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The Boundary Value Minkowski Problem.
The Parametric Case (*).

V. I. OLIKER

0. - Introduction.

0.1. The celebrated Minkowski problem consists of finding a closed
convex hypersurface in whose Gaussian curvature at the point with a
unit normal ~ is prescribed in advance as a positive continuous function
K($). The latter is given on a unit hypersphere E and should satisfy the
necessary condition

where du is the n-volume element of 27.

Minkowski himself solved first the problem for convex polyhedral sur-
faces ; in this case instead of the Gaussian curvature one prescribes the
areas of the faces and the normals to them of the polyhedron which is to
be found. Passing to a limit from polyhedrons to general convex surfaces
one finds the generalized (weak) solution of the problem in terms of certain
associated measures. The very difficult problem of existence of a regular
solution under various assumptions on .g has been solved for n = 2 by
H. Lewy [7] in the analytic case, Pogorelov [12] and Nirenberg [9] in the
class of smooth functions, and for arbitrary n by Pogorelov [14] (see also
Cheng and Yau [4]).

(*) Partially supported by NSF Grant MCS80-02779. Part of research for this

paper was done while the author was a guest of the Sonderforschungsbereich
Theoretische Mathematik of the Universitat Bonn in the summer of 1980. The
final version was written when the author was visiting the Heidelberg University
in July of 1981. The author would like especially to thank Prof. W. Jager of
Heidelberg University for his hospitality.

Pervenuto alla Redazione l’l l Novembre 1981 ed in forma definitiva il 5 Marzo

1982.
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0.2. The original problem admits various generalizations. Gluck [6]
studied the situation when the Gaussian curvature is prescribed on Z but
the hypersurface in question does not have to be an imbedding via the
inverse of the Gauss map, as is the case in the classical formulation. A

generalization more directly related to the original problem can be stated
as follows.

Let cv be a domain on the unit hypersphere E and .K a positive con-
tinuous function in roo Find a convex hypersurface with boundary whose
spherical image is m and at the point with the unit normal $ its Gaussian
curvature is K(~). It is natural to impose some boundary conditions. It

turns out that prescribing the boundary of the hypersurface leads to an
over-determined problem; this follows from our results in [11].

The analytic formulation of the problem suggests naturally to prescribe
only the normal component of the position vector along the boundary of c~.
In such a form (actually, slightly more restricted) the problem was proposed
by Aleksandrov [1 ], p. 319, and also by Pogorelov [13], p. 657. When cc~

is convex and lies strictly inside a hemisphere, the problem has been in-
vestigated extensively [1, 2, 5, 12, 15]. However, very little is known in

the case when co is not contained in a hemisphere. Geometrically the latter
case means that we are dealing with hypersurfaces in parametric form,
and, since the closedness is not assumed, serious difficulties arise. Already
the question of uniqueness is quite nontrivial. For example, the maximum
principle, which is applicable in the case when co is inside a hemisphere
does not hold anymore for the corresponding linearized equation, and, in
fact, the linearized problem may have geometrically nontrivial solutions [10,
11]. Apparently, for arbitrary given data the problem may not be solvable
at all.

0.3. The purpose of this paper is an investigation of the solvability of
the boundary value Minkowski problem in the following setting.

Fix a domain co on the unit hypersphere 27 such that its complement
is a convex set lying strictly inside a hemisphere, and let q($)

be a positive continuous function in c5. We want to find a convex hyper-
surface S which is a relatively compact subset of some closed convex hyper-
surface S, its spherical image is w, the Gaussian curvature at the point with
the unit normal ~ is 1 jg~(~), ~ E cv, and the normal component h of the posi-
tion vector of S on the boundary as coincides with a linear function in
Rn+z. The last condition has a simple geometric meaning. Namely, if we
consider the envelope of the set of hyperplanes tangent to S along its bound-

ary, then the boundary condition on h means that this envelope has a
vertex. In other words, the hypersurface « sits » on a cone.
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Since no assumptions on smoothness or 8m are made so far, all the
terms and conditions above should be understood in a generalized sense
usually given to those concepts when dealing with general convex hyper-
surfaces. (A brief review of the necessary information is given in section 1
of this paper.)

Because of the fact that S must be a portion of a closed convex hyper-
surface, y the function q($) should satisfy some necessary condition similar
to (0.1) but expressed in terms of co. Analytically, y such a condition can
be given in the form

where A &#x3E; 0 and geometrically it means that the n-volume of

the projection of S (taken with the sign) on any hyperplane with the normal
corresponding to the « missing » part of S is nonnegative.

It turns out that the requirement A &#x3E; 0 in (0.2) along with the other
conditions stated before are sufficient to produce a generalized solution of
the boundary value problem posed above. This solution is unique.

0.4. The proof consists essentially of two parts. At first, in section 2.
the problem is formulated and solved in the class of convex polyhedrons,
and then a generalized solution is obtained by a passage to a limit. This

step is described in section 3. The reader familiar with the existence proof
in the case of closed hypersurfaces will recognize here the method which
goes back to Minkowski and which has been used successively by A. D.

Aleksandrov, Pogorelov, and other mathematicians. However, its concrete
realization for the boundary value problem is far from being a standard
repetition of the arguments used in the case of closed hypersurfaces. In

particular, the information that the problem in the latter case is solvable
does not seem to be helpful, and the condition (0.2) is used in a much more
subtle way than (0.1) in the classical situation.

0.5. In the last section of the paper we prove interior regularity of
the generalized solution. The results here are based essentially on the a

priori estimates for Monge-Ampére equations obtained by Pogorelov [14]
and Calabi [3].

1. - Generalized solutions.

1.1. In the (n + 1)-dimensional Euclidean space we fix a unit hyper-
sphere E with the center 0 which coincides with the origin of a system of
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Cartesian coordinates. On 27 we introduce smooth local coordinates u1, ..., 
The standard metric on 27 will be denoted by (gii), (g’5) stands
for the inverse matrix. Let 8 be a piece of a C2 hypersurface in whose
Gauss map y is a diffeomorphism on a domain m c E. Obviously, S can be
considered as an immersion r : m - Rn+’; moreover, we can identify the
position vector r with y-1. Under such circumstances the correspondence
between S and m is established via correspondence between points with
parallel unit normals. The expression for r, given as y-i, can be found in
terms of the support function h of S, which is defined as

where ( , ) is the inner product in Rn+,, and $ is a point in co. Here, and
in the rest of the paper we make the obvious identification of the vector

with its endpoint on ~.
Since r(~) = y-~(~), we find by differentiating h(~)

The vectors ..., 8$/8un, $ form a basis in Rn+l and we can express
r($) in terms of h and grad h. The result is

where (The summation convention is in effect
here and in the sequel.)

The second fundamental form ~dr, d~ ~ == bij can also be expres-
sed in terms of h. Namely, if we differentiate (1.2) we get

By the Gauss formulas for 27 we have

where 7~ are the Christoffel symbols of the metric g;; . Substituting it into
the last expression and taking into account (1.1) and (1.2) we obtain

where
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The principal radii of curvature of 8 are the eigenvalues of the differen-
tial of y (by the Rodrigues formula), and therefore are the roots Riy ..., R.
of the equation det Bgij) === 0.

Since y is a diffeomorphisni, Ri:71-- 0, i = 1, ...1 n, and we can consider
n B

the Gaussian curvature view of (1.3) we have/

Let dv denote the n-dimensional volume element of S and du the n-vo-
lume element of ~. Then the following relationship holds:

For an arbitrary Borel set G on E such that G c m the set y-1(O) is also a
Borel set and its n-volume is given by

1.2. Assume now that /§ is a closed convex hypersurface of class C2
with positive Gaussian curvature. Let co be a simply connected domain
on E, different from E, and S a portion of S corresponding to co = (J) aco.

The previous discussion shows that in order to solve the problem posed
in section 0.3 of the introduction we have to consider the differential

equation

subject to the boundary condition

where is the position-vector of the vertex of the enveloping cone along
as. Making a parallel translation of we can assume that this vertex

is located at the origin 0.
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Note that is simply a restriction to E of a linear function in 
Also, a direct computation shows that -f- = 0. This actually be-
comes obvious if we notice that a, ~&#x3E; is the support function of the constant
vector a. That also means that the equation (1.7) remains invariant under
parallel translations of the origin. In order not to introduce new symbols,
we leave the notation h for the support function of ~S’ with respect to the
new position of the origin in relative to which the boundary condi-
tion assumes the form

In view of (1.6) and (1.7) we have

for any Borel subset of 1: contained in co. The last formula, however,
makes sense if we assume only that S is a portion of a closed convex hyper-
surface not necessarily of class C2 and p is a positive continuous function
in w (and, obviously, y even under more general assumptions).

The appropriate generalization is made in the following way. Let ~S
be a closed convex hypersurface which is understood to be the boundary
of an arbitrary finite convex body in Rn+l. Then the convex hypersurface S
is a simply connected relatively compact subset of ~. If x is an interior point
of S then for any supporting hyperplane at x with the exterior unit normal ~
we put in correspondence a point on 27 which is the endpoint of a unit vec-
tor parallel to ~ and starting at the center 0 of 27. The mapping defined
in such a way is obviously a generalization of the standard Gauss map,
and, in general, it is a set valued function. We map all interior points of ~S’
into ~, and then take the relative closure of the image; the latter is called
the spherical image of S.

Let G be a subset of 27. Define on 9 a set G’ as the set of points whose
spherical images are in G. If G is a Borel subset of 27 then G’ is also a

Borel set on ~S’; we denote by v(G) the n-volume of the set G’. The func-

tion v is called the area function. It is a nonnegative completely additive
measure on the a-algebra of Borel subsets of E. Since /§ is finite, v is also
finite. If the Radon-Nikodym derivative of v with respect to the measure it
on 27 exists at a point ~ and it is different from zero then its reciprocal is
called the Gaussian curvature. When ~S’ is smooth then in view of (1.5)
this derivative is equal to ~ 1(~) (see [2], section 8).

For a convex hypersurface c S, were 8 is not assumed to be smooth,
by its area function we mean the area function of the closed hypersurface ~S‘.
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A generalized solution of (1.7) in c~ c 1; is now defined as a convex hyper-
surface contained in some closed convex hypersurface 9 and such that
its spherical image is c5y and for any Borel subset contained in cv,

The support function h(~), ~ E ~, of S is a function of a unit vector ~
giving the oriented distance from the origin 0 to a supporting hyperplane
tao 8 with the exterior unit normal ~. It is known (see [2], section 6) that
h(~) is a continuous function on the entire S, and, in particular, h(~) is

defined on 8m. Thus, (1.8) is also defined.

2. - Solution of the problem in the class of polyhedrons.

2.1. Let .~ be a closed convex polyhedron in Take an arbitrary
4 true» vertex (i.e., different from an interior point of any ’fl,- k dimen-
sional face, 0  k  n - 1) of .~f and suppose a parallel translation is made
so that this vertex coincides with origin 0 of a Cartesian coordinate system
in Rn+l. We distinguish two types of faces and exterior unit normals of M.
Namely, denote by gi , ..., 7 g. the faces for which 0 n g, = 0, i = 1,..., m.
Their corresponding exterior unit normals we denote by ~l’ ..., 7 ~.. Here

and in the sequel, unless otherwise stated, we understand n-dimensional
faces. By q1, ..., q, we denote the faces for which 0 is a boundary point;

..., are their corresponding exterior unit normals. Let 7 ..., ag be

the hyperplanes containing faces q~, ... , qs . The intersection of the half-

spaces determined by and containing M, is an infinite convex

body whose boundary is an infinite convex polyhedron. Let hi , ... , h~ be
the support numbers of the faces gl, ..., 7 g., that is, the oriented distances
from 0 to the hyperplanes containing the corresponding faces. Obviously,
the support numbers of ql, ... , qs are equal to zero.

Now consider a convex polyhedron .~.~’ which also has a true vertex

at 0. Suppose it has the same number of faces as M and (1) gi and g’ are
parallel for all i = 1, ... , m ; the latter means that they have the same ex-
terior unit normals; (2) the hyperplanes 

’ 

containing the faces

coincide with (Xi,...,o~, and for every q~ , ~ = 1, ... , s, 0 is a

boundary point. Geometrically, (2) means that the infinite polyhedral cones
formed by the hyperplanes of the faces of M and .M’ adjacent to 0 are the
same.
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2.2. PROPOSITION. Let M and M’ be as above. Assume, in addition, that
the n-volum8S Fi and ~’$ of gi and g’, i = 1, ... , m, are correspondingly equal.
Then M coincides ’With M’.

PROOF. We will use a method of Minkowski based on his theory of
mixed volumes. Details concerning mixed volumes theory can be found
in [2, section 6].

The mixed volume of the polyhedrons and M’ is defined as

where hj are the support numbers of the faces qi, j = 1, ..., 8, and .~’~ are
the n-volumes of q~ . Since q, pass through 0, h¡= 0, j = 1, ..., s, and the
second sum in V(M, M’ ) vanishes. Replacing in V(M, .M’ ) the polyhedron
M’ by M we get the usual (n + I)-volume of the convex body bounded
by M. Similarly, y V(M’, M~) = (n + 1 ) -volume of the convex body bounded
by M’.

According to the Minkowski inequality (see [2], section 7),

and the equality holds if and only if and M’ are homothetic. Thus,

Since .I’~ _ = 1, ... , m, we have

Changing the roles of M and M’, we get

Thus, M and .~C’ must be homothetic. Since the n-volumes of Ui and g,
are equal, .M’ must coincide with M’. The proposition is proved.

2.3. LEMMA. Lot tJ be a closed convex set on the unit hypersphere E lying
strictly inside a hemisphere, and P a convex cone with vertex at 0 at the center
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of E and with spherical intage D. (By de f inition the spherical image o f P oon-
sists of all exterior unit normals to hyperplanes supporting to P.)

Also let R be the infinite convex body whose boundary is P, and -r = R r1 1:.
Denote by D’c 1: the set symmetric to ,~ with respect to 0 and -, -r ~’1 Q’.
Then int Je =1= for any point q E int Je there exists a positive
number c (depending on such that

2.3.1. PROOF. Denote by fo* the hypersphere containing strictly
inside and by a, the equatorial hyperplane determining 1:;. Let ~o be the
pole of 2:’0. We consider two possibilities: a) b) 

We start with the case a). Consider the infinite convex cone I~ formed
by the rays originating at 0 and of direction ~, where ~ E ,~. Since ~Qf/: int Q,
there exists a hyperplane 0"1 containing $0 and supporting to K. The latter
means that K lies in one of the dihedral angles formed by 0"0 and Note

also that (ao r) r1 D = 0, since 0"0 n D = 0.
Let a be the dihedral angle containing 1~’ and EO’ the portion of 1:0 which

is contained in a. Consider a point ;lE ,~~ such that the vector is orthogonal
to the subspace ui . Again it may happen that int S~. In this case
we repeat the above construction by taking a hyperplane o~2 containing ~l and
identifying the trihedral angle containing ,~2. This process is continued until

either after k steps, k  n, we construct or after n steps we construct
a hyperoctant containing the cone K. In the first case the hyperplane or, with
the normal- ~k will be clearly strictly supporting to K, that is, the hemisphere
I:k determined by O"k will contain Q strictly inside. Since $w is an interior

point of .~, the normals to supporting hyperplanes of K form with 8~ angles
greater than ~/2 ; that is, the hyperplane a, is also strictly supporting to
the cone R. (Note that is the spherical image of ~. ) On the other hand
the int Je consists of points corresponding to hyperplanes strictly supporting
to both R and K. Thus, int 3C is not empty, and the inequality (*) follows
immediately.

Now consider the situation when after n steps we obtained a hyperoc-
tant T containing K. Let ~ E int Q. Since T contains K, the hyperplane ~’
with the unit normal ~ is strictly supporting to both K and T. Obviously,
the same hyperplane will be strictly supporting to .~, since is the

spherical image of K. Thus, - ~ E int í, and therefore int 3C 0 0. As before,
the inequality ( ~ ) follows from the openness of int K. The lemma is proved.

2.4. LEMMA. Let D be a closed convex set on the hypersphere f with
polyhedral boundary lying strictly inside a and P a convex cone
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with vertex 0 and spherical image D. Denote by 0153l’..., as the hyperplanes
containing the n-dimensional faces of P. Finally, let co = and

~1, ..., ~~ be unit vectors uxath origins at 0 and endpoints in co.

Then there exists a convex polyhedron M with a true vertex at 0 and such
that it has s faces q,, ..., qs adjacent to 0, each of which lies on the corresponding
hyperplane (Xj, j = 1, ... , s. M also has m other faces gl , ..., gm with exterior
normals 81, ... , ~m there exists a neighborhood of 0 on P free of
points of the f aees g1, ... , gm . In addition, if the ... , ~~, are all
directed in the hemisphere containing ,~ then M is an in f inite polyhedron;
otherwise, it is a closed convex polyhedron.

2.5. PROOF. As in Lemma 2.3 we denote by R the infinite convex body
whose boundary is P, and 7: = .l~ r1 .~. Correspondingly, D’ denotes the
set symmetric to D with respect to 0 and H = -r n Q’. Also, we denote
by K the infinite convex cone formed by the rays originating at 0 and
passing through ~, where $ E ,~. Finally, put C = 8K.

By Lemma 2.3, int JC 0, and we choose ( E int K. Let l be a straight
line passing through 0 and containing ~, and H a hyperplane passing
through 0 and perpendicular to l. Denote by 0’ an arbitrary point on I

different from 0 and taken in the direction ~. Let C’ be the cone obtained

from C by parallel translation so that in the new position its vertex coin-
cides with 0’. The intersection of the infinite convex body bounded by C’
with the infinite convex body .R gives a finite convex body whose boundary
is a closed convex polyhedron. Let T denote this polyhedron.

We note that every point of the intersection 0’ f1 P is a positive dis-
tance away from 0. In fact, let ~ E 0’ f1 P and be such that so _--__ dist x) =

= min dist (0, x). Also let arc cos ~). Since H is strictly~ 

supporting, 7&#x26;/2  y  n, and a calculation shows that dist (0, ---_

= dist (0, 0’) sin y &#x3E; 0 for any x E 0’ f1 P.

Next we consider the hyperplanes ai, ..., am supporting to T whose
exterior unit normals are ~1, ... , ~m . None of those hyperplanes passes
through 0, since $i c co, i = 1, ..., m. Among al, ..., am we take an arbi-.

trary hyperplane, say ai, and move it parallel to itself by a small distance
in the direction - ~i . If this distance is sufficiently small then clearly none
of the faces of T will disappear. The intersection of T with a halfspace
determined by ai in the direction - ~i gives a new convex polyhedron with
additional face whose normal is ~i . However, it could happen that oci al-

ready contained an n-dimensional face of T before we moved it. For con-

venience, we assume in this case that ai was « moved » but by a distance
equal to zero. Now we move each ai in the fashion described above, and
then consider the intersection of the halfspaces determined by 0153l, ..., am in
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the directions - ~1’ ... , - $m and the infinite body 1~. This intersection
is a convex body, whose boundary is a closed convex polyhedron with all
properties stated in the Proposition 2.4, except for the last one which is î

yet to be verified.
Let .~ be the convex polyhedron constructed above. Suppose ~1, ..., ~m

are all directed in the hemisphere Z’ containing 17. Let ~ E E+ be the unit
vector perpendicular to the equatorial hyperplane bounding ~+. Then
arc cos «, ~ i) yr/2y ~ = I , ... , m, and arc cos ~, ~&#x3E;  ~/2 for ,E li. Ob-

viously, the ray with the origin at 0 and of direction - I intersects neither
nor .P which means that .~ is infinite. The remaining case is

treated similarly. The lemma is proved.

2.6. REMARK. In the following the cone P in Zmw 2.4 will be referred
to as cone of M.

2.7. We will use the mapping lemma of Aleksandrov to prove the ex-
istence of a polyhedron with prescribed boundary cone, normals, and n-vol-
umes of the corresponding faces. For convenience of the reader we quote
it here. More details can be found in [1 ], p. 90.

Let A and B be two m-dimensional manifolds without boundaries (not
necessarily connected) and 7: a mapping of .A. into B satisfying the conditions:

1) each connected component of B contains images of points in A ;

2) -r is a one-to-one correspondence;

3) z is continuous;

4) if a sequence bk E B, 1~ = 1, 2, ... , is such that there exists a se-

quence akE A. for which -r(ak)= = 1, ~, ..., and bk converges 
then there exists a E A, for which 7:(a) = b, and one can select a subsequence

converging to a.

Under the conditions 1)-4), r(A) = B.

2.8. THEOREM. Let lil be as in Lemma 2.4, i. e. , a closed convex set on
the unit hypersphere E with polyhedral boundary lying strictly inside a hemi-
sphere, P a convex cone with vertex 0 at the center o f E and spherical image iil,

and ~1, ..., ~m points in w. Further, let .Fl, ..., Pm be positive
-numbers such that

E Q and A &#x3E; 0.
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Then exists a closed convex polyhedron M with a true vertex at 0 for
P is a boundary cone, and which, in addition to faces generated by P,

has m other faces UI, ..., Um with exterior unit normals ~1, ... , ~~ and n-volume$
F, 7 7 Fn -,

2.9. In order to prove the theorem we need some preparatory statements.
Consider the set 77 of closed convex polyhedrons which have 0 as their

true vertex and P as the boundary cone. Assume also that besides the
faces lying on Z’ they have only m other faces with exterior unit normals
$1, ... , $~. By « defi-7aition)&#x3E; of the boundary cone the faces with the nor-
mals ~1, ..., ~n cannot be adjacent to the vertex 0. It follows from Lem-

ma 2.4 that 0.
Each polyhedron is defined by its support numbers hl, ... , hm

corresponding to the normals ~1, ... , ~m . The support numbers of the faces
lying on P are equal to zero. Clearly, 07 i = 1, ..., m, and therefore,
with each we can associate a point ..., in the positive coor-
dinate angle of the m-dimensional Euclidean space Em. Denote by A the
set of points in Em corresponding to polyhedrons from II.

The set A is open. Indeed, for any .~ E H if we make a parallel transla-
tion by a sufficiently small distance of a hyperplane ai containing a face
with the normal ~a, none of the other faces will disappear and P will still
remain a boundary cone. Therefore, the new polyhedron obtained from .1~
will also lie in II. Of course, we can move all ai simultaneously and still
remain in ff.

Consider now an arbitrary polyhedron Since P is a boundary
cone for M, there exists a neighborhood TT of the vertex 0 on P free of

m

points of the faces gi with normals = 1, ..., m. Let M = U The
t-i

orthogonal projection of 2ff on the hyperplane H, constructed in the proof
of Lemma 2.4, obviously covers the projection of V on H. Therefore, there
exists e &#x3E; 0 such that

where f is the n-volume of the face ga . The left hand side in (2.2) is the
n-volume of the projection of M on H.

In general, the number e in (2.2) depends on the particular polyhedron.
We define the set as the set of polyhedrons in II which satisfy
(2.2). It is clear that for any 8 &#x3E; 0 the set 77~ is not empty. This follows

from Lemma 2.4 if we take the polyhedron constructed there and make a
homothetic transformation with the center at 0 and appropriate coefficient.
Correspondingly to the set -U". we have the open set As.
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2.1U. Next we consider the set $ð of positive numbers f 1, ... , 1m which
satisfy the inequality

for some fixed positive ð. In the m-dimensional Euclidean space with coor-
dinates (2.3) defines an open convex subset of the positive coor-

m

dinate angle. This subset lies above the 
; = i

We choose 6 so that contains the point (1fl, ..., 1f m) given in Theo-
rem 2.8. Let us show that it can be done. It follows from the construction

of vector n that « « max 0, since the hyperplane H is strictly

supporting to the cone C made up of rays which originate at 0 and go into
points of 8Q. On the other hand, because of and since E Q, we have

Thus, if we take ð = - then will contain the point ..., We

fix this 67 and also in (2.2) take E = 6.

2.11. The proof of Theorem 2.8 consists of verification of the condi-
tions 1)-4) of the Mapping Lemma with .A = A,5 B = As for the map-

ping T one takes it as

Since is an open convex set, it has only one component. It contains

images of points in ~ because by Lemma 2.4 and the discussion in 2.9,
A6 is not empty. Thus, condition 1) is verified.

Condition 2) holds because of Proposition 2.2.
To verify 3) one should just note that under a small change of support

numbers hi , ..., hm the corresponding n-volumes f 1, ... , 1m change continuously.

2.12. Finally, we establish 4). Let il =-- f’), k == 1, 2, ..., be a
sequence of points from ~3~ converging to f = (11’ ... , f m), and is the

corresponding sequence of polyhedrons from 77~ with support numbers
of the faces = 1, ..., m. We will prove now that the

sequence is bounded. 
,

Fix an arbitrary polyhedron Mk from the sequence ~~k~. Let Q be a
point on Mk such that the dist (0, Q) is maximal. In order to prove that
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is bounded it suffices to show that dist (0, Q) is bounded by a constant
independent on .~k.

Let H be the hyperplane with the unit normal n constructed in the
proof of Lemma 2.4. In view of the condition (2.2) and because of the
way IIa was constructed there exists a neighborhood U of 0 on P free of
points of the faces with normals ~1, ... , ~m of any polyhedron in There-

fore, we can move the hyperplane .H~ parallel to itself in the direction iji so
that in the new position H will still have common points only with U.
Denote by .H’ the translated hyperplane H. The intersection of .b~’ with

the convex body bounded by P is a closed convex body 0 whose n-volume
is bounded away from zero, say by a constant y &#x3E; 0. Consider a pyramid
with the base 0 and vertex Q. It lies entirely within the convex body Mk
bounded by and therefore its (n + 1)-volume TT does not exceed the

(n + 1)-VOIUMe of flk. Thus, we have

where s is the distance from Q to H’. By the isoperimetric inequality the
right hand side of (2.4) is bounded provided the n-volume of jM~ is bounded.

m m

The total n-volume of is equal to z ff where ejk denote the
4=1 1=1

n-volumes of the faces of adjacent to 0. Let us show that the n-volu nes

e§’ are bounded. Since the polyhedron Mk is closed,

where q; are the unit normals to the faces of the cone P. Then

On the other hand - ~ is an interior point of 9, and 

(in &#x3E; 0, since none of the faces of ~k adjacent to 0 degenerate).
In the second paragraph of 2.10 it was shown that min &#x3E; 0.

Therefore,
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Thus, the n-volume of Mk is bounded by a quantity depending only
m 

_

on Z ff and the domain D. Finally, y (2.4) and the isoperimetric inequality

show that the distance s is bounded. Since the distance between H and H’
is taken to be bounded and does not depend on the particular polyhedron
from the distance from Q to .TC is bounded. On the other hand H is

strictly supporting to the cone .R. Therefore, any ray originating at 0 and
going in R forms with an angle less than a/2. Then, obviously the bound-
edness of the distance from Q to .b~ implies boundedness of the distance
from Q to 0. m

converges to f, the sums fk can be uniformly bounded in
m

terms of f;, I = 1, ..., m, for all sufficiently large k.

Therefore, the sequence fhkl is bounded, and we can select from it a
converging subsequence. Correspondingly, y we will have a subsequence of
convex polyhedrons converging to some convex polyhedron M. The vol-

umes of the faces of polyhedrons of that subsequence converge to the num-
bers f 1, ... , f ~, . Thus, the condition 4) of the Mapping Lemma also holds.
From this we conclude that to any f there corresponds a polyhedron
from ~d . On the other hand, it has been shown in 2.10 that the point .F’ =
= (F1, ... , .F’,~) given in Theorem 2.8 belongs to %,,. This completes the
proof of Theorem 2.8.

3. - Generalized solution of the boundary value Minkowski problem.

3.1. THEOREM. let co be a on a unit hypersphere I such that
4li = eonvex domains lying strictly inside a hemisphere. Let 
be a continuous function defined in Co and such that

where Â &#x3E; 0 and E Q.
Then there exists a convex hypersurface S, contained in a closed convex

hypersurface 9, such that the spherical image of S is Co, the Gaussian curvature
(that is, the Radon-Nikodym derivative of the area f unction) at an interior

point ~ of w is and the support function vanishes at the boundary aco.

the hypersurface S can be constructed in such a way that the support
f unetion o f ~S’ vanishes on the entire D.

In order to prove the theorem we construct a converging sequence of
convex polyhedrons with prescribed set of unit normals, n-volumes of the
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corresponding faces, and certain boundary cones. Existence of such poly-
hedrons is assured by Theorem 2.8. The sequence is constructed in such a.
way that the area functions of the polyhedrons converge weakly to the
area function generated by the function 99(~). Also the boundary cones
of these polyhedrons converge to a cone which will be the boundary cone
of the hypersurface in question.

3.1.1. Consider a convex polyhedral domain whose boundary 
consists of k (n -1 )-dimensional faces, and is circumscribed about 8Q.
The (n-1)-dimensional faces are pieces of (%- 1)-dimensionai spheres
formed by intersections of Z with n-dimensional hyperplanes passing through
the center 0 of Z. Suppose k is large and the diameters of the faces of as2k
are small enough so that lie strictly inside the hemisphere containing Q.
If k ~oo and diameters of the faces of converge uniformly to zero,
then 8Q. Convergence is understood in the standard sense given to
convergence of sets in Euclidean space, which is applicable here, since we
are dealing with convex sets lying inside a hemisphere.

To each Qk there corresponds a closed domain which is

contained in the domain co. We partition C-0 k into small domains @) and
define positive numbers Pi and unit vectors $) by the condition

A certain care is needed in order to assure that vectors $§ lie inside 
This condition will be satisfied if one takes, for example, a triangulation
of (Ok into convex sets. The latter can be done in several quite obvious
ways, though describing the actual constructions is rather tedious. For

that reason we omit it here.
It follows from conditions 1), 2) in the theorem and (3.1) that for sufh-

ciently large k there exist &#x3E; 0 and unit vectors 8; E Q such that

Moreover, since the diameters of f3k tend to zero when k and c~/, -~ o),,
we have - A$-

Denote by Pk the convex cone with vertex 0 and spherical image 
Then in view of (3.2) it follows from Theorem 2.8 that there exists a convex

polyhedron Mk with a true vertex at 0 for which Pk is a boundary cone
and which, besides the faces adjacent to 0, has N other faces with exterior

normals $1 k and n-volumes 7 1 = 1, ..., N.
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3.2. Let us show that the polyhedrons P,~ all lie within a certain hyper-
sphere with the center at 0. In order to do that we need to construct at

first a unit vector ~ and a hyperplane H similar to those constructed in
the proof of Lemma 2.5.

3.2.1. Consider the cone R with vertex at 0 and spherical image l$.
Put c = R 17’ = {~ e 27)2013 ~ e JC = r. Correspondingly we have
the cones Rk, whose boundaries are Pk, and sets ík, and Since

... ~ S2, we have the inclusions ík C C ... C T. Suppose ~’ is a
positive number large enough so that D, lies strictly inside the hemisphere
containing D for all k &#x3E;K. Then Tk is a convex set with interior points.
By Lemma 2.3 the int 0. Let ~ E int X and be the center of a ball
of largest radius inscribed in X. The hyperplane H passing through 0 and
perpendicular to is strictly supporting to both cones P and C, where,
as before, C is the cone formed by the rays of direction 0~ ~ E and

with vertex 0. Since the sets we can assume that for k&#x3E;K the
hyperplane is strictly supporting to all cones Ck corresponding to as2,.
Obviously, it is also strictly supporting to all cones Pk. Therefore,

It has been shown in 2.12 that the total n-volume of faces q" j = 1, ...,8,
of M k adjacent to 0 satisfies the inequality

where ej is the n-volume of q;, and 

Xince n E int Jek for all we can Then (3.4) and (3.3)
give

On the other hand, we have

and we conclude that the total n-volume of faces adjacent to 0 is bounded

by a constant independent on k (when it is &#x3E;K).
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3.2.2. Consider now a point Q E at a maximal distance from 0.

Put Z = dist (0, Q) and consider the hyperplane a perpendicular to the

vector ) = OQ and at a distance Z/2 away from 0. Consider the projec-
tion of Mk on 0’y and denote by Sk the n-volume of the projection. We need
to estimate Sk from below.

We have, in view of (3.1 ),

The function $, C&#x3E;, $ c-.E, vanishes only on (n-1)-dimensional sphere
which is the intersection of 27 and the hyperplane passing through 0 per-
pendicular to C. On the other hand by our hypothesis gg($) ~ co &#x3E; 0 in 1§

and it is continuous. It follows from this and the fact that diameters of Pi
tend to zero when k that there exists a &#x3E; 0 such that

where T = ~~ E 0 j &#x3E; k~ 0, and 0153 is the same for all sufficiently
large k. Since

the constant a can be assumed small enough so that &#x3E; (n-volume of a))/2.
Finally we conclude that r

In order to estimate the distance L we symmetrize the polyhedron .~k
relative to the hyperplane cr. Denote by .Mk the resulting convex poly-
hedron. Under this symmetrization J and (n + 1 )-volume
of (n + 1 )-volume of M k. Inscribe in liik two pyramids with the
common base and vertices at 0 and Q. The total (n + I)-volume
of the two pyramids does not exceed the (n +1)-volume Yk of Therefore,
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It follows from (3.5) and (3.6) that the total n-volume of the hyper-
surface Mk is uniformly bounded. Under such circumstances the isoperi-
metric inequality implies that the (n + 1)-volume ’Yk is uniformly bounded.
Therefore, we can conclude from (3.7) that the ‘distance E is uniformly
bounded for all sufficiently large k. The latter means that the polyhedrons

are contained in a hypersphere of some fixed radius independent on k.

3.3. Since the polyhedrons are uniformly bounded, we can apply
Blaschke’s theorem asserting that the sequence .lVlk contains a subsequence

converging to a convex hypersurface. Denote the limiting hypersurfaces
by ~§. Since the boundary cones Pk converge uniformly to the cone P, and
the support functions of M, converge uniformly to the support function
of /§ (see [2], p. 43), the latter must vanish at the boundary of co. In fact,
it is clear that the support function of 9 vanishes everywhere in Q.

3.4. It is known (see [2], section 8) that the area functions of the sub-
sequence Mk, converge weakly to the area function of ~S. Let us show that
for any Borel subset C~ of E contained in co the area function of 9 is.
equal to dp.

G

Let Vk.(G) be the values of area functions of polyhedrons on the

set G. By definition of the area function

where the sum is taken over the faces of Nk, for which the normals lie in G.
We have

Because of (3.1) the first term on the right hand side vanishes. For the

second term we note that when the diameters of f31, are uniformly small,
say less than then (~~)12013~ for. Thus,
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Since ~(~) is a positive bounded function on (7), the terms on the right hand
side tend to zero when k, -+00. Thus,

for any Borel subset G c m.

It follows from our assumptions on q($) that at any interior point of co
there exists the Radon-Nikodym derivative of v(G) equal to 99(~). That

is, the limiting hypersurface /§ at each interior point of OJ has the Gaussian
curvature equal to 

3.5. The convex hypersurface whose existence was asserted in Theo-
rem 3.1 is now defined as the closure of the set of points on 8 for which
the supporting hyperplanes have normals parallel to vectors going from 0
in the interior of OJ. It is easy to see that the spherical image of S coincides
with ~.

3.6. It remains to establish uniqueness of the hypersurface S. Let Si
and S2 be two convex hypersurfaces with area functions v, and v2 defined
on Z and such that for any Borel set G c w,

Assume that the support functions h, and h2 of S1 and 82 are such that

hl == h2 = 0 on and the domain ~3 = is a convex domain lying
strictly inside a hemisphere. Consider a cone P with the vertex 0 at the

center of 27 whose spherical image is ~3. The hyperplanes which contain a

generating ray of P will be supporting to the hypersurfaces S, and S2. We
define two convex hypersurfaces 81 and by the support functions

Both function h1 and h are continuous on E, and for the hypersurfaces
and 82 the relation (3.8) holds for Borel sets G c (o. The area functions

of Si and 82 vanish identically for any Borel subset of Q.

- 

The mixed volume of the convex bodies ~’1 and T2 bounded by 81 and
82 is by definition given by the formula
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where ’V2(dO’) denotes the value of the area function on the Borel set dJ c 27.
Correspondingly, y the volumes of Tl and T2 are given by

and

By the Minkowski inequality ([2], p. 48)

and the equality holds if and only if Ti and T2 are homothetic (possibly
after a parallel translation of one of them).

In order to apply (3.9) and make use of (3.8), we need to be able to
{ replace)} in V’(Tl) by ’V2(dO’). However, this is impossible, since for
the sets containing portions of 8m the area functions. may not coincide,
and, in general, they are not absolutely continuous. To overcome this

difficulty we consider a closed subset wB of S~ which is a strip along the
boundary 8m such that and ~, s in wB. This is possible since hi
and h2 are both continuous and vanish on Since both v, and "2 are
completely additive ([2], p. 60) we can write

where the second term tends to zero when s - 0. (Note that v2 is a finite
measure.) Similar expressions hold for V(T1) and V(T2). Now applying
(3.9) and taking into account (3.8) we get

Letting e 0 we obtain
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Since Y(T1, T2) = Y(T2, TI) (see [2], p. 51), we can interchange the
roles of T2 and Ti. Then we obtain Y(T2) ~ V(TI). Therefore V(TI) = V(T2),
which means that we have equality in (3.9). Then PI and T2 are homothetic.
But their volumes are equal, and therefore they may differ at most by a
parallel translation. On the other hand they have a common boundary
cone P with the vertex at 0. The latter means that 

This completes the proof of uniqueness and the theorem is now com-
pletely proved.

3.7. REMARK. It is easy to see that the hypersurface 9 containing 8
does not have to be unique. An obvious example is obtained by taking a
hypersphere and a right circular cone tangential to this hypersphere.

4. - Interior regularity of the generalized solution.

4.1. In this section we intend to show that the generalized solution
of the boundary value problem (1.7), (1.8) constructed in section 3 is regular
inside the domain m provided the prescribed data is sufficiently regular.
Namely, we have the following result.

4.2. THEOREM. Suppose that the conditions of Theorem 3.1 are satisfies
and S the convex hypersurface constructed in section in addition,
that the given in Theorem 3.1 is of class Ok, 7 k&#x3E;3, in Then the

support function h of S is of class 0  a  1, in If 99 is analytic
in (1), then h is anatytic.

In order to prove the theorem we need some preparatory results.

4.3. We recall a few facts related to graphs of convex functions. Let w
be the spherical image of a smooth convex hypersurface .I’ with support
function ~(~), ~ E w. Take an interior point 21 E co and let D be a subdomain
of co such that it also lies strictly inside a hemisphere 2~. Assume that q
is the pole of 2~. Denote by T the hyperplane tangent to E+ at ~, and
xl, ... , x~ the Cartesian coordinate system on T. By central projection of
~+ from 0 onto T those coordinates are introduced in 2~. Now we project
orthogonally T onto the hyperplane T’ parallel to T and passing through 0.
Let D’ denote the image of D on T’ obtained by means of these two projec-
tions. We assume that in we have the Cartesian coordinate system
x~, ... , xn , z and q = (0,..., 0, 1). The metric on 1: in coordinates
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xl, ..., x, assumes the form (1 + ~02)-ICVa~’- (1-E- e2)-IX,Xj], where e2
= Ix;.
s
We associate with the support function ~(~) defined in D the function

~ = (1 -f- ~2~~ ~ computation shows that

where Uii = ax’, and

It follows from (4.1) and (1.3) that if .I’ is a (strictly) convex hyper-
surface then ii is a (strictly) convex function in D’.

4.4. THEOREM (Pogorelov [14], p. 73). Let u(x) be a strictly convex solu-
tion of class C4(R) n C(-ll) of the equation

in a domain .R c T’ and = 0. Then the second derivatives can be

estimated in any interior point x ERin terms of the max Rmax igrad .a P.

the function p and its first and second derivatives, and the distance from x
to aR.

4.4.1. THEOREM (Pogorelov [14], p. 76). Let be a strictly convex
solution of class C5(R) n C2(R) of equation (4.2) and = 0. Then the

third derivatives of u can be estimated at x E R by the C2-norm of U, the C3-
norm of p, and the distance from x to aR.

4.5. Let w now be the the spherical image of the generalized solution S
of (1.7), (1.8), and v its area function. In the following we always assume
that v is precisely the area function constructed in section 3, that is, S is
contained in a closed convex hypersurface ~S’ a part of which consists of a
portion of the boundary cone P. In order to avoid confusion, we will
denote by v the area function of rS’.

Our immediate objective is a construction of a smooth approximation
of S with special properties.

First of all observe that by Theorem 3.1 for any Borel subset G c w,
v(G) == f p dp: Since v is an area function of a closed convex hypersurface b~,

G
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it satisfies the condition (see, for example, [2], p. 63)

where dG has an obvious meaning.

Suppose now that g~ satisfies not only the hypothesis of Theorem 3.1 but
also is of class Ck , k&#x3E;3, inside w. This assumption will be assumed to be
in effect throughout the rest of this section.

Construct a sequence of functions qm on 1: with the following properties:

i

(b) 99 &#x3E; 0 on ~;

(c) converges uniformly together with its derivatives up to the
third order to 99 on any compact subdomain of (j);

(d) the measures

converge weakly to v.

Let us show that if the condition

is not satisfied then we can replace qm by cpm satisfying (a), (b), (c), (d) and
(4.4). The construction here is similar to that in [4].

Suppose for some m

where 1 and 1:. Choose an orthonormal frame ... , in

Rn+1. Let ~=~~, ~=1~)%, bl = ( f EPI(~) 11 da) - , ~=1,...~+1.
i 

m 

i 27

Now we « distribute » am over the hypersphere 1:. In order to do that con-

sider the function jL(~) == ~~, ~’&#x3E;, where 
Then i



487

Put

Clearly,

Let us verify that the other conditions are also satisfied for Condi-
tions (a) and (b) are obviously satisfied. Since the measures vm converge

to v, we have for arbitrary vector ~ E 2~

Therefore, 0. Since f m(~) is analytic on I, obviously satisfies (c).
Finally, let y(~) be an arbitrary continuous function on 27. Then

and therefore (d) is also verified. In order not to introduce new notations
we will assume that the original sequence qm already satisfies (4.4).

The functions satisfy all requirements needed to solve the Min-
kowski problem for closed convex hypersurfaces, that is, for each there
exists a unique closed convex hypersurface 8m of class Ok+2,tX, 0xly
such that at the point with the unit normal ~ its Gaussian curvature is

) ([14], § 3, or [4]).
Since the area functions of Sm converge weakly to the area function y

of ~S, we can show that the diameters of the hypersurfaces 8m are uniformly
bounded independently on m. The argument is similar to the one presented
in 3.2.2 and we will not repeat it here. Thus, we can select from the
sequence 8m a subsequence converging to a convex hypersurface ~S’’. Since

the area functions of 8m converge weakly to the area function v, 8’ has the
same area function as ~. Aleksandrov proved (see [2], p. 70) that there
exists only one (up to a translation) convex hypersurface with the same
surface function. Therefore we can assume 8.

Finally we note that the support functions hm of converge uniformly
on Z to the support function h of r~.
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4.6. LEMMA. The support functions hm and their first derivatives are uni-
formly bounded on 8m.

PROOF. It follows from previous discussion that diameters of all 8m
are uniformly bounded. By formula (1.3) the position vectors of 8m are
given by

Therefore, hm and Igrad hml are uniformly bounded.

4.7. LEMMA. Let S2 be a convex domain on E lying strictly inside a hemi-
sphere, and q an arbitrary interior point of co = Then there exists a

hyperplane A passing through (9 which strictly separates q and S~.

PROOF. Denote by ~+ the open hemisphere that contains D strictly
inside. Three possibilities may occur: (i) 17 and D lie in E+, E 

(iii) q E ~-, where ~- - 27Br+.
Consider first the case (i). A central projection of ~+ from d onto the

hyperplane ~l tangent to ~+ at the pole obviously will preserve convexity.
Since SZ n = 0y the image D’ of D will be a finite convex set on A
disjoint from the point q’-the image of q. It is well known that in this

case there exists an (n - i)-dimensional plane n in the hyperplane 11 which
strictly separates q’ and D’. The plane n can be selected so that it is per-
pendicular to the segment realizing the shortest distance between n’ and
S~’. Now it is clear that the hyperplane 11.’ formed by the straight lines
passing through 0 and the points of n strictly separates ?7 and 

The case (ii) is obviously just the limiting case of (i) and can be treated
similarly. In case (iii) the hyperplane determining the hypersphere 27~ can
be taken as A’. The lemma is proved.

4.8. be an arbitrary interior point of oi and a a hyperplane strictly
separating $ and ? _ Let S be the hypersurface constructed in
section 3 and h its support function. In this section we prove the interior

regularity of the hypersurface S.
Let T be the hyperplane tangent to the pole of the hemisphere contain-

ing ~ strictly inside. Following the discussion in section 4.3 we associate
with h the function = (1 + e2)ih(x), x E T’. The function h is uni-

formly bounded on 27y and since the origin 0 lies on on 27.

Thus, + 00.
For the sequence hm of support functions of smooth strictly convex

hypersurfaces constructed in 4.5 we have the corresponding strictly convex
functions ~m(x). On every compact subset of T the sequence #m(r) converges
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uniformly to ~(x). The function is obviously also convex and for a
sufficiently large constant a &#x3E; 0 the set 1’ _ {0153 E is a nonempty
compact convex set on T’. The functions ~m(x) _ a satisfy in -P
the equation

It follows easily from Lemma 4.6 that the functions 1im and their gradients
are uniformly bounded on T. Since the functions k&#x3E;3, the func-
tions Ok+2,(X. Shrinking the domain 1~ to a domain r1, if necessary,
we conclude from Theorems 4.4 and 4.4.1 that ~~ admit uniform estimates
of the second and third derivatives. Then one can select a subsequence still
converging in and A’ C- C2,1. Since satisfy (4.5), the function
h’ will satisfy the equation

Put 0. == for some s, s = 1 ..., n. By differentiating (4.5) with
respect to Xs we arrive at a linear differential equation for ~~

where Am is the cofactor of the element in the corresponding Hessian
matrix of 5i£ , and the derivative of the right hand side of (4.5). Since

the second derivatives of h~ are uniformly bounded in is uniformly
bounded away from zero (hence, so are the Pm), and the equation (4.5) is
satisfied, the equation (4.5) is elliptic in hl for all sufficiently large m.
Moreover, the first derivatives of Am are Lipschitz continuous with the
Lipschitz constant independent on m. Applying Schauder’s estimates ( [8],
section 35) we can conclude that the C2,1-norms of lsm are uniformly bounded.
The same is true for any s = 1, ..., n. Therefore, the C3,1-norms of I£ are
uniformly bounded. Under such circumstances we can select a subsequence
of converging in the for any oc e ( o,1 ) . Hence, the solu-
tion h’ of (4.6) is in Differentiating the equation (4.5) twice and

repeating the same arguments as before (with some obvious modifications)
we conclude that h’ belongs to 0 C a C 1. In a similar fashion one

establishes that if 99 E Ck, k&#x3E;3, then for any oc less than one; one

only needs to require the sequence cpm constructed in (4.5) to approximate 99
in Ck. If q is analytic then A’ is analytic as it follows from the results in [8],
section 44.

Finally, it should be pointed out that while shrinking the domain jT
to we could have left out the point ~ that we started with. But because
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the set 1~’ is defined for any sufficiently large a, we can select 1-’ so that the
image of $ under the central projection on T and then on T’ will be inside
Fl. Since $ was an arbitrary point of w, the proof of the Theorem 4.2 is
now complete.

REMARK. As the referee correctly pointed out, the Theorem 4.2 could
have been also proved with the use of Theorem 3 in [5]. However, it seems
to me that the proof presented above is more direct and more appropriate
in this particular setting of the problem.
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