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Analytic Functionals and Bergman Spaces.

PAUL ZORN

1. — Introduction and Definitions.

This paper concerns the problem of representing analytic functionals
as analytic functions. Let O(D) denote the vector space of holomorphic
functions defined on a domain D in C¥, N >1. With the topology of uniform
convergence on compact subsets of D, O(D) is a Fréchet space. An analytic
functional T: O(D) — C is an element of the topological dual space O'(D).
Continuity of T means that there exist a compact set K c D and a con-
stant C such that for all g € O(D),

|T9|<C| 9| &

where | g|| x denotes the supremum of |g| on K. Under these conditions, K
is a carrier (*) of T'; more generally, any compactum K,c D is a weak
carrier of T if for every open set U with K,c U c D, there is a constant Cy
such that for all ge O(D),

IT,|<Oglgly-

These definitions are due to Martineau [27]. In this paper we shall be con-
cerned only with compact weak carriers as defined above.

Let H be a Hilbert subspace of O(D), with continuous inclusion i: H —
— O(D). The rertriction of an analytic functional 7' on D to H corresponds
by the Riesz representation theorem to an element f, of H: for every ge H,

T,=<9 g -

We study the correspondence T' — f, in this paper.

() For a compactum K to be a carrier of T, it is sufficient but not necessary
that T be continuous in the seminorm || [z. (See, e.g., [27].)

Pervenuto alla Redazione il 31 Agosto 1981.



366 PAUL ZORN

Analytic functionals have been represented as analytic functions in
various ways for special domains D; see, e.g., [19], [16], [36], [2]. In each
of the cases cited, the holomorphic function 7' associated to the analytic
functional T—7T is called the indicatriz of the functional T—is given by
an expression of the form

T’(w) = T,k(z, w)
where k(z, w) is a function holomorphic in 2z and w. The correspondence

we study can be viewed similarly: it follows from the analysis of the next
section that

fT(w) =T, k(z7 w) ,

where k(z, w) is the reproducing kernel for the Hilbert space H. Notice that
in our case, the indicatrix f, of an analytic functional T is a holomorphic
function on the domain D itself.

Though every fe H represents a linear functional 7, on H which is
continuous in the topology of H, continuity of 7, in the stronger O(D)-
topology on H implies in many cases that f can be extended smoothly to
or holomorphically across the boundary of D. In the latter case, we obtain a
correspondence between analytic functionals and functions holomorphic in a
neighborhood of D. Whether this correspondence exists for a given domain D
and Hilbert space H depends upon a certain extendibility property of the
reproducing kernel for H. This is the topic of Chapter II.

In Chapter III we study analytic functionals by considering the case
H = H,(D), the Bergman space of holomorphic functions on D which are
square-integrable with respect to Lebesgue measure on C¥. In this case,
the reproducing kernel is the Bergman kernel function for the domain D,
which has been extensively studied by Kerzman [19], Bell [5], and others.

‘We shall use results about regularity of the Bergman kernel in proving
assertions about analytic functionals. Our principal result is as follows:
if D cc C¥ is strictly pseudoconvex and has real-analytic boundary, then T — f
is a topological isomorphism of O'(D) and O(D). Here O(D) is the space
of holomorphic functions defined in a neighborhood of D, with an inductive
limit topology to be defined below; O(D) has the strong dual topology:
basic open neighborhoods of the zero functional are of the form

U4, &) = {T € 0'(D): sup |Tf| < ¢},
fed

where ¢ > 0 and 4 is a bounded subset of O(D).
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The appropriate extendibility property of the Bergman kernel is a con-
sequence of real-analytic hypoellipticity of the ¢-Neumann operator on
such domains, which has been established by [23] and [7].

This theorem is false without the hypothesis of real-analyticity. For
example, we show that if N =1 and D has C* boundary, the linear func-
tional I1: H,(D) — C represented by the constant function 1 is continuous in
the O(D)-topology if and only if D has real-analytic boundary.

In the setting H = H,(D), we show that analytic functions which repre-
sent analytic functionals are precisely those of the form f= Ph, where
P: L¥D) — H,(D) is the orthogonal projection, and ke Cy(D), the space
of C* functions with support compactly contained in D. From this point
of view, results about analytic functionals can be couched in terms of the
Bergman projection. Thus in the context of the main result above, a funec-
tion fe H,(D) extends holomorphically to a meighborhood of D if and only
if f = Ph, for some he C;’(D). The second result above becomes: the con-
stant function 1 on D is the orthogonal projection of a compactly supported
function if and only if D has real-analytic boundary. These results and other
applications of the previous work are presented in Chapter IV.

II. — Analytic functionals, embedded Hilbert spaces and their reproducing
kernels.

Let D be a relatively compact domain in C¥ and Hc O(D) a Hilbert
space with inner product (, >y, such that the inclusion i: H — O(D) is
continuous. We also require that the inclusion O(D)<> H hold and be
continuous if O(D) is endowed with the topology of uniform convergence
on D. The latter condition is natural inasmuch as it is satisfied whenever
the inner product {, ), is given by integration against a finite positive
measure supported in D.

The restriction of an analytic functional T'e O'(D) to H is continuous
and has the form 7T,, where for all g€ H,

T,9=<9,Pxn

for some fe H. That 7, is continuous in the topology of O(D) means that
there are a constant C and a compact set K c D such that for every g€ H,

|Tg| = |T,9] = <9, /el <C||9]| ¢ -

Thus K is a weak carrier of the restriction of 7 to H. Suppose fe H and T,
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is continuous in the O(D)-topology on H. The Hahn-Banach theorem as-
serts that T, can be extended to be a continuous functional on O(D); let T
denote the extended functional. If H is dense in O(D), the extension is
unique. Equivalently, if H is dense in O(D), the map @: O'(D) - H given

by
T->T,ceH —>fcH

is injective. Under these conditions, a function f in the image of @ will
be said to represent an analytic functional on D, or less precisely, to be an
analytic functional on D. Our main object is to study the image of the map D.

The condition that i: H < O(D) be continuous is satisfied for Hilbert
spaces of the form H = L*(u) N O(D), where u is a finite positive measure
supported in D. More generally, by the closed graph theorem, if H c O(D)
18 a Hilbert space, the inclusion i is continuous if and only if for each p € D,
the evaluation functional e,: H — C defined by

em(f ) = f (P )
18 continuous.

From the general theory of separable Hilbert spaces of functions (see,
e.g., [35]), it is known that when all evaluation functionals are continuous,
there exists a unique kernel function k(2, w): DX.D — C which has the
reproducing property that for every fe H and z€ D,

f(z) = <f) k("z)>u-

Both k(-, w) and k(z, -) are elements of H, and k(z, w) = k(w, 2). If {p,}>>,
is any orthonormal basis for H, then k(z, w) can be written

k(z, w) = 3 @n(2) @a(w) .

For suitable domains D and embedded Hilbert spaces H, the map
@: O'(D) — H has image contained in O(D). This condition turns out to
be equivalent to a certain extendibility property of the kernel function

k(z, w) for H:

TueoREM IL.1. Let D be a relatively compact domain in C¥ with C*
boundary, and H a dense Hilbert subspace of O(D) for which the inclusions
i: H <> O(D) and j: O(D) > H hold and are continuous. The following con-
ditions are equivalent:

(1) For each fized w e D, k(z, w) € O(D).
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(2) For any compact set K c D, there is a domain D containing D such
that

(1) k(z, w) € O(Dy) for fized we K.
(ii) k(2, w) 18 continuous on DX K.

3) If feH and T,: H — C is continuous in the O(D)-topology, then
fe 0D).

NoTE. We denote by bD the boundary of a domain D.

REMARK. We will show below that when D ccC¥ is strictly pseudo-
convex with real-analytic boundary and H is the Bergman space H,(D),
the Bergman kernel k(z, w) satisfies (1). Without the hypothesis of real-
analyticity, (1) usually fails.

The proof of Theorem II.1 involves several steps. In the following lem-
mas, Pp(2,) will denote the polydisc in C¥ of polyradius (R, ..., R) about z,.

Lemma I1.2. If f(z, w) is holomorphic in the domain
(P, (0)X P, (0)) U (P (0)X P, (0)) cCYxC¥,

where R,<< R, and r,> 7y, then for every r e (ry,r,), there exists R > R, so
that f is holomorphic in Pg(0)XP,0). More precisely, if r=reri'gl) for
some te (0,1), then RY R~V is a satisfactory choice for R.

Proor. The domain of convergence of the power series about 0 which
represents f(z, w) is logarithmically convex. (See, e.g., [1], p. 21.)

The following elementary lemms is certainly well known, but as we
cannot find an explicit statement in the literature, we include a proof.

LemMA I1.3. Let f(2, w) be holomorphic in P,(0) X P,(0) c CY X C¥, where a
and b are positive numbers. For each w € P,(0), assume that f(-, w) extends
holomorphically to the polydisc Py, (0), where R(w)> a. Then for every com-
pact set K C P,(0), there exists R(K) > a such that f(z, w) is holomorphic in a
neighborhood of Pg ) (0) X K.

Proor. We assume for simplicity that a = b = 1. Let U c Py(0) be a
neighborhood of 0 chosen so small that for any w,e U, there is a polydise
P, (w,) € P,(0) such that K cc P, (w,).

The function f(z, w) has the power series expansion

fle, w) = 3 a7 w”
7, keNY
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valid in all of P,(0) X P,(0). Rearranging, we can write

f(zy w) = ¥ a(w)?’

jeENN
where

k
a(w) = 3 azw®.
LeNM

The functions a;(w) are holomorphic and defined for all w e P,(0).
For non-negative integers I and m, we set

1

1l
P ] N
1+1/m) , for allyeN}.

S = {we U: [ai(w)|<l(

The sets §,, are closed subsets of U, and by the hypothesis of the lemma,
they cover U. By the Baire category theorem some §;, contains a polydisc
P, (wy). The definition of §;, shows that the series

> a(w)?’

JENN

converges uniformly in 2 and w on compact subsets of P,,,.(0)X P, (w,);
hence f is holomorphic there.
We have shown that f is holomorphic in

(P1(0) XPf,(wo)) U (P1+1/m(0) XPro(wo)) .

(Recall that r, was chosen so that K cc P,(w,).) By Lemma IL2, there
exists B(K) > 1 so that f is holomorphic on Pg,(0) X P, (w,). This completes
the proof.

LemMA I1.4. Let DccC¥ be a domain with bD of class C:. If pebD,
then there is a unitary coordinate system (2y,...,%,) for C¥ and in these coor-
dinates a polydisc Py(z,) C D so that p € Py(z,) c D.

Proor. Since bD is of class C?, there is a ball contained in D with
boundary internally tangent to bD at p, whence the result.

LemmA IL.5. Let D, K, and k(2, w) be as in the theorem, and assume that
condition (1) holds. For each p € bD there exists a neighborhood U(p) of p
such that for each we K, k(z, w) ewtends holomorphically to DU U(p).
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Proor. Fix a point wye K and let P,(w,) be a polydisc neighborhood
of w,. Using Lemma II.4, let P,(z,) c D be a polydisc with p € P4(z,). Then
k(-, w) is holomorphic in P,(z,) and (2, -) is conjugate holomorphic in P, (w,).
If we take P (w,) to have the analytic structure conjugate to that which
it inherits from C¥, we can regard k(z, w) as a function on P,(z,) X P,(w,)
which is separately holomorphic in 2z and w. Since k(z, w) is in C*(D X D),
we can apply Osgood’s Lemma to conclude that k(z, w) is jointly holo-
morphic in 2z and w on Pyz,) X P,(w,). Condition (1) together with Lem-
ma IL.3 implies that there exists ¢'> ¢ so that k(z, w) extends to be jointly
holomorphie in Py(2y) X P,y(w,). In particular, for w,e K there is an open
neighborhood U, of p to which k(-,w) extends for all w € P,,(w,). The
compactness of K implies that there is an open neighborhood U(p) of p
to which %(-, w) extends for all we K. This is the desired assertion.

REMARK. Lemma II.3 and the proof of Lemma II.5 show that, in fact,
there is an open set W,c.D, W,> K, so that k(z, w) is jointly holomorphic
on (DV U(p))XW,, where, as before, the conjugate-holomorphic struc-
ture is taken in the second factor.

ProoF oF THEOREM IL.1. We first prove the equivalence of (1).and (2).
Assume condition (1) holds. For each p € bD, let U(p) and W, be chosen
a8 in the previous remark. The compactness of D implies that by shrinking,
if necessary, the U(p) can be taken to be polydiscs, such that U(p) N U(q) N D
is non-empty whenever U(p) N U(q) is non-empty. Further, we can choose
finitely many p,, « =1, ..., 4, such that

A
DcyDuU(p,).

a=1

The principle of analytic continuation guarantees that the extensions of
k(z, w) to the various DU U(p,) are compatible. Setting

W=NW

D,
a=1

we have K cc W. With the conjugate holomorphic structure on W, k(z, w)
is jointly holomorphic in D, X W, where

A
DK: U (DU U(pa)) .
a=1
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‘With the usual analytic structure on W, k(z, w) is jointly real-analytic,
holomorphic in 2z, and conjugate holomorphic in w. Hence (2) holds. That
(2) implies (1) is trivial.

Next we show that (2) implies (3). Suppose fe H and 7,: H —C is
O(D)-continuous. Then by the Hahn-Banach theorem, 7', extends to a
continuous linear funectional on C(D), the space of continuous complex-
valued functions on D. The Riesz representation theorem asserts that
there is a compactum K c D and a regular Borel measure x supported on K
so that for all ge H,

Ti9 =fyd#-
K

Let M(K) be the space of complex Borel measures supported on K, |u| the
total variation of the measure x. The norm-closed ball

B = {ve M(K): |v|<|ul}

of radius |u| in M(K) is compact in the weak-* topology on M(K). Since B
is also convex, the Krein-Milman theorem asserts that B is the closed convex
hull of the set F of its extreme points. The set F consists of the measures
on K of the form Ad(p), where A is a complex number of modulus |u|, and
d(p) is the unit point-mass at p € K.

This means that there exist measures u,, n€ N, on K of the form

L'l
My = E }'J na(wy n) )
i=1

where the L, are positive integers, 4, are complex numbers, and w;, are

points in K, such that u = lim 4,, the limit being taken in the Weak *
topology on M(K). For each n,

3 <l

We define functions f,, n € N, by setting

Each f, is holomorphic on Dy because k(-, w;,) is. As k(z, w) is continuous
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on DX K, it is bounded on compact sets K'X K. Hence if K'cc D, and
2€ K', then

Ifa(

iyn ( wi,n)

ZM,,,| sup |k(z,w)|<],ul sup  |k(z, w)| .
K'XK

(z,w)eK 2,W)€E

Thus {f,},~, is a normal family on D, so there is a subsequence {f, } which
converges uniformly on compact subsets of Dy to f,e O(Dg). In particular,
the f,, converge uniformly to f, on D. For any ge H,

Tyg = <g, 15n = [g(0) du(w)= f <0, B+, w)>rdu(w) —
K

= lim {gy k(- W) g Ay, (W) = lim zl ,né('wa,n.) (g, k(y w)dg =

Ty—> O Ny—>00 j=

K

= lim <gy ZAJ n.k wa,n.)> = lim <9, fn,>H == <g7 f*>H

N4—> 0O ia—> 0O

The last equality holds because of the requirement that O(D) be continuously
contained in H. Since f,, and f represent the same element of H’', they
coincide on D. Hence f admits an extension to D,. This completes the
proof that (2) implies (3).

To complete the proof, we show that (3) implies (1). The evaluation
functional ¢,: H — C given by

ey(f) = f(w)

is continuous in the O(D)-topology. This functional is represented by a
unique element of H, which by (3) extends holomorphically across bD.
But for every fe H,

fw) = {fy k(- w));5

hence k(-,w) represents e,, and so extends holomorphically across bD.
This completes the proof of Theorem II.1.

ReMARK. The hypothesis in Theorem IL.1 that bD be of class C? was
used only in the proof that (1) implies (2), where its use was limited to
finding, for each pebD, a polydisc Pc.D with pe P. Thus (3) = (1)
and (2) = (3) hold for arbitrary relatively compact domains in C¥, and
(1) = (2) holds whenever polydiscs P can be found as above. In particular,
if P is itself a polydisc, then Theorem IL1 holds as stated.
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III. — Analytic functionals in Bergman spaces.

For D a relatively compact domain in C¥, the Bergman space H,(D)
is the space of functions fe O(D) such that

3= 1A°
D

is finite. The space H,(D) satisfies the requirements of the last section.
The orthogonal projection P: L%*(D) — H,(D) is known as the Bergman
projection and is given by

Pf(w0) = [fk(w, -) dmyy

D

where k(z, w) is the reproducing kernel for H,(D), i.e., the Bergman kernel
for the domain D.

(Here and in the sequel, dm, denotes Lebesgue measure in dimension k. Any
integral expression omitting an explicit measure is understood to be with respect
to Lebesgue measure in the appropriate dimension.)

REMARK. If D, and D, are domains in C¥, and if @: D, — D, is a diffeo-
morphism with inverse @1, then the mapping @,: L*D,) — L¥D,) given by

f—=> (fo®1)-ac 1

is an isometry. (Jac @-! denotes the Jacobian of the mapping @-1.) If &
is a biholomorphism, then @, effects an isometry of H,(D,) and H,(D,).

The change-of-variables formula together with the expression for the
Bergman kernel in terms of an orthonormal basis for H,(D) implies that if D,
and D, are bounded domains in C¥, &: D, D, a biholomorphism, and
Kp: D;XD; - C the Bergman kernel for D;, j =1, 2, then

kp,(D(2), P(w)) = kp,(2, w) Jac D~ D(2)) - Jac P~ (p(w)) .

For proofs of these elementary facts, see, e.g., [11, Ch. I].

The mapping D, commutes with projection onto the respective sub-
spaces of holomorphic functions in L%*(D,). More precisely, for j =1, 2,
let P,;: L*}(D;) — H,(D,) be the Bergman projection. By direct calculation,
we have:
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LemMA II1.1. If he L¥D,), then
(Prho®@-1)-Jac @1 = Py(Jac D-1-(hoDP1)) .

It is easily seen that @,(Cy(D,)) = C(D,). The connection between
the Bergman projection and analytic functionals follows from this and
from a result proved in its present form by Lelong ([25], p. 39):

THEOREM IIL.2. Let D be a bounded domain in C¥, T: O(D) —C an
analytic functional on D, and K cc D a weak carrier of T. For any neigh-
borhood U of K there exists a function h e Cy°(U) so that for all f € O(D),

() Tf = fh.

REMARK. It is clear that if h e C°(D), then () defines an analytic func-
tional on D which is weakly carried by supp k.
The connection with Bergman spaces is as follows:

THEOREM III.3. Let D be a relatively compact domain in C¥ and let
P: L*}D) — H,(D) be the Bergman projection. If fe H,(D), then the linear
functional

Ty g _>ffg
D
s continuous in the O(D)-topology on H,(D) if and only if f = Ph for some
h e C(D).

Proor. If T, is O(D)-continuous, then by the previous theorem there
is an he Cy (D) such that for all g € H,(D),

ffg =fhg :fPh g.
D D D
Hence, f = Ph.
Conversely, if f = Ph then for all g € H,(D),

| [19] = | [Bo| <maxDA] Ll s

Since D has finite measure, we conclude that f represents an analytic fune-
ional with compact weak carrier supp h.
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CorROLLARY II1.4. Let D,, D,, and the biholomorphism @ be as in the
remarks above. The mapping D, is a bijection of {f € Hy(D,): T, is an analytic
functional} and {f € Hy(D,): T, is an analytic functional}.

PrOOF. Theorem IIL.3 and Lemma III.1.

In the sequel, we study the relationship between analytic functionals
and functions which extend holomorphically across bD. We shall make
use of the following fact:

LemumA IT1.5. Suppose bounded domains D, and D, in C¥ are biholomorphic
via a mapping ® which ewtends to a bikolomorphism of domains D, and D,,
such that D;cc Dj for j =1,2. Let 8;= {fe Hy(D,): T,: Hy(D;) —C is O(D)-
continuous}.

If 8,C O(D,), then 8,C O(D,).

If 8,2 9(D,), then 8,C O(D,).

Proor. By Corollary IIL.4, S, = D (8,). If fe O(D,), Duf = (fo®)-
Jac @-1e O(D,). The same argument applied to ($-!), shows that

?,(0(Dy) = 0(D,) .

The assertion follows immediately.
The next lemma is a special case of the main theorem, and is used
essentially in the proof of that result.

LemyA II1.6. Let U= {zeC: || <1}. A function feH U) represents
an analytic functional on U if and only if fe O(U).

Proor. The Bergman kernel for U has the form

1 __
k(z, w) = - (1—2w)—2.
Thus for real R,
(%) k(Rz, w) = k(2, Rw)

whenever both sides are defined.

Suppose that T, is O(D)-continuous. For fixed w with |[w|< 4 <1,
the function %k(z/4, Aw) is holomorphic in 2, and by (%), is an extension
across bU of k(z, w). By Theorem IL1, fe O(U).

Conversely, suppose f e O(aU) for some a > 1. Define ¥: C —C by

f(a%z)-a? if zel— U
y(2) = a
0 otherwise .
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Then, if P: L¥(U) — H,(U) is the orthogonal projection,

Py(z)=a? f f(a0) k(z, w) dmy(10) = f f(at) k(f, t) dmy(t) =1(2),
U

(1/a)U

by (*) and the reproducing property of k(z, w), where the change of variable
t{ = aw was performed. Thus f is the projection of a compactly supported
L*function on U; by the proof of Theorem IIL.3, f represents an analytic
functional on U.

REMARK. If D is a complete Reinhardt domain in C¥, the monomials
{z*: a e N¥ } form a complete orthogonal set in H,(D) [11, p. 71]. It follows
that (%) holds for k,(2, w) and hence that Lemma IIL.6 is valid for such
domains.

‘We now consider plane domains other than the wunit dise. All the
domains we study will be bounded, with boundaries consisting of finitely
many closed Jordan curves. For such domains D, Runge’s theorem asserts
that the rational functions with poles bounded away from D are dense in
O(D). Thus O(D) and hence H,(D) are dense in O(D), so the mapping

T € O(D) — T,e Hy(D) — f € Hy(D)
is injective.

Suppose D is a simply connected domain whose boundary is a real-
analytic simple closed curve. By the Riemann mapping theorem and the
8chwarz reflection principle, D is biholomorphically equivalent to the unit
dise via an extendible biholomorphism. Lemmas III.5 and III.6 imply
that there is a one-to-one correspondence between O'(D) and o(D). We
shall prove the analogous result in. the more general case that D is of finite
connectivity.

LeMMA IIL.7. Let A = A(r, R) c C* be the annulus {2: r < |z| < R}, where
0 <r<R<oo. Suppose f is holomorphic on an annulus A’ with A cc A’.
Then there exist a constant C and a compact K cc A such that for all ge H,(4),

|[fs|<Clol

i.e., f is an analytic functional on A.

Proor. Let D(R) = {|2| < R}, C(R) = {|2] = R}. By Cauchy’s integral
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formula, we can write f = f, 4+ f,, where for some ¢ > 0,

1 f(f)
h(2) = omi - dé !
C(R+é¢)
_—1 1(§)
=5 | Ehd.
C(r—e)

Then f, is holomorphlc in D(R 4 ¢), and f, is holomorphic in C,\D(r — &),
with f,(co0) = 0. Similarly, ¢ = g1+ g,, Where

g€ H,(D(R)) and g¢,€ O(CN\D,) NHy(4).

We have
f?g =ff191 +ff192 +f;zgl '*‘J?zgz
4 i 4 4 4
=1, + L+ I+ 1,.
First,
|I1]<l f}191 + l ﬁ191!<01”g1"1>(y13)
D(R) (r)

for some y <1, by Lemma III.6. For ze D(yR),

1
wel=gz| [ e <lologromm.

o(((v+1)/2)R)

where O, is independent of g.
To compute I, and I, we observe that integration in polar coordinates
shows that if 4, is the Kronecker delta, m, n € Z, then

7 .
fz 2" = 0p +1(R2”+2—'r2”+2), if nsa—1.

A
‘Writing

fl = za’nzn7 gz m’ Z_fflg‘a’ f E Z d»bm
n=0 m= 1% -
A

n=0 m=1

"n

Similarly, I;= 0.
To compute I,, we observe that there exists 4A>1 such that f,(¢1-2)

is holomorphic near C.\D,. Writing f,(2) = > d,[-" and using the ortho-

n=1
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gonality of the ¢, we have

I‘=ff”"’==§ |z|2" =2 f & e
A4 A

zj (m;") ( 2 (22)" ) ffz( )gz(lz)

Hence,

| <0y fz” A(r/l,R/).)I[ g2”A(rZ,RA) = 04”92” A(rA,RA)?

where C, is independent of g. But for |z > ri,

1
wel =z [ 2L a|<culaloqusnmn

o(((a+1)2)r)
Thus

lIl < lIﬂ + II4| < 02"9“ C(((r+1)/2)R)+ 05"9” c(((A+1)/2)r) < C”g“A(((z+1)/2)r,((y+1)/2)R)

by the maximum modulus principle. This completes the proof.
‘We use the lemma to prove our next result:

THEOREM II1.8. Let D be a bounded plane domain whose boundary con-
sists of finitely many disjoint simple closed real-analytic curves. A function
f € Hy(D) represents an analytic functional on D if and only if fe O(D).

Proor. It is known (see, e.g., [13], p. 237) that every plane domain
of finite connectivity can be mapped univalently (by @) onto a domain
whose boundary consists of finitely many points and finitely many disjoint
circles. Since in our case no component of bD is a point, all boundary
components of the image @(D) are circles. Since the boundary components
of D and @D(D) are real-analytic arcs, the Schwarz reflection principle implies
that both @ and @-! extend holomorphically across bD and b(®(D)). The
resulting extension of @ is a biholomorphism from a neighborhood of D
to a neighborhood of @(D). By Lemma IIL.5, it suffices to prove our theo-
rem in the case that D has circular boundary arcs.

Let bD consist of circles y;, =1, ..., k, which bound domains D,.
Let o, be the outer boundary of D.

Suppose f € O(D). Let 4,,7 =1, ..., k, be disjoint annuli, 4,c D, with y,
one component of bA4,. By the lemma, there exist constants C; and com-
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pacta K;cc A; such that for all g € H,(D),

| [fa] <Cilol,.

Hence,

ffgt+{ f fo| < 3 Gilols + 0lol,

D\UA]

D\UA

Jol<%

k k
Lot K — (B\UAj)u UK,. Then KccD and

i=1 i=1
| [7s|<Clal s,
D

where C is independent of g. Thus f is an analytic functional.
Conversely, suppose f is an analytic functional on. D. Using the Cauchy
integral formula, we can write f = f, + f,, where

k
heHDy),  fe0(CAUD;) nH(D),
i=2

and f,(co) = 0. We will show that f, extends to a domain larger than D,;
the proof that f, extends is similar.

We assume without loss of generality that the outer boundary is the
unit circle about the origin. Let r <1 be chosen so that the annulus
A=A4,(0)cD. In 4, f,(2) can be written

f2(2) =m§1 Z‘E .

Hence for n>0,
J.fz R = Zl b
4 "
by the orthogonality on A of {z": j€Z}. This implies that
f Fu" = 1"
D\4

Therefore, writing f,(2) = > anz™,
m=0

ffz” —ffl o +ffz o f o _,-2221)! B _; Ijz -

IDN\4
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This implies that for some constants C; and some R,<C1,

oy j—l |aa| =I fﬂz” <] ffz" fflzn _|_| ffzzn
D D Dy 4

< Cil#]fa<ry +§2 Cilfil5, 1215, + el mona) 2" | 2 (p\a) 5

<

+3

i=2

where the last inequality uses the fact that f is an analytic functional on
D and the Cauchy-Schwarz inequality for the space H,(D\A4). Since
D;c{z| <R}, j=1,..., k for some R,<1, and

2" gy~ <Ma(DN\A) - R}
for some R,< 1, setting R = max {R,, R,, R;} gives

44

n-+1

|aa] < C"[[2" s} <my = C'R",

where C’ is independent of n. Thus the power series for f,(z) converges for
|2] < R-'. This completes the proof of Theorem IIL.8.

We are now able to state and prove our main result (Theorem IIL.14)
that the one-to-one correspondence between analytic functionals and ex-
tendible functions already demonstrated for real-analytic bounded plane
domains continues to hold for strictly pseudoconvex domains in C¥ with
boundaries that are (2N — 1)-dimensional real-analytic submanifolds of C¥.
It will also be seen that O’(D) and O(D) are isomorphic as topological
vector spaces.

‘We shall repeatedly use the following fact: if D cc C¥ is strictly pseudo-
convex with C* boundary, then there ewists a domain Q such that D cc 2 and
O(RQ) is dense in O(D). (See [20, Th. 1.4.1] and [16, Th. 1.3].)

THEOREM II1.9. Let D be a convex domain in C¥ with real-analytic bound-
ary. Let f be a holomorphic function defined on a domain D, such that D cc D,.
Then f represents an analytic functional on D, i.e., there are a compact set
KccD and C > 0 such that for all g in H,(D),

| [fa|<Clol <

THEOREM II1.10. Let D cc C¥ be strictly pseudoconvexr with bD a real-
analytic submanifold of C¥ of dimension (2N —1). Let f be a holomorphic
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function defined on a domain D, with D ccD,. Then f represents an ana-
lytic functional on D.

REMARK. Both theorems are, in general, false without the hypothesis
of real-analyticity, as we will show below. Observe also that Theorem III.9
does not require that D be strictly convex, so sirict pseudoconvexity is
not a necessary condition, at least when D is convex. On the other hand,
the proof of Theorem III.10 uses the property of strictly pseudoconvex
domains that boundary points are peak points. For strictly convex domains,
the result of Theorem IIL.9 is a corollary of Theorem III.10.

Proor or THEOREM II1.9. It suffices to show that there exist compact K
and C > 0 such that

M | [7s|<Clglc

for all g in a dense subset of H,(D). Since D is convex, the polynomials.
are dense in H,(D), so we may assume that g is a polynomial. Let D ve
any fixed domain with D cc D. Since both sides of (1) are positively homo-
geneous in g, it suffices to prove (1) for polynomials g with |g|; = 1; such ¢
will be called admissible.

We assume without loss of generality that 0 € D. For every ¢ in H,(D),
the integral in (1) can be represented as a double integral:

fta= | { [ oo
D «eCPY-! n~(a)n D

where y is a suitable (1,1)-form on C¥ and o is the fundamental form of
the Fubini-Study metric on CP¥-!. The map m: C™\{0} — CP¥-! is the
projection given in homogeneous coordinates on CP¥-! by

Te(Ray ooey By) = [217 cen2 2y]

Estimates for the fiber integrals lead to a proof of (1).
According to [14, p. 30],

N N
. — _ Z;dz 2;dZ;
_'L_(dzl/\dzl i o dZN/\dZN _ 5glzj j/\,'gl Z)

% = o 00(log |2|?)= o FE |2|¢

A computation shows that

@) (w*w)¥-1A08(je]2) = (E%)N_I(N—l)! lele2¥ e NGB ... Aoy N dZy -
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By a version of Fubini’s theorem for differential forms ([30, p. 210]), if H
is any differentiable function defined near D, we conclude from (2) that

@ (- 1)'( ) fHdzlAdzlA oAy =
D\ {0}

HIz|2v—2 08 [z|2)} ¥,

CP¥-1 pYx)aD

For any oecCP¥1, fix uen(a) with |u| =1. Then z(x) = {ru: TE
eC\{O}}. Taking 7 to be the coordinate on n—'(x), we have

Hz|2-299(|2]2) = f H(r)[rlw—zd-r/\di:% fH(r)lrI”‘?dmz(r),

7Y a)n D n(x)n D anD

where dm,(t) is Lebesgue measure on the complex line «.

We apply this formula in the case H = fg, where f is as in the hypothe-
sis and ¢ is admissible. Let ope CP¥-1 be fixed. Since D is convex with
real-analytic boundary, D, = D N «, is also convex with real-analytic bound-
ary. The restrictions of f and g to D, N «, are holomorphic. By the result
in complex dimension one,

I ffglrlw—zdmz(f) "‘ ff TN-1g- ¥l dmy(7) | <

< G“o “gTN 1“1)(“0’30:0) < N”‘o “g” D("‘u,llNa.
holds for all admissible g and some N, € N, where D(x, &) = {ze D, : dist (2,

bD, )>¢}. The second inequality holds because D is compact.
We consider the inequality

) | [Farev—s am.| < 3.9l e -
Dy

This is valid for « = «, and arbitrary admissible g. For a fixed g, both
sides of (4) are continuous in «, so there is a neighborhood U, of «, in CP¥-?
such that (4) holds for all xeU,,

The admissible g are a norma,l family on D and are hence uniformly
equicontinuous on D. This implies that the neighborhoods U,, can be
chosen so that (4) holds for all admissible ¢ and all xe U, . Since CP¥-1
is compact, finitely many such neighborhoods U, , ..., U, form an open
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cover of CP¥-1. Taking M =max {N,,..., N, }, we have

| [fare=am.| < M g] 12
Dy

for all x and all admissible g.
Since D is convex, all the D, meet D transversally, so K = |J D(e, 1/ M)
is relatively compact in D. From (3) and (4), *eCpH-t

ol [

<

< ——niv:-—— fgreav—2dm, |1 <
SV —1)! ? =
CPN-1 Dy
N—1 N—1
< | [ Aleleon| < s gt [ o]
" leph- CP¥-1

By the Wirtinger theorem [14, p. 31], 1/(N —1)! f w¥-1 ig the (finite) volume
CpA-1
of CP¥-1, This completes the proof of Theorem IIIL.9.

ProoF oF THEOREM IIL.10. Let 2 be a domain of holomorphy in C¥
such that Dcc 2 and O(2) is dense in O(D). By density, it suffices to
show that the analytic functional A: 9(2) — C given by

g - [oF
D

is weakly carried by some compactum K ccD.

LemmA IIL.11. Let p € bD. There is an open neighborhood U, of p in 2
such A is weakly carried by K,= D\U,.

ProoF. There is a complex line A through p which meets bD transver-
sally. To see this, we assume without loss of generality that p = 0, and
define z: bD\{0} — CP*-! by

&z —>[?],

where [2] denotes the complex line through 0 and #z. The mapping = i8
smooth (indeed, real-analytic) so by Sard’s theorem, almost all values of &
in CP~- are regular values. The range of = on bD\{0} contains all lines
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A € CP¥-1 except perhaps those contained in T,(bD), and so contains almost
all of CP¥1. Choose a line A,c CP¥! trangverse at 0 to bD. If U is a
small neighborhood of 4,, then each 1¢ U is transverse to bD at 0. As U
is open, it contains a regular value, say A;, of #. This A, meets bD trans-
versally.

We assume further (by a change of coordinates in C¥, if necessary) that.
o= {z: 2,= ... = 2y =0} meets bD transversally. For a = (a,,...,ay) €
€ C¥-1 gufficiently near 0 in C¥-1, say for ae V c C*1, V open, the line
Ao={8: 2, = @,, ..., 2y=ay} is transverse to bD. The set W = {zeC":
2€ A,y some a €V} containg an open neighborhood of 0 in C¥.

To prove that A is weakly carried away from 0, we show that there
is a compact set A cD, 0¢ A, and a number C > 0 such that for any
g€ 9(Q),

|[Ag| = ny]<0ﬂyll,;-

Let D be a domain chosen so that DccDcc Q. Tt suffices to prove that.
the inequality holds for functions g with [g],<1.
Let such a g be given. Then

(1) |4g] = U79I<| f?gi+[ f79|< Culglmw + | ﬁyl
D D\W waD waD

where C, is independent of g. To estimate the second integral, we use
Fubini’s theorem:

ﬁg A2, NGE N oo Ny N Ey :f{ f 7g dzl/\d’z‘l} A N .. Ny N

waD V. Azgyevrz)n D

By transversality, for each z'= (z,,...,2y) €V, 4, D is a plane domain
with real-analytic boundary. In particular, for 2'= 0 the duality result in
plane domains implies that for some constant M independent of g,

ﬁg dzl/\d%! < M| g| 3,0 yy1 1

A0 D

where (1, N D)= {#z€ i, N D: dist (2, b(1, N D)) >¢}. We consider the ine-
quality

(2) I J?g dz1/\d§11 < M”g” (lz-’nD)_"M-n

Az0D
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which is valid for #'= 0 and arbitrary g. For a fived g, both sides of (2)
are continuous in #2’, by the continuity of g and smoothness of bD. Thus
for fixed g there is a neighborhood ¥ of 0 in C¥-1 5o that (2) holds for all
#’e V. We assume VccV. The family {ge 0(2): |g];<1} is normal on D,
hence uniformly equicontinuous on D. Therefore ¥ can be chosen so that
(2) holds for all such g and all z’eV.

Since all the A, 2’eV, meet bD transversally, the set

U 4y N D)y

TeV

is relatively compact in W N D. Define

A=J@A,NnD)y.v U (A,nD).

eV z'eV\f;

Then there is a constant C, so that for all ¢'eV,

[id| <cial..
A0
Thus D
l J?gl - f}g dzl/\dzl/\“'/\dzN/\déN!
wWabD waD
B f{ fig dZI/\dzl} dzz/\d"z'2/\,"/\dzN/\dle
V. Ay0D

< f02”g"A dzz/\dzz/\---/\dzN/\dle
14
< volume (V)-Cylg] ;-

From the inequality (1), we conclude that

A9l < Olg]l 40 onm) -

Any neighborhood U, of 0 such that U,c W\ A satisfies the assertion of
the lemma, and the proof is complete.
By the compactness of bD, there is a finite collection K, , ..., K.

», Of
compact weak carriers of 4 such that

(iélKW) NbD =4.
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LemmA IIT.12. Let K, and K, be closed, K,c D for i = 1,2, and let
each K, be a weak carrier of A. There is a closed set K which carries A weakly
such that K NbD = K, N K, N\ bD.

Let us assume for the moment that ITL.12 is proved. Applying it to
K, and K,, we obtain K,, carrying A weakly, with K,, "bD=K, N
N K, NbD. Now we apply IV.4 to K, and K,,, obtaining a weak carrier
Ko With K,,;NbD =K, NK, NK, NbD. Continuing this process pro-
duces a weak carrier K for A which is bounded away from bD. This yields
the theorem. It remains only to prove IIL.12. We use a result of Kisel-
man [21].

LemMA II1.13. Let F, and F, be compact subsets of 2, and let L be the
O(Q2)-hull of F,U F,. Let K be a compact set separating F, and F, in the
sense that INK = M, U M,, where for j=1,2, M; is closed in INK,
FNKcM;, and MiN M,= 0. Every analytic functional weakly carried by
each F; is weakly carried by K.

ProoF oF LEMMA IIT.12. Let A = K,U K,= D\ U, where for some
open U;cC¥ U = U,NU,, and K,;= D\ U,. Let L be the O(2)-hull of 4.
Since each point of D is a peak point for A(D), (indeed, for O(Q)[;),
LNbD = ANbD. Let VC U be an open set such that I = D\ V. Define

Vi= VU (UNTD,) U {ze U: dist (2, bT,) < dist (2, bU,)},
Vo= VU (UNU) U {ze U: dist (2, bU,) < dist (2, bT,)}.

For j =1, 2, the V, have the following properties:
(i) 7V, is open;
(i) V.NV,=T7T;
(iii) V,c U,;
(iv) (V,uVy)NnbD = (U,V T,)NbD.

To see (iv), assume that pe U; NbD. Then peV orpebl, or p e UN\U,:
In each case, peV,NbD. Similarly, if pe U, NbD, then peV,NbD.
Properties (i)-(iii) are immediate from the definitions.

Let P,= D\V;, j =1,2. Then by (iii), 4 is weakly carried on each
F,. By (ii), F,U F,= D\V = L, a holomorphically convex set in Q. Let
K =F,N F,; then INK = (F)\K)U (F\K). Setting M, = F,\ K, we ob-
serve that K separates F, and F, in the sense of Lemma IIL.13. Thus A4
is weakly carried by K, and by (iv), KNdD=F,NF,NbD=K, N K,N
N bD. The lemma is proved.
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THEOREM II1.14. Let DccC¥ be a strictly pseudoconver domain with
bD a real-analytic manifold of dimension 2N — 1. A function fe H,(D) rep-
resents an analytic functional on D if and only if fe O(D). The mapping
@: 9'(D) - O(D) given by

(p(Tf) = f

18 an isomorphism of topological vector spaces.

REMARK. The map @' is well-defined because H,(D) is dense in O(D).

Various topologies can be given for O(D) and O’(D). For the purpose
of Theorem III.14, O(D) will be taken to be the inductive limit (in the
category of locally convex topological vector spaces) of the Fréchet spaces
0(R2), as 2 ranges through the set of open neighborhoods of D. On O'(D)
we take the topology of strong dual to O(D).

PrOOF OoF THEOREM III.14. That fe O(D) represents an analytic func-
tional on D is the assertion of Theorem II.10. In view of Theorem II.1,
the converse is a corollary of the next theorem on extendibility of the
Bergman kernel. Regularity of the kernel for strictly pseudoconvex domains
with C® boundary has been studied by Kerzman [19], Bell [5], and others.
The general idea of the proof of the following theorem was suggested to
me by Dr. Steven Bell.

THEOREM IIL.15. Let DccC¥, N>1, be a strictly pseudoconver domain,
bD a real-analytic manifold of dimension 2N — 1. Let k(z, w) be the Bergman
kernel for D. If K is any compact subset of D, then there exists a domain D g
with Dg2o> D, such that

(i) for we K fixed, k(z, w) extends to be holomorphic in Dy;

(ii) for z e Dy fived, k(z,w)e O(K);
(iii) (2, w) extends to be jointly real-analytic in DX K.
The proof of Theorem II.1 shows that if for fixed w e D, k(z, w) extends

holomorphically to a domain D, with D, 2> D, then (i), (ii), and (iii) hold.
The proof that k(z, w) extends in z across bD involves several lemmas.

LeMMA IT1.16. For w fized in D, there exists ¢, €Cq’ (D) such that k(z, w) =
= (Pp,)(2), where P is the orthogonal projection of L*(D) onto the subspace of
holomorphic functions.

Proor. For fixed we D, k(z, w) represents the evaluation functional
at w. By Theorem IIL3, ¢, exists as claimed.
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By the work of Kerzman [19], we know that k(-, w) € A®(D), the space
of holomorphic functions on D which, together with all derivatives, extend
continuously to D. (Indeed, keC>(DxD\{(z,¢?): zebD}). More is true
in our case:

LemMA II1.17. For fized w € D, k(-, w) has real-analytic boundary values.

PrOOF. According to Kohn [22] (cf. Kerzman [20]), the projection
P: L*¥D) — H,(D) is given by

P=1—9NJ,
where N is the Neumann operator, and ¢ is the formal adjoint of 6. The

operator ¢ takes (0,1)-forms to functions: on smooth forms, it is given
explicitly by

Ny ¥ of;
(%) s Efjdzj)z—-z ool
i=1 i=1 0%;
Thus, by Lemma III.16,
k(" w) = P¢w
:‘pw_',Ng(pw‘

The function ¢, vanishes near bD, so the same is true of the form dgp,. It
follows from the expression (%) that Nog, (and hence k(-, w)) will be real-
analytic near and on bD provided that Nog, is.

The Neumann operator N takes (0, 1)-forms to (0, 1)-forms. For smooth
compactly supported (0, 1)-forms 7, there is the decomposition

n = (80 4 09)Nn @ Hr,
where H is the orthogonal projection onto the space of harmonic (0,1)-
forms, i.e. forms « satisfying [Ja =0, where (]= 30+ 9. In our case
n = Jp,, Hy =0, since the harmonic space is orthogonal to the range of ¢

on compactly supported forms. (A reference for these facts is [10, p. 51].)
Thus, applying the decomposition above to 7 = dgp,, we have

dp, = [N dp,, -
Hence p = Nog,, is a solution to the differential equation

op,= OB
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The form dp,, is supported away from bD, so as [ is globally real-analytic
hypoelliptic, it follows that NOog, is real-analytic at and near bD, which
is the desired assertion.

Note. Global real-analytic hypoellipticity of L] means that if f is real-
analytic near and on bD, and [lg = f, then g is real-analytic near and on
bD. This property of [Jfor a class of domains including real-analytic bounded
strictly pseudoconvex domains was proved by Komatsu [23] and indepen-
dently by Derridj and Tartakoff [7]. Local real-analytic hypoellipticity
of [] has more recently been established by Tartakoff [31] and independently
by Treves [33].

In order to obtain a holomorphic extension of k(-, w) to a neighborhood
D, of D, we will use a form of Schwarz reflection principle which follows
from a lemma of Tomassini [32]. To this end, we consider a real-analytic
submanifold X” of C¥, with real dimension p. Near a point x € X?, X? is
defined by parametric equations of the form

& = fl(tn ceey tv)

2y = ful1y ey )

where the #; are real coordinates in a neighborhood of 0 in R” and the f, are
complex-valued real-analytic functions. The rank of », denoted r(x), is
defined to be the complex rank of the N Xp complex matrix

O(fry ooy Iy)

Bty ooy ty) )

The rank r(x) is independent of the choice of parameter {. We use this
notation in the next lemma.

Lemma ITL.18. (Tomassini) Suppose r(x) = N for each x in X”. Let f
be a real-analytic function defined on X®. Then f is the restriction to X* of a
holomorphic function F defined in a neighborhood U of X” if and only if

de(dzlA...AﬁzN[x,) =0.

REMARK. Tomassini proves a more general result for X" a real-analytic
submanifold of an N-dimensional complex manifold.

Lemma IT119. Let D be a domain in C¥, bD a(2N — 1)-dimensional
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real-analytic manifold. If fe A®(D) has real-analytic boundary values, then f
extends holomorphically to a neighborhood of D.

ProoF. We apply Lemma IIL.18 with X2¥-1= pD. Since f is holomor-
phic in D, we have dfA\dzA...Adzy= 0 in D; by continuity, the equality
persists on D. In order to apply IT1.18 we must show that r(p) = N for
all p e bD. To see this, we choose holomorphic coordinates 2,, ..., 2y near p,
with 2; =t,;_, + ¥, j = 1, ..., N, so that near p,

b.D = {t2N= G(tl, "'7t2N—1)} 9

where G is some real-analytic function defined near 0 in R2¥-1, and dG = 0
at 0. Then r(p) is the rank of the following N X (2N — 1) matrix:

B % 00 0 ]
0 0 14 00 ..... 0 0

.06 .0G

_%a—tl(p) za—tz(p) . 8tw 2(10) 1+z (p)

The N X N minor consisting of the N odd-numbered columns of this matrix
is non-singular wherever G is defined, so r(p) = N.

Lemma ITI.18 implies that there is a neighborhood U of bD in C¥ and &
holomorphic function F which extends the boundary values of f. That F
extends f near b.D is a consequence of the following fact applied to g = F — f:

If ge O(2), Q2 a domain in C¥, and g has boundary values identically
zero in an open set E C b0, then g is identically zero. (For a proof, see [17].)
This completes the proof of Lemma IIT.19.

Proor or THEOREM IIT.15. Lemma ITL.17 asserts that k(z, w) satisfies
the hypothesis of Lemma IITL19, so k(z, w) extends in z to a domain
D,o> D. This completes the proof.

Proor orF THEOREM IIL.14 coNocLUDED. We have seen above that
@: O'(D) — O(D) is a bijection; it is clear from the definition that @ is
an algebraic isomorphism. It remains to show that @ and @-* are continuous.

Let {2,}>, be a sequence of neighborhoods of D such that for all n,
0,.,cc ,, and (] 2,= D. Then O(D) is the inductive limit in the category

n=1

of locally convex spaces of the increasing sequence O(2,)c O(£2,)c... of
Fréchet spaces, i.e., O(D) is a generalized LF-space. As the dual space
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to the reflexive Fréchet space O(D), O'(D) with its strong dual topology
is also a generalized LF-space [8, p. 513]. According to [24], the open
mapping theorem is valid for maps between generalized LF-spaces, so it
suffices for our theorem to show that @ is continuous.

A linear map A: X — Y of generalized LF-spaces is continuous if it
preserves convergent sequences; this follows from the fact that if X is the
inductive limit of Fréchet spaces X,, ne N, 4 is continuous whenever its
restriction to each X, is [8, p. 434].

Let {K,}2, be a sequence of compact subsets of D such that for all j,
K;,ccK},,, and |J K;= D. The topology in O(D) is given by the semi-

i=1
norms | [|g,, j€N. Since O(D) is a perfect space, it follows (see, e.g., [12,
p. 57]) that a sequence {T,}:>, converges to 0 in the strong topology on
O'(D) if and only if
(i) for some fixed j, all T, are continuous in the seminorm | | ;
ii) ”Tn“KJ_’ 0, where “Tn”KJZ sup |Tngl'
9€0 (D)
llollx; =1

Let {f,};>, be a sequence in O(D), and suppose that T, —0in O'(D).
To prove tha.t @ is continuous it suffices to show that f, — 0 in O(D).

Let K cc D be chosen so that (i) and (ii) hold for K = K;, and T, = T, .
Each T, is represented by a regular Borel measure u, supported on K;
by (ii), the u, can be chosen so that the total variation |u,| tends to zero.
According to Theorem IIL.3, f,= Pg,, where ¢,€C® and is supported near
K. More precisely, if 6 = dist (K, bD) and ¢: C¥ - R is a smooth, radially
symmetric function supported in {z: [2| < 6/2}, satisfying f @ =1, then the
functions ¢, can be written

Pn= Un* @,

where u, are regarded as compactly supported distributions. Thus K’'cc D
can be chosen so that for all m, supp ¢.C K', and lim [l,[z = 0.

Let a neighborhood D, of D be chosen according to Theorem III.15.
By shrinking D, slightly if necessary, we can assume that the Bergman
kernel for D satisfies k(2, w) eC*(Dy X K'). Hence for each n,

Ful®) = Popu=[pa(10)k(z, )
D

is holomorphic in a neighborhood of Dg., and

"fn(z)”DK' < 0“%”1{'"70“5,;, XK'
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where C is a constant independent of ». This shows that f,— 0 in the
topology of O(D), and completes the proof of Theorem IIT.14.

What can be said about functions which represent analytic functionals
on domains with smooth but not real-analytic boundaries? In view of
Theorem IIL.3, it is natural to consider the properties of the orthogonal
projection P: L*(D) — H,(D) on such domains.

For any positive integer ¢, let WY D) denote the Sobolev space of complex-
valued functions with square-integrable distribution derivatives up to or-
der t. For feWYD),

=3, 101

The subspace of holomorphic functions in W¥D) is denoted H'(D). In this
notation, H,(D) = H°(D), and L%*D)= W°D); a priori, the orthogonal
projection P maps WYD) into H(D). We now consider a class of domains
studied by Bell [3, 4]:

DEFINITION. A smooth bounded domain D in C¥ is said to satisfy condi-
tion R if for each positive integer s, there is an integer M = M(s) such that P
is a bounded operator from Wt (D) to W*(D).

Domains of type R include strictly pseudoconvex smooth domains,
smooth pseudoconvex domains with real-analytic boundary, and domains
of finite type in C2.

THEOREM IIL.20. If D is a domain satisfying condition R, then any

f € H,(D) which represents an analytic functional has C° extension to D.

Proor. Let s be a fixed positive integer. Given f as above, we write
f = Ph, where h eC(D). In particular, he W*¥® g0 Phe W¥(D). Since s
is arbitrary, Sobolev’s lemma implies that fe A®(D).

CoROLLARY. If D is type R, the Bergman kernel k(z, w) extends smoothly
to bD as a function of z for each fixed w.

ProoF. The analytic functional f — f(w) is represented on H,(D) by
k(z, w).

On strictly pseudoconvex smoothly bounded domains D, the functions
which represent analytic functionals are dense in O(D). A result of Bell [5]
implies a stronger density theorem.
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THEOREM ITL.21. Let D cc C¥ be strictly pseudoconvex with smooth bound-
ary, K ccD any compactum with interior. The set

Sz = {f€ Hy(D): T, is weakly carried by K}

18 dense in O(D).

Proor. Since K has interior, it is a set of determinacy for holomorphic
functions on D. According to [5], finite linear combinations of the funec-

k
tions %(z, w;), w;€ K, are dense in H,(D). If f(2) = Y a,;k(z, w,), then there

is a C > 0 such that for all g € H,(D), i=1
K —
12101 = | 3 [o(@)kws, 2 amas(e)| =1 S@gtwa| < Olgle.
i<
D

Hence fe 8. Since H,(D) is dense in O(D), the proof is complete.

IV. — Applications and Examples.

It follows from Theorems III.3 and II1.10 that when U is the unit dise
in C1, functions fe O(U) are precisely those of the form f= Pu, where
u € Cy(U). Every such f represents an analytic functional on U which is
weakly carried on supp ». In this setting, an explicit solution » € Cy°(U)
to the equation Pw = f can be given as follows. Suppose fe O(alU) for

some a > 1, and let

By the proof of Lemma III.6, Py = f. The function ¢ is not C®, but this
is easily remedied.

LemMA IV.1. Let a,f, U, and y be as above. Let 6 > 0 be chosen so that
l/la + 6 <1. Let ¢: C—C be any C function, radially symmetric about 0,
with supp ¢ c 60U and f«p =1. Set w=1vy*¢@. Then suppuc (l/a 4 6)U
and Pu = f. ¢
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Proor. The first statement is clear. For the second, we compute:
Pu(z) = f k(z, w) f W) p(w — 1) dmy(t) dimy(w)

U C
— [ [t ) plao —1) dm,20) p(t) dm(t)
cUu

(=, ) '/’(t) dm,(t)
C

Py(z)
f(z) .

Il

The third equality follows from the facts that k(z, w) is harmonic in w for
fixed 2 and @(w—t) is radially symmetric in % about ¢. This completes.
the proof.

REMARK. Lemma IV.1 shows that a function feO(all) represents an
analytic functional on U which is weakly carried on (1/a)U. In particular,.
this implies that an entire function corresponds to an analytic functional
weakly carried by the singleton {0}. Equivalently, any entire function f
can be written

f(2) = Pu(2) ,

(the equation holds in the unit disc), where « can be chosen to be supported
arbitrarily near the origin. Can f be written f = Pv, where » has small
support away from the origin? Equivalently, can the analytic functional T,
be weakly carried by a point 2,7~ 0%

Questions of uniqueness for carriers of analytic functionals in several
variables have been treated by Martineau [27], Kiselman, [21], and others..
In one dimension, a special case answers the question raised above.

Y

LEMMA IV.2. Let D be a domain in C and T € O'(D). If T is weakly
carried by compacta K, and K,, where D\(K,U K,) has no components com-
pact in D, then T is the zero functional.

Proor. Let U, and U, be neighborhoods of K, and K, such that U, n
N U,= 0 and D\(U,U U,) has no components compact in D. By Runge’s-
theorem, there exist functions k,e O(D), n € N, such that

h, — 1 uniformly on U,,

h, — 0 uniformly on U, .
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Let fe O(D) be arbitrary. Then k,f — f uniformly on U,; since T is weakly
carried on K,, T, f — Tf. But h,f — 0 uniformly on U,; since T is weakly
carried on K,, T, f - 0. Thus Tf = 0, which completes the proof.

Lemma IV.1 implies in our case D =U that no non-zero entire func-
tion f can satisfy f|y;= Pv, if v has support in a disc disjoint from the origin.

We have shown that a one-to-one correspondence exists between ex-
tendible functions and analytic functionals on a plane domain with real-
analytic boundary. Perhaps surprisingly, real-analyticity is also a necessary
condition, at least for domains with C2 boundary:

THEOREM IV.3. Let D be a bounded plane domain with C* boundary.
The following conditions are equivalent:

(i) O'(D)c O(D); more precisely, every fec Hy(D) which represents an
analytic functional on D extends across bD.

(ii) The constant function 1: D — C represents an analytic functional
on D.

(iii) bD is real-analytic.

Proor. It suffices to show that (i) = (iii) and (ii) == (iii). Let D, be a
domain whose boundary consists of disjoint circles, and @: D,— D a bi-
holomorphism. Since bD is C2, a result of Warschawski [34] implies that @
extends to a homeomorphism of D, and D, and that @' and (@-!)’ extend
continuously to D, and bD. By the chain rule, neither derivative vanishes
on its respective boundary.

The constant function 1: D, — C is an analytic functional on D,, so by
Corollary III.4, @,(1) = (P-')’ is an analytic functional on D. If (i) holds,
then (@-')' extends holomorphically across bD.

Let p be a point of bD and U, a simply connected neighborhood of p
to which (@)’ extends. Then @1 also extends to U,. Since (D-1)'(p)+# 0,
@1 ig univalent near p, mapping bD to bD,, so bD is real-analytic near p.
Thus (i) = (iii).

If (ii) holds, then @, (1) = @’ extends holomorphically across bD,. For
p €bD, we apply the argument of the last paragraph to @-(p)e€ bD,, to
conclude that near p, bD is the image under a conformal map of 5D, near
@-(p). Thus (iii) holds, and the proof is complete.

REMARK. It is not necessary that bD be of class C? for (ii) and (iii) to
be equivalent. We use this fact in our next result:
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THEOREM IV.4. Let D be a bounded plane domain each of whose boundary
components O; is a simple closed curve. Suppose further that each C; is the
union of Ct arcs which intersect transversally. Then 1 is an analytic func-
tional on D if and only if bD is real-analytic, i.e., if and only if each C; is a
simple closed real-analytic curve.

Proor. Let D; be a domain with circular boundary components and
®: D,—> D a biholomorphism. If 1 is an analytic funectional on D, then
(D)4 (1) = @ (and hence also @) extends holomorphically across bD,.
Suppose that @'(p) = 0 for some p € bD,, and assume without loss of gen-
erality that @(p) = 0. Let U be any neighborhood of p on which @ is
defined. Since bD, is smooth at p, w = arg ®(2) assumes on U N D, all
values in [0, 2x] with at most one exception. By the assumption on bD,
we can choose a disc neighborhood V of @(p) = 0 such that for some 0,
j=1,2, 0<6,<0,<2x, DNV omits the sector {arg w e (6, 6,)}. This is a
contradiction; hence @’ does not vanish on bD,. The proof of Theorem IV.3
now applies to show that bD is real-analytic, which is the desired assertion.

REMARK. In view of Theorem IIL.8, Theorem IV.4 implies that on
domains of this kind, 1 represents an analytic functional only if every ex-
tendible holomorphic function does.

An example of a non-smooth domain on which 1 represents an analytic
functional may be given as follows: Let D be the image under the map
@(2) = 2% of the disec D,= {z: |¢+—i| <1}. Note that the cardioid bD is
piecewise real-analytic but that the transversality hypothesis of Theorem
IV.4 fails to hold at 0ebD. Since @'(2) = 22, @' represents an analytic
functional on D,. Hence 1 = @,(P’) represents an analytic functional on D.

Consider the map I: H,(D) — C given by

g—>fg :flg.
D D

‘Whenever I is continuous in the O(D)-topology, i.e., whenever there exist
C > 0 and a compact K cc D such that for all g e H,(D),

| [e|<Clgl,

I extends to a (unique) element of O'(D). Reworded in these terms, Theo-
rem IV.4 gives a criterion for I to be an analytic functional:
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CoROLLARY IV.5. Let D be as in Theorem IV.4. Integration over D defines
an analytic functional on D if and only if bD s real-analytic.

We illustrate these ideas with an example. Let U be the unit disc,
V=Un{Rez>0}. According to Theorem IV.4, integration over the

domain defines an analytic functional on U but not on V. If f = ¥ a,2"€
H,(U), then n=0

ff = ia,,z" =gm-a,=mn-f(0).
5 E n=0

Thus integration over U is, up to a constant, evaluation at the origin, which
certainly defines an analytic functional on U.
On V, we consider the integrals fz" for odd n:
14

1 =
fz" = Ufr"e"""rdrd@
00

vV
If 1 were an analytic functional on V, then for some ¢>0 and KccV
we would have :
Jr
14

for all odd », where A < 1 is a constant. This is absurd, so integration over V
does not define an analytic functional on V.

‘We have seen that integration against 1 does not define an analytic
functional on domains with « corners ». Does integration against an ex-
tendible function vanishing to high order at the corners define an analytic
functional? The half-disc example shows that, in general, the answer is
negative:

—1 2
n-+2 in

2

n(n +2) "

2

an2) | )| <Ol le=OF

THEOREM IV.6. If V is the half-disc, then no non-zero polynomial rep-
resents an analytic functional on V.

Proor. Suppose p(z) = a,+ a,2 + ... + a,2™ represents an analytic
functional on V. Then there exist ¢ > 0 and r < 1 such that for any » € N,

J
J

We will show that all odd coefficients of p vanish; the proof for the even

<COr .
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coefficients is similar. A computation in polar coordinates shows that

24
fw: (0§ +2)(m—3)
M 0 if (n—79) is even, 0.

it (n—j) is odd.

‘Thus for all » > m, n even, we have

-

=2

a as \ .

mF3)m—1) " miBm—3 |~

Eaa (n+1+2)(n—1)

< COrn.

Since the left-hand of the last inequality is a rational function of » and
the right hand side is exponential, we must have that for every n e N,

a .
z§d<n+l+2)(n—l)”

i<m

0.

Thus, a,= 0 for each I, and the proof is complete.

A result similar to IV.3 holds for certain smoothly bounded domaing
in C¥. In the absence of a conformal mapping theorem in several variables,
the hypothesis is strengthened.

THEOREM IV.7. Let D cc C¥ be strictly pseudoconvex with smooth bound-
ary. Assume there to be a biholomorphism @: D, — D, where D, ccC¥ is
Sstrictly pseudoconver with bD, a (2N — 1)-dimensional real-analytic sub-
manifold of C¥. If the monomials of degree 0 and 1 represent analytic func-
tionals on D, then bD is a (2N — 1)-dimensional real-analytic submanifold
of C»,

COROLLARY. Let D be as in the theorem. If the monomials of degree 0

and 1 represent analytic functionals, then all extendible functions fe O(D) do.

ProoF oF THEOREM IV.7. Let @,,..., @y be the components of .
Since 1 and z;, § =1, ..., N, are analytic functionals on D, the functions
Jac @ = @;Y(1) and Jac @-D;= &, '(z;) represent analytic functionals on
D,. By Theorem III.14, they extend holomorphically across b.D;.

It is known ([9], cf. [28]) that biholomorphisms between strictly pseudo-
convex smoothly bounded domains extend smoothly to the boundary.
Thus Jac @ and Jac @' extend smoothly to bD, and bD; by the chain
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rule neither vanishes on the boundary. It follows that for each j, @;
extends holomorphically across bD,. In the neighborhood of any point
pebD,, the extended function @ is a biholomorphism, mapping bD, to bD.

This completes the proof.
‘We consider next some consequences of our duality results on domains

in several variables.

THEOREM IV.8. Let DccC¥ be as in Theorem IIL.14 and assume
fe O(D). The following conditions are equivalent:

(i) feo(D);
(ii) fe A®(D) and f has real-analytic boundary values;
(iii) f = Po for some @ €Cy(D).
Proor. Lemma IIT.19 and Theorem IIIL.3.

REMARK. Theorem IV.8 provides an analytic counterpart to a result
of Bell [3], who proved that for D strictly pseudoconvex with smooth boundary,
each ue A°(D) can be written w = Pp, where ¢ vanishes to infinite order
on bD.

From facts about weak carriers of analytic functionals, we can infer
results about the supports of functions which project to analytic functionals.
Following are two examples; note that analyticity of the boundary is not
required.

THEOREM IV.9. Let D cc C¥ be strictly pseudoconver. Let K, and K, be
disjoint compacta in D, such that K,V K, is holomorphically convex in D. If
f = Py, = Py,, where supp ¢,Cc K;, j =1, 2, then {f=0.

ProoF. Since D is strictly pseudoconvex, H,(D) is dense in O(D), so f
represents a unique analytic functional on D. Since K,U K, is holomor-
phically convex in D, Theorem 4.3.2 of [18] implies that there exist func-
tions h,e O(D), n € N, such that

h,—1 uniformly on K,,

h,— 0 uniformly on K, .
The proof of Lemma IV.2 applies to show that T, is the zero functional;
hence f = 0.

THEOREM IV.10. Let D be as in Theorem IV.9. For j =1, 2, assume
K;cc D, K,V K, is O(D)-convex, and ¢, C*(D) with supp ¢,C K,. If f=
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= P, = Pgp,, then for any open set U such that U > K, N K,, there exists
¢ €CP(U) such that f = Po.

ProOF. The analytic functional 7', is weakly carried on each K;. Lem-
ma 1;1.15 implies that T, is weakly carried on K; N K,. The conclusion
follows from the remarks at the beginning of this section.

Theorem III.21 also has a counterpart in this setting:

THEOREM IV.11. Let D cc C¥ be strictly pseudoconvex with smooth bound-
ary. If UccD is any open set, then

{Pg: 9 e CP(U)}
18 demse in O(D).

Proor. Let V cc U be open. Every analytic functional 7', weakly car-
ried by V satisfies Pp = f, for some ¢ eCX(U). By Theorem ITL.21, such f
are dense in O(D). This completes the proof.

Theorems IIT.14 and IIT.20 assert that functions in H,(D) extend
holomorphically across bD or smoothly to bD when they represent analytic
functionals. The proof of Theorem III.9 shows that if D cc C~¥ is convex
with smooth boundary and 0 € D, a function f € H,(D) represents an analytic
functional if its restriction to each complex line A through 0 satisfies the
following conditions:

(i) fl,e Hy(D N 4);

(ii) there exists C;> 0 and a compact K,cc DN A such that for all
polynomials p in the single variable z (the coordinate on 1),

| [tz am@)| < Clpl x,
Dni

(We have used the fact that D N 1 is polynomially convex.) We have shown:

THEOREM IV.12. Let D cc C¥ be convex, 0 € D, bD smooth, f € Hy(D). If
for all complex lines A through 0, (i) and (ii) hold, then f e A®(D). If, in addi-
tion, bD is a (2N — 1)-dimensional real-analytic submanifold of C¥, then
fe o(D).

The duality theory can also be used to deduce results about boundary
behavior of biholomorphisms between certain domains.
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THEOREM IV.13. Let D, and D, be strictly pseudoconver domains, each
with boundary a (2N — 1)-dimensional real-analytic submanifold of C¥. Let
®: D,— D, be a biholomorphism. Both Jac @ and D extend holomorphically
across bD,.

ReEMARK. Theorem IV.13 was proved originally by Pinéuk [29].

Proor. The constant function 1 is an analytic functional on D,, so
D;1(1) = Jac @ extends holomorphically across bD,. Similarly, Jac @1
extends holomorphically across bD,. Hence Jac @~ 0 on E, and indeed
does not vanish on a neighborhood of D,.

The functions z;, j = 1, ..., N, are analytic functionals on D,, so @, '(z;) =
= @,;-Jac @ is an analytic functional on D, for each j, and hence extends
holomorphically across bD,. Since Jac @ = 0 near D, and extends holomor-
phically across bD,, D, itself extends holomorphically across bD,. This
completes the proof.

THEOREM IV.14. Let D, and D, be strictly pseudoconver domains, D,
as above, and D, with C° boundary. Let @: D,— D, be a biholomorphism.
Then Jac @ extends smoothly to bD,.

PrOOF. The constant 1 is an analytic functional on D,, so Jac @ =
= @/ (1) is an analytic functional on D,. By Theorem IIIL.20, Jac @ ex-
tends smoothly to bD,.
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