
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

F. BALDASSARRI
On inseparable descent
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 9, no 3
(1982), p. 443-462
<http://www.numdam.org/item?id=ASNSP_1982_4_9_3_443_0>

© Scuola Normale Superiore, Pisa, 1982, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1982_4_9_3_443_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On Inseparable Descent.

F. BALDASSARRI

Introduction.

Let k be a perfect field of characteristic p # 0. Put R = = the

_ 

00 
_

ring of formal power series in x with coefficients in k, R’ = U k 
n=o

and Q, Q’ - the quotient fields of respectively. We also use the
notation ’W(-) to denote the ring of infinite Witt vectors (relative to the
prime number p ) with components in ~ , and put .K = W( k) . Let A denote

the ring of formal power series in X with coefficients in K, and let B
denote the p-adic completion of the ring We will define in sec-

tion 3 embeddings of rings A - W(~’) and B - 
The purpose of this paper is to give a manageable expression for de-

scent data on modules relatively to the extensions R -+ R’, Q - Q’ and on
p-adically separated and complete modules relatively to the extensions
A B --~ W(Q’ ) .

The simple form of the results obtained, say in the case .1~ --~ R’, de-
pends on the following fact. Let S = Spec .R, X = Spec R’, G = the affine
S-group Cartier dual to (Qv/Zv)s (the standard 6tale p-divisible group of
height 1, viewed over S). Then it is possible to define a morphism of schemes:
G making X - S into a principal homogeneous space under G.
We do not pursue in the present paper this geometric viewpoint: our aim
here is not towards greatest generality but towards a complete understand-
ing of the extensions of rings mentioned above.

We will apply the, results obtained here in subsequent papers to give a
generalization of Dieudonne theory for p-divisible groups defined over R
or Q.

This paper is essentially self-contained: we send to the references only
for the proof of two theorems. Some computations are however left to
the reader.

Pervenuto alla Redazione il 12 Settembre 1981.
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In writing this paper we have been stronlgy influenced by the work
of Barsotti: some of the constructions we use are due to him and others

are direct generalizations of the former worked out in the same spirit.

1. - In this paper the word « ring » means « commutative ring with 1 ~; a
morphism of rings always sends 1 to 1 and « module» means «unitary
module )}. If k is a ring, a k-algebra will always be associative with a right
and left identity element 1, and a morphism of k-algebras (a representa-
tion) will always send 1 to 1. If A, B are k-algebras, an antirepresentatio,n
f : A --~ B is a representation of the opposite k-algebra A* of .A in B.

If A is a linearly topologized (l.t.) ring and M, N are linearly topo-
logized (l.t.) A-modules, the usual topology of HomA (M, N) will be the

topology of simple convergence on the elements of M. The usual topology
of HomA (M, N) is A-linear and a fundamental system of open submodul38
of Hom A (M, N) in that topology is given by the set of the

as S varies among the finite subsets of M and V among the open submo-

dules of N. Unless otherwise specified A, M, N will be equipped with the
discrete topology and HomA (M, N) with the usual topology.

If f : A - B is a morphism of rings and g: M - N i,, a morphism of
A-modules, we denote by gjp : the morphism of B-modules
obtained by the scalar extension /.

(1.]) DEFINITION. Let k be a l.t. ring, separated and complete. A li-

nearly topologized (l.t. ) k-hyperalgebra is a structure (A, i, 1’, P, s, e), that
we usually denote simply by A, where:

A is a separated and complete l.t. k-module;

(1.I.ii) fl: A0kA -+ A (« product ») and

i : k -+ A (s structural morphism »)

are continuous morphisms of k-modules satisfying:
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are continuous morphisms of k-algebras such that:

Let x : A @k A -? A (§)~ A. be the continuous k-linear map defined by
x(a ~) b) = b Q a. Then the l.t. k-hyperalgebra A is commutative if = px,
and it is cocommutative if xP = P.

Morphisms of l.t. k-hyperalgebras are defined in the obvious way. The

kernel of s: A -+ k will be denoted by A+ and will be called the augmenta-
tion ideal of A.

If k is a ring, a k-hyperalgebra is a discrete l.t. k-hyperalgebra, where k
is equipped with the discrete topology.

(1.2) DEFINITION. Let k be a morphism of rings and be an

A-module. A descent datum on M relatively to k - A is a homomorphism
of A 0, A-modules :

such that:

and eii == e(’DiS)’ the diagram:

is commutative.

It follows from (1.2.1), (1.2.2) that:

(1.2.3) O is an isomorphism .
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Let us prove (1.2.3). Let = ac(8)b
and 0’ ii == Then : Oi3 = 1 ~12 = 191 ~23 --- def. therefore

e, 19 = ° Ånalogously OOx= idagm -. 

(1.3) GROTHENDIECK’S DESCENT THEOREM. Let k - A be a morphism of
rings and be a k-module. Then M = .Mo (8)k A is automatically equipped
with a descent datum relative to k -~ A, namely:

f o r a, b E A.

Assume that 1~ -a A is faithfully flat and let M, 0 be as in (1.2). Then,

is a k-submodule of M, .M = and 19 = Moreover, if (M, 0),
(M’, O’ ) are two data as in (1.2), if Mo is given by (1.3.2) and Mo is given
analogously, then an A-linear morphism f : M -* is obtained by the scalar
extension k --&#x3E;- A f rom a k-linear morphism fo: Mo -+ -M’ 0 if and only if the

following diagram commutes:

(See [2] for the proof).
Let k be a ring, A a commutative faithfully flat k-algebra and D a com-

mutative (but not necessarily cocommutative) k-hyperalgebra. Let

be a k-algebra morphism such that:

is a k-algebra isomorphism.
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From (1.4.1) and (1.4.2) it follows that

Let us prove (1.4.3). Let f = we have: uf = =

but u is inj-
ective. Q.E.D.

Let T denote the x-linear isomorphism:

Suppose we are given M, e as in (1.2). Let us put:

Then:

According to (1.2.2) we have:

Therefore:
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We conclude from the computations (1.5) that from a descent datum
on relatively to k - A, if the morphism u: A -~ D ~~; A, as in (1.4),
is given, we obtain a k-linear morphism:

satisfying:

Conversely, let cp as in (1.6) be given, and define O : 

by:

Then 0 is A 0 A-linear, and:

It follows from Grothendieck’s theory of descent ((1.3)), that if 

are as in (1.6) and one puts : t
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then and If now we

denote q by and let (N, (pN) be a datum analogous to (M, a A-linear

homomorphism is the extension by A-linearity of a k-linear

homomorphism to: Mo - No iff the following diagram commutes:

We will assume in the rest of this section that D, as a k-module,
is the direct limit of a direct system of finite locally free k-modules,

Then if k is given the discrete topology and the k-modu-
a

les = Homk k), C = HoMk (D, k) are given the usual topology,
with the inverse limit topology (the topology of is the

a

discrete). Besides Homk = Ca Ok and Homk (D0 D, k), with
the usual topology, equals lim Under our assumptions, C,

endowed with the operations dualizing those of D, is a l.t. k-hyperalgebra,
(commutative but not necessarily commutative) called the Cartier dual of
D. Let us put :

where

a continuous injective antirepresentation of k-algebras (the topology of D,
is the discrete). If c E C and d E D we will denote c(d) by c o d and 
by cd ; the previous formula then reads:

One can prove that:
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for c, c’e C and d, The second formula in (1.9.2), as many similar
formulas to come, should be interpreted as follows. Suppose Poe = I ei 0c~

j’4

(a converging sum in C) ; then 
;,h ~,h 

’

(8) (a finite sum in Therefore c(dd’) == _Y ~~ 
~,h 

’

Furthermore, if D is free with basis over k and if 

denotes the dual topological k-basis of C, we have:

Given u : A - D@ A as in (1.4), let us put:

Again, T is a continuous antirepresentation of k-algebras (the topology
of A being the discrete). If Tc(a) is denoted by ca, one has, for c E C and

a, a’E A :

The second formula in (1.12) means that c(aa’) = I (cja)(cha’), if Pee =

== L OJ 0 °h. j,h

;,h

If D is free we have again:

Analogously, y given 99: as in (1.6), we define:

Once again, TI is a continuous antirepresentation of k-algebras (the
topology of ~’ being the discrete) and, after writing cm for it satisfies :
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for any c E C, a E A, m E M, where M - .lVl’ denotes the scalar

products. So c(am) == 1 U~~(m), if Pac 
j,h j,h ~,h

If D is free, we have again:

Conversely, y let U: for a (discrete) A-module M, be a con-
tinuous antirepresentation of k-algebras satisfying the second formula in
(1.15); assume that D is free. Then defined by (1.16)
satisfies (1.6.1, 2, 3). Formula (1.7) now becomes:

Clearly:

and, if = mo0ac-M== then:

As a consequence of the considerations above we will say that the map U
of (1.14) is a descent datum on M relatively to k -+.Â.. Let now M and N

be two A-modules with descent data relatively to k - A. An A-linear
map f : M - N is the extension by A-linearity of a k-linear map /0: Mo -+

ifl:

One verifies immediately that the induced descent data on N

and Hom..4 (M, N) can be respectively expressed as follows :

if CEO, Pc == 1 c; (a converging series in O@ C)y m c M, n c N,
j,h

The right-hand term in (1.21) is to be interpreted in
the following way. Let be the canonical map.
Then e(m 0 n) == n) == = .1 (e, m) (e. n) (a finite sum in

i,h

Notice that this is a good definition.
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2. - Let k be a perfect field of characteristic 0 and, for n E N, let
Kn = be the ring of Witt vectors (relative to the prime number p)
of length n with components in k ; in particular .gl = k. Let be the

affine algebra of the standard multiplicative formal group G.. over 
is endowed with the (x)-adic topology and it is the l.t. K-hyperalgebra
(Kn is discrete) whose coproduct P and augmentation 8 are given by:

For any m in N, the multiplication by ~~ of (in additive notation)
is expressed by the continuous morphism of Kn-algebras :

In fact Pm is an injective homomorphism of l.t. Kn-hyperalgebras. Let

us regard Pm as an embedding of in another copy of itself that we

denote by namely we put:

One immediately checks that is freely generated as a 
module by {1_ Let us denote by the group

hyperalgebra of the group (that is the Cartier dual of its affine

algebra). Explicitly we have: is the free gn-module generated
by the g E and:

for any g, h in It is clear that the Kn-module homomorphism



453

is an isomorphism of .Kn-hyperalgebras (notice that Kn is nat-

urally a Kn-hyperalgebra). We deduce from (2.5) a surjective morphism
of I.t. Kn-hyperalgebras is discrete), y with kernel 

If we denote by the finite multiplicative .Kn-group whose affine
algebra is we have proved above that the sequence:

is exact (in the category of (faithfully) flat sheaves of abelian groups on

finite K n- algebras) .
Let us define now:

(notice that, since is a finite Kn-module and is com-

plete, we could replace @ by Q in (2.8)). Clearly, um is a 
morphism and it is determined, as a map, by: ,

We would like to prove that Um satisfies to the properties required for u
in (1.4), with the following replacements: (in the left-hand column of (2.9)
find the symbols of section 1 while in the right-hand one find the symbols
replacing them) ,

In the first place since 4 is free, it is also faithfully flat.
(1.4.1) is obvious. Let us check (1.4.2). We observe first that:
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is a continuous Kn-algebra isomorphism. The inverse of 1 is:

Let us now consider the diagram:

If we prove that in (2.12) the barred arrows exist in such a way that
the resulting diagram is commutative, (1.4.2) will follow for u... We would
have in fact then and and lr =

~ gnftxll "- "

To show the existence of 1 it is enough to prove
xn

that id) h) = id) fh), for any f in and g, h in
Now 1 is right so that we can put h = 1. We have

to prove that: (~m~ id)(Pf )(Pg) = (1 (8) id) Pg, if f E and g E

This follows from the fact that the kernel of is 

For the existence of if, it is enough to prove that r(x0 1) has zero image
in Now we have = (id0 

Kn

its image in coincides with = iEx = 0
(i = as usual the structural morphism of 
We conclude that the map u,,, defined in (2.8) is a Kn[x]-algebra homo-

morphism:

such that:

and

is an isomorphism of -algebras.
We are exactly in the situation of section 1 with the substitutions indi-

cated in (2.9).
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At this point we need to make a typographical specification: the xm
belonging to will be denoted by the symbol x~ will denote

only and we also wz ite x for so that x~ = xp-m, for m in N. Wa
+00

also put xon~ = x~’~’. Let We want to prove that A~ _

where Ai obviously coincides with the perfectionate of

l~ x . Let u s denote by the continuous ring homomorphism 
extending the natural map (reduction modulo 

such that = Let then qJn: - An be defined
by qJn(a) === Let us regard An as a discrete I.t.

ring. Then A - = lim (An, is a strict p-ring in the sense of [I], chap. II,
n

sect. 5, and it coincides then with W(Ai). It follows that An = 
If the symbol [a] denotes the multiplicative representative in Wn(Ai) of
a E AI, we have [1 -p x] = 1 -~- x~’~’ and, in general, [1 + x~-~‘] = 1 -~- x~’,
in the identification above. A word of caution on the embedding of 
in Wn(.AI). Let us (provisionally) topologize Ai with the (x)-adic topology
and (in 1- 1 correspondence with with the product topology

(notice that this topology coincides with the ([z])-adic) . Then the embed-

ding above is characterized as a continuous K-algebra morphism 
being endowed with the (xm’ )-adic topology) by the assignment x~’ «
~-~- [1 -+- xD-m] - 1. In the sequel, no topology will be given to 
or to but by «the embedding x~’ « [1 + x~ m] - 1 », we will always
mean the one desciibed above.

Let us fix n and put .X. By taking direct limits in

(2.13 ) we get a morphism of Kn[X]-algebras :

where is the free Kn-module generated g E en-

dowed with the hyperalgebra operations defined by formulas (2.4). The

morphism of Kn[X]-algebras u is determined by the relations:

for m c N. It satisfies :

is an isomorphism of 
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Moreover the morphism is faithfully flat. (The facts
just stated follow from the properties of direct limits). We are then in a
position to apply the theory of section 1 to get information on the descent
relatively to X « [1 + x] - 1.

Let us carry out in detail the constructions of section 1 for the present
data. The next diagram indicates the replacements to be operated (as
before the right-hand column replaces the left-hand one):

Let Fn = HomKn Kn) be the l.t. Kn-hyperalgebra Cartier dual
to We can obviously identify with the l.t. gn-hyperalgebra
of functions defined on the group taking values in gn, endowed with
the topology of simple convergence on with respect to the discrete

topology of (We recall that P: is defined by identifying

F n 0 F n with the .Kn-algebra of functions from to .Kn, en-

Kn

dowed with the topology of simple convergence, and by putting b) =

f (a + b), for f in .F’n and a, b in and ef = 0.)
Such an identification is obtained by interpreting f : as the

Kn-linear map : £ ~ ! from Kn[Q1)/Zv] to .Kn . Notice that Fn

can naturally be identified with as a Kn-algebra : f is identified
with ( f o, ..., EWn(F1) if /i = cil, where for i = 0, ..., n - 1, c,: 
Wn(k) - k is the function « i-th component » of a Witt vector. The

topology of .Fn corresponds then to the product topology of the topology
in the natural bijection Wn(Fi) " F,. We can also identify 

~ Kn

with since they are both isomorphic to the K-algebra
En

of functions f : X -~ Kn endowed with the topology of simple
convergence. The coproduct of .h’n then corresponds to the map:
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To pursue the correspondence with section 1, we see that the l.t. k-hyper-
algebra C is now replaced by Kn[X] 0Fn (or 0Wn(F1)) where0

gn gn Kn

is taken with respect to the discrete topology of .Kn ~X~ . The representation
oS of (1.9) is now the extension by Kn[X] -linearity of the Kn-linear con-
tinuous representation:

Similarly the T of (1.11) is the extension by Kn[X] -linearity of the

Kn-linear continuous representation:

We leave to the reader the verification of the formulas in (2.17) and
(2.18). We then conclude from section 1, that a descent datum on a

relatively to ~yPn ( 1~ ~xp ~~ ) , X ~ [1 + x] - 1,
is equivalent to a continuous representation of Kn-algebras:

such that (after skipping the symbols U’, T’ and denoting by

the scalar product) :

for any d in in m in M. Notice that each t7 f, for f in
F,q is then in fact 

Since is faithfully flat, all descent data with

respect to it are effective and therefore if one puts:
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one concludes that is a that .M = 0 MO’f I
and that d (r &#x26; m) = dr Q m for each d in Fn’ r in and m 

Since Um in (2.13) is a Kn[X]-algebra morphism, we can extend it by
[1/X]-linearity to :

satisfying:

(2.22.2) the map :

is an isomorphism of 
Moreover is free and therefore faithfully

flat. Notice that = (1 + (1 + Xm) + ... + (1 + so that

By passing to the direct limit for m going
to infinity, we get: where

Z*

denotes the perfect closure of the field k((x)). We obtain again a
morphism of 

given by:

and satisfying:

(2.23.2) the map:

is an isomorphism of 
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Moreover is faithfully flat. We can there-
fore apply to the descent relatively to that extension the same criteria we
proved for 

5#
3. - We keep the notation of section 2. Let us denote by R the ring
and by .~’ its perfectionate Let Q, Q’ denote the quotient

fields of .1~’, respectively. We also put K = W (k) = the ring of infinite
Witt vectors with components in k. Let be the ring of formal power
series in X with coefficients in .K; there is a unique morphism of K-algebras :

sending X to [1 -~- x] - 1, which is continuous for, say, the (p, X)-adic
topology in and the (p, [x])-adic one in W(.R’). We will always regard

as embedded in W(~’) by means of (3.1). The embedding (3.1) can
obviously be uniquely extended, as a ring homomorphism, to give an em-
bedding :

that we will always use in the sequel. Notice that (3.2) can again be ex-
tended by p-adic continuity, to an embedding of the p-adic completion B
of in ~W’(Q’ ) :

The embeddings (3.1) and (3.3) reduce modulo pn, to the embeddings used
in section 2, for which we were able to give simple descent criter ia. Let

us restate those results in a more manageable form.
Formula (2.18) provides us with a map:

Analogously, using (2.22), we get a map (that extends (3.4)):

The map (3.5) can be characterized by the properties:
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Moreover (3.5) makes ~W’n(Q’), endowed with the discrete topology, y into a
I.t. Fn-module and satisfies:

The right-hand term in (3.5.3) is to be interpreted in the following way.
Suppose a converging sum in F,, (2) F,,, then: d(rr’) =

i’i Kn

.1 a finite sum in -W,,(Q’). A descent datum on a Wn(R’)-

(resp. Wn(Q’)-) module M, relatively to Wn(R’) (resp. 
’[1/JT] ~~ ~(9~)) is equivalent to a Kn-bilinear map:

making M, endowed with the discrete topology, into a topological 
module and satisfying:

for d E ..F’n, r E W’n(.R’) (resp. Wn(Q’)), m E M. Here, as usual, f.Jsc: Wn(R’)
Q9 .NI --~ if (resp. yVn(Q’) Q9 M - if) is the scalar product, and, if Pd =
gn 

~ 
xn ~

== 2,di0dj (a converging sum in FnÇ9Fn), the right-hand term of (3.7)
t~ Kn

is to be interpreted as 2, (a finite sum in M), through (3.5) and
z,~

(3.6). Notice that m « dm is then automatically 
linear.

Let .F’ be the l.t. K-hyperalgebra (B’ being endowed with the p-adic
topology) of functions from to K, with the topology of simple conver-
gence. A fundamental system of open K-submodules (ideals, in fact) of F

is given by the

as m, n vary in N. Clearly, y F = lim Fn, as a topological ring. The iden-
%n

tification of section 2, now carries over to an identification
the last being equipped with the product topology of the

topology of F,,.
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By taking inverse limits for n - + oo in (3.5), we obtain a map:

that can be characterized by the following properties (3.8.1) and (3.8.2):

Moreover, the map (3.8) makes W(Q’), endowed with the p-adic topology,
into a topological F-module and satisfies:

The right-hand term of (3.8.3) should be interpreted as follows. Let 3Pd =

(a converging sum in then d(rr’) == I (d, r) (dj r’) (a
i,j K i,~

p-adically convergent sum in W(Q’)).
Let M be a ~W(.R’)- (resp. W(Q’)-) module, p-adically separated and

complete. Let

be a K-bilinear map, making M, endowed with the p-adic topology, y into a
topological F-mod-ale, and satisfying:

for d e F, a e W(R’) (resp. W(Q’)), m e M. Here W(R’) 0 if (resp. W(Q’) 0
~ 

~ K

If) denotes the p-adic completion of W(R’) 0 M (resp. 
_ ~ 

~ -K

PSC: (~) if -~ if (resp. W(Q’) (~) if -~ M) denotes the scalar product,
K 

~ ~ -x
and, if Pd 0 dj (a converging sum in F the right-hand mem-

K

ber of (3.10) is to be interpreted as (a p-adically convergent

sum in M) through (3.8) and (3.9).
It is clear that, by reduction modulo pn, the datum (3.9) satisfying

(3.10), provides a series of compatible data on M/pnM of the type (3.7).
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We then easily conclude from the previous section that if we put:

Mo is a K[X]- (resp. B-) submodule of M, .M~o is p-adically separated
and complete, (resp. where 0 means p-adic
completion of @, and f or d E F, 
(resp. W(Q’)) . Analogous results hold for the descent of morphisms of

modules.
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