obtain

(4.6)-(4.10) from (4.1)-(4.3).
In order to optimise localisation in (4.6) we choose

in view of (2.1)-(2.2), and this proves also (4.1).
In such a way we obtain by (4.10)

and, for suitable x in I, by (4.10), (4.14) and (4.15)

which proves Theorem 1, due to the choice of À in (4.14).
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