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Analytic Functionals and Bergman Spaces.

PAUL ZORN

I. - Introduction and Definitions.

This paper concerns the problem of representing analytic functionals
as analytic functions. Let denote the vector space of holomorphic
functions defined on a domain D in CN, With the topology of uniform
convergence on compact subsets of D, 0(D) is a Fréchet space. An analytic
functional T: 0(D) - C is an element of the topological dual space 
Continuity of T means that there exist a compact set K c D and a con-
stant C such that for all g E O(D),

where denotes the supremum of Igl on K. Under these conditions, K
is a carrier (1) of T ; more generally, any compactum K1c D is a weak
carrier of Z’ if for every open set U with TI c D, there is a constant C ~
such that for all g c O(D),

These definitions are due to Martineau [27]. In this paper we shall be con-

cerned only with compact weak carriers as defined above.
Let .H be a Hilbert subspace of 0((D), with continuous inclusion i : H -

- c~ (D). The restriction of an analytic functional T on D to .H corresponds
by the Riesz representation theorem to an element of g : for every g eJ?y

We study the correspondence T -~ f T in this paper.

(1) For a compactum K to be a carrier of T, it is sufficient but not necessary
that T be continuous in the seminorm 11 ilK. (See, e.g., [27].)

Pervenuto alla Redazione il 31 Agosto 1981.
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Analytic functionals have been represented as analytic functions in
various ways for special domains D; see, e.g., [19], [16], [36], [2]. In each
of the cases cited, the holomorphic function associated to the analytic
functional T T is called the indicatrix of the functional T-is given by
an expression of the form

where k(z, w) is a function holomorphic in z and w. The correspondence
we study can be viewed similarly: it follows from the analysis of the next
section that

where k(z, w) is the reproducing kernel for the Hilbert space H. Notice that

in our case, the indicatrix fT of an analytic functional T is a holomorphic
function on the domain D itself.

Though every f E H represents a linear functional Tf on H which is

continuous in the topology of H, continuity of Tf in the stronger O(D)-
topology on .H implies in many cases that f can be extended smoothly to
or holomorpbically across the boundary of D. In the latter case, we obtain a
correspondence between analytic functionals and functions holomorphic in a
neighborhood of D. Whether this correspondence exists for a given domain D
and Hilbert space .g depends upon a certain extendibility property of the
reproducing kernel for H. This is the topic of Chapter II.

In Chapter III we study analytic functionals by considering the case
H = .H2(D), the Bergman space of holomorphic functions on D which are
square-integrable with respect to Lebesgue measure on CN. In this case,
the reproducing kernel is the Bergman kernel function for the domain D,
which has been extensively studied by Kerzman [19], Bell [5], and others.

We shall use results about regularity of the Bergman kernel in proving
assertions about analytic functionals. Our principal result is as follows:

if D cc CN is strictly pseudoconvex and has real-analytic boundary, then T -&#x3E; f
is a topological isomorphism of O’(D) and 0(f)). Here is the space
of holomorphic functions defined in a neighborhood of D, with an inductive
limit topology to be defined below; 0(D) has the strong dual topology:
basic open neighborhoods of the zero functional are of the form

where s &#x3E; 0 and A is a bounded subset of 0(D).
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The appropriate extendibility property of the Bergman kernel is a con-
sequence of real-analytic hypoellipticity of the J-Neumann operator on
such domains, which has been established by [23] and [7].

This theorem is false without the hypothesis of real-analyticity. For

example y we show that if N = 1 and D has C2 boundary, the linear func-
tional I: H2(D) -+ C represented by the constant function 1 is continuous in
the and only if D has real-analytic boundary.

In the setting H = H2(D), we show that analytic functions which repre-
sent analytic functionals are precisely those of the form f = Ph, where
P: L2(D) --~ .g2(D) is the orthogonal projection, and h E e~(D), the space
of C°° functions with support compactly contained in D. From this point
of view, results about analytic functionals can be couched in terms of the
Bergman projection. Thus in the context of the main result above, a func-
tion f E .~2(D) extends holomorphically to a neighborhood of D if and only
if f = Ph, for some h E e’:(D). The second result above becomes: the con-
-stant function 1 on D is the orthogonal projection of a compactly supported
function i f and only if D has real-analytio boundary. These results and other

applications of the previous work are presented in Chapter IV.

II. - Analytic functionals, embedded Hilbert spaces and their reproducing
kernels.

Let D be a relatively compact domain in Cv and a Hilbert

.space with inner such that the inclusion ~:j!?2013~0(jD) is

continuous. We also require that the inclusion c~ (D) ~ H hold and be
continuous if 0(D) is endowed with the topology of uniform convergence
on D. The latter condition is natural inasmuch as it is satisfied whenever

the inner product  , is given by integration against a finite positive
measure supported in D.

The restriction of an analytic functional T e 0’(D) to ~1 is continuous
and has the form T f , where for all 

for some f E H. That T~ is continuous in the topology of 0(D) means that
there are a constant C and a compact set K c D such that for every g E H,

Thus ..K is a weak carrier of the restriction of T to H. Suppose f E Hand Tf
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is continuous in the 0(D)-topology on H. The Hahn-Banach theorem as-

serts that T, can be extended to be a continuous functional on 0(.D); let T
denote the extended functional. If .H is dense in 0(D), the extension is
unique. Equivalently, if H is dense in 0(-D), the map 0: c~’(D) ---~ g given
by

is injective. Under these conditions, a function f in the image of 0 will
be said to represent an analytic f unctional on D, or less precisely, to be an
analytic f unctional on D. Our main object is to study the image of the map 0.

The condition that i : be continuous is satisfied for Hilbert

spaces of the form H = L2(p) n O(D), where It is a finite positive measure
supported in D. More generally, by the closed graph theorem, i f He O(D)
is a Hilbert space, the inclusion i is continuous if and only if for each p c- D,
the evaluation functional e~ : I~ -~ C defined by

is continuous.

From the general theory of separable Hilbert spaces of functions (see,
e.g., [35]), it is known that when all evaluation functionals are continuous,
there exists a unique kernel function which has the

reproducing property that for every f E 

Both k( ~, z,v) and k(z, .) are elements of :g, and k(z, w) = k(w, z). If 

is any orthonormal basis for .H, then k(z, w) can be written

For suitable domains D and embedded Hilbert spaces H, the map
0: 0’(D) -* .g has image contained in O(D). This condition turns out to

be equivalent to a certain extendibility property of the kernel function

k(z, w) for H:

THEOREM II.I. Let D be a relatively compact domain in eN with e2

boundary, and H a dense Hilbert subspace o f for which the inclusions
i: H 4- O(D) and j : c~(D) ~ H hold and are continuous. The following con-
ditions are equivalent:
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(2) For any compact set K c D, there is a domain D. containing D 
that

(i) k(z, w) E for fixed w E K.

(ii) k(z, w) is continuous on 

(3) If f E Hand H - C is continuous in the O(D)-topology, then
f E O(D).

NOTE. We denote by bD the boundary of a domain D.

We will show below that when D cc C’ is strictly pseudo-
convex with real-analytic boundary and H is the Bergman space H2(D),
the Bergman kernel k(z, w) satisfies (1). Without the hypothesis of real-
analyticity, (1) usually fails.

The proof of Theorem lI.1 involves several steps. In the following lem-
mas, will denote the polydisc in Cv of polyradius (R, ..., R) about za .

LEMMA II.2. If f (z, w) is holomorphic in the domain

where Ro and r,, &#x3E; ro, then for every r E (ro, r1), there exists .R &#x3E; Rl so
that f is holomorphic in PR(0) More precisely, if r = for
some t E (0, 1), then B is a satisjactory choice jor R.

PROOF. The domain of convergence of the power series about 0 which

represents f (z, w) is logarithmically convex. (See, e.g., [1], p. 21.)
The following elementary lemma is certainly well known, but as we

cannot find an explicit statement in the literature, we include a proof.

LEMMA IL3..Let f (z, w) be holomorphic in XPb(O) CCNXCN, where a
and b are positive numbers. For each w E Pb(o), assume that f ( ~, w) extends
holomorphically to the polydisc PR(W)(O), where R(w) &#x3E; a. Then for every com-

pact set K c Pb(o), there exists R(K) &#x3E; a such that f (z, w) is holomorphic in a
neighborhood of P R(K)(O) X .K.

PROOF. We assume for simplicity that a = b = 1. Let U c P1(O) be a

neighborhood of 0 chosen so small that for any w,, c U, there is a polydisc
Pf’Jwo) ç P1(O) such that K cc Pf’l(WO).

The function f (z, w) has the power series expansion
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wvalid in all of Pl(O) X P1(O). Rearranging, we can write

where

’The functions are holomorphic and defined for all 

For non-negative integers l and m, we set

The sets 8Zm are closed subsets of U, and by the hypothesis of the lemma,
they cover U. By the Baire category theorem some 81m contains a polydisc

The definition of 8Zm shows that the series

converges uniformly in z and on compact subsets of 
hence f is holomorphic there.

We have shown that f is holomorphic in

(Recall that r1 was chosen so that .K cc P’l(WO).) By Lemma IL2, there
exists R(..g) &#x3E; 1 so that f is holomorphic on This completes
the proof.

LEMMA 111.4. -Let D cc C be a domain with bD of class C2. If p E bD,
then there is a unitary coordinate system (zl, ..., zn) for eN and in these coor-
dinates a polydisc Pa(zo) c D so that p E P6(zo) c D.

PROOF. Since bD is of class C2, there is a ball contained in D with

boundary internally tangent to bD at p, whence the result.

LEMMA 11.5. Let D, K, and k(z, w) be as in the theorem, and assume that
condition (1) holds. For each p E bD there exists a neighborhood U(p) of p
such that for each w E K, k(z, w) extends holomorphically to D U U(p).
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PROOF. Fix a point and let Ps(wo) be a polydisc neighborhood
of wo . Using Lemma II.4, let Pd(zo) c D be a polydisc with p c- P,3(zo). Then
k(., w) is holomorphic in Pa(zo) and k(z, .) is conjugate holomorphic in Ps(wo).
If we take Ps(wo) to have the analytic structure conjugate to that which
it inherits from C:~", we can regard k(z, w) as a function on Pa(zO) XPs(wo)
which is separately holomorphic in z and w. Since k(z, w) is in 
we can apply Osgood’s Lemma to conclude that k(z, w) is jointly holo-
morphic in z and w on P,6(zo) XPs(wo). Condition (1) together with Lem-
ma 11.3 implies that there exists ~’ &#x3E; ~ so that k(z, w) extends to be jointly
holomorphic in In particular, for there is an open

neighborhood of p to which k( ~, w) extends for all w E Pe/2(WO). The

compactness of K implies that there is an open neighborhood U(p) of p
to which k( ~, w) extends for all This is the desired assertion.

REMARK. Lemma 11.3 and the proof of Lemma 11.5 show that, in fact,
there is an open set so that k(z, w) is jointly holomorphic
on (D u U(p)) X where, as before, the conjugate-holomorphic struc-

ture is taken in the second factor.

PROOF OF THEOREM 11.1. We first prove the equivalence of (I), and (2).
Assume condition (1) holds. For each p E bD, let U(p) and ~p be chosen
as in the previous remark. The compactness of D implies that by shrinking,
if necessary, the U( p ) can be taken to be polydiscs, such that U(p) r1 U(q) r1 D
is non-empty whenever U(p) n is non-empty. Further, we can choose
finitely many cc = 1, ..., A, such that

The principle of analytic continuation guarantees that the extensions of
k(z, w) to the various D U are compatible. Setting

we have g cc W. With the conjugate holomorphic structure on ~, k(z, w)
is jointly holomorphic in where
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With the usual analytic structure on W, k(z, w) is jointly real-analytic,
holomorphic in z, and conjugate holomorphic in w. Hence (2) holds. That

(2) implies (1 ) is trivial.

Next we show that (2) implies (3). Suppose f E H and T f : .H --~ C is

O(D)-continuous. Then by the Hahn-Banach theorem, Tf extends to a
continuous linear functional on C(D), the space of continuous complex-
valued functions on D. The Riesz representation theorem asserts that

there is a compactum K c D and a regular Borel measure Iz supported on IT
so that for all 

Let M(K) be the space of complex Borel measures supported on K, Ipl the
total variation of the measure p. The norm-closed ball

of radius in M(K) is compact in the weak-* topology on .M(g). Since B

is also convex, the Krein-Milman theorem asserts that B is the closed convex

hull of the set E of its extreme points. The set E consists of the measures
on :g of the form 26(p), where A is a complex number of modulus igi, and
~(p) is the unit point-mass at p E K.

This means that there exist measures N, on .K of the form

where the Ln are positive integers, are complex numbers, and wi,n are
points in K, such that = lim Pn’ the limit being taken in the weak-*

topology on M(K). For each n, 
’

We define functions tn, n E N, by setting

Each f n is holomorphic on Dg because k(., wi,n) is. As k(z, w) is continuous
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on DKXK, it is bounded on compact sets H’ X .K. Hence if K’cc DK and
z E X’, then .

is a normal family on so there is a subsequence {fn*} which
converges uniformly on compact subsets of Dg to I*E O(DK). In particular,
the In. converge uniformly to 1* on D. For any g E H,

The last equality holds because of the requirement that 0(-D) be continuously
contained in H. Since 1*ID and f represent the same element of H’, they
coincide on D. Hence f admits an extension to DK. This completes the
proof that (2) implies (3).

To complete the proof, y we show that (3) implies (1). The evaluation
functional ew : H - C given by ,

is continuous in the O(D)-topology. This functional is represented by a
unique element of H, which by (3) extends holomorphically across bD.
But for every 

hence l~( ~, w) represents e~, and so extends holomorphically across bD.

This completes the proof of Theorem IL1.

REMARK. The hypothesis in Theorem II.1 that bD be of class C2 was
used only in the proof that (1) implies (2), where its use was limited to
finding, for each p E bD, a polydisc P c D with p E P. Thus (3) =&#x3E; (1)
and (2) =&#x3E; (3) hold for arbitrary relatively compact domains in Cv, and
(1) =&#x3E; (2) holds whenever poly discs P can be found as above. In particular,
if P is itself a polydisc, then Theorem II.1 holds as stated.
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III. - Analytic functionals in Bergman spaces.

For D a relatively compact domain in CN, the Bergman space 
is the space of functions f E O(D) such that

is finite. The space g2(D) satisfies the requirements of the last section.
The orthogonal projection P: -L~(D) -~~(J9) is known as the Bergman

projection and is given by

where k(z, w) is the reproducing kernel for H2(D), i.e., the Bergman kernel
for the domain D.

(Here and in the sequel, dmk denotes Lebesgue measure in dimension k. Any
integral expression omitting an explicit measure is understood to be with respect
to Lebesgue measure in the appropriate dimension.)

REMARK. If Dl and D2 are domains in eN, and if D2 is a diffeo-
morphism with inverse 0-1, then the mapping 0*: L2 (Dl ) - L2 (D2 ) given by

is an isometry. (Jac (/)-1 denotes the Jacobian of the mapping If 0

is a biholomorphism, then 0* effects an isometry of and 

The change-of-variables formula together with the expression for the
Bergman kernel in terms of an orthonormal basis for g2(D) implies that if D,
and D2 are bounded domains in a biholomorphism, and

the Bergman kernel for = 1, 2, then

For proofs of these elementary facts, see, e.g., [11, Ch. I].
The mapping 0* commutes with projection onto the respective sub-

spaces of holomorphic functions in More precisely, for j = 1, 2,
let P f : L2 (Dj) --* H2(Dj) be the Bergman projection. By direct calculation,
we have:
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LEMMA III.1. If h E L2(Dl)’ then

It is easily seen that 0,,(C-(D,)) = e~(D2). The connection between
the Bergman projection and analytic functionals follows from this and
from a result proved in its present form by Lelong ([25], p. 39) :

THEOREM III.2. Let D be a bounded domain in eN, T : O(D) acn

analytic f unctionat on D, and .K cc D a weak carrier of T. For any neigh-
borhood U of K there exists a function h E so that for all f E O(D),

REMARK. It is clear that if h E then defines an analytic func-
tional on D which is weakly carried by supp h.

The connection with Bergman spaces is as follows :

THEOREM III.3. Let D be a relatively compact domain in eN and let

P: .LZ(D) --~ H2(D) be the Bergman projection. If f E H2(D), then the linear
functional

is oontinuous in the O(D)-topology on .g2 (D) if and only if f = Ph for some

PROOF. If T f is then by the previous theorem there
is an h E such that for all g E H2(D),

Hence, f = Ph.
Conversely, y if f = Ph then for all g E H2(D),

Since D has finite measure, we conclude that f represents an analytic func-
ional with compact weak carrier supp h.
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COROLLARY I]EI.4. Let D1, D2 , and the biholomorphism 0 be as in the
remarks The mapping ø. is a bijection of ff E H2(D1): T f is an analytic
functional} and ff E .g2(D2) : is an analytic functional}.

PROOF. Theorem III.3 and Lemma 

In the &#x26;equel, we study the relationship between analytic functionals
and functions which extend holomorphically across bD. We shall make
use of the following fact :

LEMMA ill.5. Suppose bounded domacins D1 and D2 in CN are biholomorphic
via a mapping 0 which extends to a biholomorphism of domain D’ 1 and D2,
such that Djcc n; for j = 1, 2. Let == Tf: C is O(D)-
continuous}.

If SIÇ 0(D1), then 82Ç Ð(D2).
If 0(D1), then ~2 ~ ~ (D~ ) .
PROOF. By Corollary TII.4, 82 = Ø.(81). If f E c~(D1), = 

.Jac 0 C- c~ (D~ ) . The same argument applied to ((/)-1)* shows that

The assertion follows immediately.
The next lemma is a special case of the main theorem, and is used

essentially in the proof of that result.

LIDfMA 111.6. Let U = {z E C : lzl  1 ~. A function f E g2 ( U) represents
an analytic functional on U if and only if f E O(U). 

’

PROOF. The Bergman kernel for U has the form

Thus for real 1~,

whenever both sides are defined.

Suppose that Tf is O(D)-continuous. For fixed w with lwl  A  1,
the function k(zJA, Aw) is holomorphic in z, and by (*), is an extension

across bU of k(z, w). By Theorem IL1, /eO(E7).
Conversely, suppose f E for some &#x3E; 1. Define ~: ~ --~ C by
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Then, if P : .L2( tT ) -~ .g2 ( U) is the orthogonal projection,

by (*) and the reproducing property of k(z, w), where the change of variable
t = aw was performed. Thus f is the projection of a compactly supported
L2-function on U ; by the proof of Theorem m.3, f represents an analytic
functional on U.

REMARK. If D is a complete Reinhardt domain in CN, the monomials
a E form a complete orthogonal set in H2(D) [11, p. 71]. It follows

that (*) holds for w ) and hence that Lemma 111.6 is valid for such
domains.

We now consider plane domains other than the unit disc. All the

domains we study will be bounded, with boundaries consisting of finitely
many closed Jordan curves. For such domains D, Runge’s theorem asserts
that the rational functions with poles bounded away from D are dense in
O(D). Thus O(D) and hence I~2 (D) are dense in O(D), so the mapping

is injective.
Suppose D is a simply connected domain whose boundary is a real-

analytic simple closed curve. By the Riemann mapping theorem and the
Schwarz reflection principle, D is biholomorphically equivalent to the unit
disc via an extendible biholomorphism. Lemmas 111.5 and llI.6 imply
that there is a one-to-one correspondence between t~’ (D ) and t~ (D) . We
shall prove the analogous result in the more general case that D is of finite
connectivity.

LEMMA III. 7..Let A = A(r, R) c Cl be the annulus {~: ~  Izl  R~, where
0  r  .~  oo. Suppose f is holomorphic on acn annulus A’ with .A. cc A’.

Then there exist a constant C and a compact K cc 4 such that for all g E 

i.e., f is an analytic functional on A.

PROOF. Let D(R) =  R}, C(B) = = R~. By Cauchy’s integral
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formula, we can write f = f 1-f - f 2 , where for some 8 &#x3E; 0,

Then 11 is holomorphic in D(R + c), and 12 is holomorphic in a),
with = 0. Similarly, g = U2’ where

and

We have

First,

for by Lemma. 111.6. For z ED(yR),

where O2 is independent of g.
To compute 12 and I3, we observe that integration in polar coordinates

shows that if 6’ is the Kronecker delta, then

Writing

Similarly, T, = 0.
To compute 14, we observe that there exists such that 12(zÂ-l)

00

is holomorphic near Writing = L d,Jzn and using the ortho-
n=1
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gonality of the we have

Hence,

where C4 is independent of g. But for lzl 

Thus

by the maximum modulus principle. This completes the proof.
We use the lemma to prove our next result:

THEOREM 111.8. Let D be a bounded plane domain whose boundary con-
sists of finitely man y disjoint simple closed real-analytic curves. A function

represents an analytic functional on D if and only if f E 0(15).

PROOF. It is known (see, e.g., [13], y p. 237) that every plane domain
of finite connectivity can be mapped univalently (by Ø) onto a domain
whose boundary consists of finitely many points and finitely many disjoint
circles. Since in our case no component of bD is a point, all boundary
components of the image fb(D) are circles. Since the boundary components
of D and Ø(D) are real-analytic arcs, the Schwarz reflection principle implies
that both 0 and extend holomorphically across bD and b (~(D)). The
resulting extension of fb is a biholomorphism from a neighborhood of Ï5
to a neighborhood of Ø(D). By Lemma 111.5, it suffices to prove our theo-
rem in the case that D has circular boundary arcs.

Let bD consist of circles y~ , ~ = 1, ... , k, which bound domains D;.
Let y, be the outer boundary of D.

Suppose f E Let = 1, ... , k, be disjoint annuli, Aj c D, with yj
one component of bA,. By the lemma, there exist constants Cj and com-
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pacta such that for all g E H2(D),

Hence, y

, lc k

Let .K = DB U Aj Then K cc -D and
B 3=1 / 9=1

where C is independent of g. Thus f is an analytic functional.
Conversely, suppose f is an analytic functional on D. Using the Cauchy

integral formula, we can write f = f + 12’ where

and = 0. We will show that f extends to a domain larger than D1;
the proof that /2 extends is similar.

We assume without loss of generality that the outer boundary is the
unit circle about the origin. Let r  1 be chosen so that the annulus

A = A~,1(o) c D. In A, f ~(z) can be written

Hence for r~ ~ 0, 2

by the orthogonality on A of This implies that

Therefore, writing



381

This implies that for some constants Cj and some 1,

where the last inequality uses the fact that f is an analytic functional on
D and the Cauchy-Schwarz inequality for the space H2(D"A). Since

D~  = ~? ..., k, for some 1-~2  1, and

for some R~  1, setting = max 7~2? .R3~ gives

where C’ is independent of n. Thus the power series for converges for

lzl  This completes the proof of Theorem III.8.
We are now able to state and prove our main result (Theorem III.14)

that the one-to-one correspondence between analytic functionals and ex-
tendible functions already demonstrated for real-analytic bounded plane
domains continues to hold for strictly pseudoconvex domains in CN with
boundaries that are (2N-1)-dimensional real-analytic submanifolds of CN.
It will also be seen that 0’(-D) and O(D) are isomorphic as topological
vector spaces.

We shall repeatedly use the following fact: if D strictly pseudo-
convex with C2 boundary, then there exists a domain Q such that D cc Q and

dense in 0(jD). (See [20, Th. 1.4.1] and [16, Th. 1.3].)

THEOREM 111.9. Let D be a convex domain in CN with real-analytic bound-
f be a holomorphic function defined on a domain D1 such that D cc D1.

Then f represents an analytic functional on D, i.e., there are a compact set
K cc D and C &#x3E; 0 such that for all g in H2(D),

THEOREM 1‘II.10..Let D cc Cv be strictly pseudoconvex with bD a real-
analytic submanifold of Cv of dimension (2N -1 )..Let f be a holomorphic
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f unction defined on a domain j~i with Then f represents an ana-
lytic functional on D.

REMARK. Both theorems are, in general, false without the hypothesis
of real-analyticity, as we will show below. Observe also that Theorem 111.9

does not require that D be strictly convex, so strict pseudoconvexity is.

not a necessary condition, at least when D is convex. On the other hand,
the proof of Theorem III.10 uses the property of strictly pseudoconvex
domains that boundary points are peak points. For strictly convex domains,
the result of Theorem III.9 is a corollary of Theorem III.10.

PROOF oF THEOREM 111.9. It suffices to show that there exist compact If
and C &#x3E; 0 such that

for all g in a dense subset of B’2 (D) . Since D is convex, the polynomials,
are dense in H2(D), so we may assume that g is a polynomial. Let D bo
any fixed domain with Since both sides of (1) are positively homo-
geneous in g, it suffices to prove (1) for polynomials g with = 1; such g
will be called admissible.

We assume without loss of generality that 0 E D. For every g in g2(D),
the integral in (1) can be represented as a double integral:

where y is a suitable (l,l)-form on CN and m is the fundamental form of
the Fubini-Study metric on The map ~c : ~~‘’~~0~ --~ is the

projection given in homogeneous coordinates on CPN-1 by

Estimates for the fiber integrals lead to a proof of (1).
According to [14, p. 30],

A computation shows that
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By a version of Fubini’s theorem for differential forms ([30, p. 210]), if H
is any differentiable function defined near D, we conclude from (2) that

For any a E fix u E with luf = 1. Then n-1(oc) = r E

E ~~0~~. Taking r to be the coordinate on we have

where is Lebesgue measure on the complex line a.

We apply this formula in the case H = f g, where f is as in the hypothe-
sis and g is admissible. Let oco E CPN-1 be fixed. Since D is convex with

real-analytic boundary, Dao= D n ao is also convex witb real-analytic bound-
ary. The restrictions of f and g to Dl r1 ao are holomorphic. By the result
in complex dimension one,

holds for all admissible g and some N, where s) = dist (z,
The second inequality holds because D is compact.

We consider the inequality

This is valid for a = «o and arbitrary admissible g. For a fixed g, both

sides of (4) are continuous in a, so there is a neighborhood U Oto of ao in CPN-3
such that (4) holds for all a EU(X .

The admissible g are a normal family on 15 and are hence uniformly
equicontinuous on D. This implies that the neighborhoods o 

can be

chosen so that (4) holds for all admissible g and all a E Since 

is compact, finitely many such neighborhoods Ual, ..., form an open
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cover of Taking ..., we have

for all a and all admissible g.
Since D is convex, all the Da meet bD transversally, so K = U J9((Xy 

is relatively compact in D. From (3) and (4), 

By the Wirtinger theorem [14, p. 31], is the (finite) volume
CpN-1.

of CPN-1. This completes the proof of Theorem 111.9.

PROOF oF THEOREM III.10. Let Q be a domain of holomorphy in CN
such that D cc SZ and is dense in 0 (D). By density, it suffices to

show that the analytic functional l1. : O(Q) - C given by

is weakly carried by some compactum K cc D.

LEMMA p E bD. There is an open neighborhood of p in Q
such A is weakly carried by K1) = DB ZT p .

PROOF. There is a complex line A through p which meets bD transver-

sally. To see this, we assume without loss of generality that p = 0, and
define n: bDB~0 ~ --~ CPN-1 by

where [z] denotes the complex line through 0 and z. The mapping g. is

smooth (indeed, real-analytic) so by Sard’s theorem, almost all values of a
in are regular values. The range of a on contains all lines
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1 E CPN-1 except perhaps those contained in To(bD), and so contains almost
all of CPN-11. Choose a line transverse at 0 to bD. If ZT is a,

small neighborhood of then each I E U is transverse to bD at 0. As U

is open, it contains a regular value, say of ~. This ~,1 meets bD trans-

versally.
We assume further (by a change of coordinates in CN, if necessary) that,

Âo == ~z : Z2 == ... 
= zN = 0} meets bD transversally. For a = (a2 , ..., 

E CN-1 sufficiently near 0 in say for a EVe CN-1, Tr open, the line-

Aa = {z: z2 = a2 , ... , zN = aN} is transverse to bD. The set W = {z E CN:
I some contains an open neighborhood of 0 in C~.

To prove that ll is weakly carried away from 0, we show that there.
is a compact set A c D, 0 ~ A, and a number C &#x3E; 0 such that for any
g E 0 (,Q),

Let D be a domain chosen so that Dee D cc ,5~. It suffices to prove that.

the inequality holds for functions g with 
Let such a g be given. Then

where Ci is independent of g. To estimate the second integral, we use
Fubini’s theorem:

By transversality, for each ~== (,-2 ..., zN) E V, Az, r) D is a plane domain
with real-analytic boundary. In particular, for z’ = 0 the duality result in
plane domains implies that for some constant M independent of g,

where dist (z, n -D)) &#x3E; 81. We consider the ine-
quality
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which is valid for z’ = 0 and arbitrary g. For a f ixed g, both sides of (2)
are continuous in z’, by the continuity of g and smoothness of bD. Thus
for fixed g there is a neighborhood 17 of 0 in CN-1 so that (2) holds for all

P. We assume VeeV. The family is normal on fJ,
hence uniformly equicontinuous on D. Therefore 9 can be chosen so that
(2) holds for all such g and all 

Since all the Âz" meet bD transversally, the set

is relatively compact in D. Define

Then there is a constant C, so that for all 

Thus

From the inequality we conclude that

Any neighborhood Uo of 0 such that Uo c WIA satisfies the assertion of

the lemma, and the proof is complete.
By the compactness of bD, there is a finite collection K,,,, of

compact weak carriers of ~1. such that
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III.12. Let Xl and .K2 be closed, Ki c D for i = 1, 2, and let
each Ki be a weak carrier of A. There is a closed set K which carries ll weakly
such that X r) bD = Kl r) X2 n bD.

Let us assume for the moment that IIL12 is proved. Applying it to

X’PI and K,,., we obtain X12 carrying ~l weakly, with K12 r) bD = X’Dl n
n r) bD. Now we apply IV.4 to and X12’ obtaining a weak carrier
-K123 with .~123 n bD = n K P2 n n bD. Continuing this process pro-
duces a weak carrier K for ll. which is bounded away from bD. This yields
the theorem. It remains only to prove III.12. We use a result of Kisel-
man [21].

LEMMA 111.13. Let .F’1 and F2 be compact subsets of Q, and let L be the
0 (S2)-hull of Pl U P2. Let K be a compact set separating .Z’1 and P2 in the
sense that .LBK = Ml U M2, where f or j = 1, 2, Hi is closed in -LBK,
.F’,BK c Mi, and MI n .M2 = 0. Every analytic functional weakly carried by
each Pi is weakly carried by K.

PROOF OF LEMMA III.12 . Let A = Kl U K2 = D%1I, where for some
open TIy c CN, U = 1Ii n U2, and Ki = DBTla. Let L be the of A.

Since each point of bD is a peak point for A(D), (indeed, for d
L r) bD = A n bD. Let V C U be an open set such that L = DBTr. Define

For j = 1, 2, the Vj have the following properties:

To see (iv), assume that p E bD. 

In each case, Similarly, y if then 

Properties (i)-(iii) are immediate from the definitions.
Let = = 1, 2. Then by (iii), A is weakly carried on each

F; . By (ii), Fi W = DBY = L, a holomorphically convex set in SZ. Let

K = Fi n .F2 ; then u (I’2BK) . Setting M; = we ob-

serve that K separates Fix and .F2 in the sense of Lemma III.13. Thus A

is weakly carried by K, and by (iv), K n bD = Fi n F2 n bD = Ki n K2 n
n bD. The lemma is proved.
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THEOREM III.14. Let D cc CN be a strictly pseudoconvex domain with.

bD a real-analytic of dimension 2N -1. A function f E H2(D) rep-
resents an analytic functional on D if and only if f E 0(.D). The map ping
~ : c~’ (D ) --~ given by

is an isomorphism of topological vector spaces.

REMARK. The map is well-defined because ..ff2(D) is dense in O(D).
Various topologies can be given for and 0’(D). For the purpose

of Theorem 111.14, 0(15) will be taken to be the inductive limit (in the
category of locally convex topological vector spaces) of the Fréchet spaces
0(Q), as S2 ranges through the set of open neighborhoods of D. On 0’(D)
we take the topology of strong dual to O(D).

PROOF OF THEOREM m.14. That f E 0(15) represents an analytic func-
tional on D is the assertion of Theorem II.10. In view of Theorem IL1,
the converse is a corollary of the next theorem on extendibility of the

Bergman kernel. Regularity of the kernel for strictly pseudoconvex domains
with Coo boundary has been studied by Kerzman [19], Bell [5], and others.
The general idea of the proof of the following theorem was suggested to
me by Dr. Steven Bell.

THEOREM III.15. Let D cc CN, be a strictly pseudoconvex domain,
bD a real-analytic mani f old o f dimension 2N -1..Let k(z, w) be the Bergman
kernel for D. If K is any compact subset of D, then there exists a domain DK
with DK DD D, such that

(i) for w E K fixed, k(z, w) extends to be holomorphic in D~ ;

(ii) f or z E Dx fixed, k(z, w) E 

(iii) k(z, w) extends to be jointly real-analytic in 

The proof of Theorem IL1 shows that if for fixed k(z, w) extends
holomorphically to a domain Dw with D., DD D2 then (i), (ii), and (iii) hold.
The proof that k(z, w) extends in z across bD involves several lemmas.

LEMMA III.16..F’or w fixed in D, there exists such that k(z, ~,u) =

= (Ppw)(z), where P is the orthogonal projection of L2(D) onto the subspace of
holomorphic functions.

PROOF. For fixed w E D, k(z, w) represents the evaluation functional
at w. By Theorem 111.3, Pw exists as claimed.
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By the work of Kerzman [19], we know that ~(-, w) E A°(D), the space
of holomorphic functions on D which, together with all derivatives, extend
continuously to D. (Indeed, More is true
in our case:

LEMMA 111.17. For fixed 2v E D, k(., zv) has real-analytic values.

PROOF. According to Kohn [22] (cf. Kerzman [20]), the projection
P: E2 (D) --&#x3E; H, (D) is given by ,

where N is the Neumann operator, and 0 is the formal adjoint of 0. The

operator 0 takes (0, 1 )-forms to functions: on smooth forms, it is given
explicitly by

Thus, by Lemma 111.16,

The function vanishes near bD, so the same is true of the form It

follows from the expression ( * ) that (and hence k(., w)) will be real-
analytic near and on bD provided that is.

The Neumann operator N takes (0, I)-forms to (0, 1 )-form8. For smooth
compactly supported there is the decomposition

where H is the orthogonal projection onto the space of harmonic (0, 1)-
forms, i.e. forms a satisfying D a == 0, where D = JS8 + 81S. In our case

?7 = = 0, since the harmonic space is orthogonal to the range of i
on compactly supported forms. (A reference for these facts is [10, p. 51].)

Thus, applying the decomposition above to q = we have

Hence fl = is a solution to the differential equation
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The form is supported away from bD, so as D is globally real-analytic
hypoelliptic, it follows that Ndq;w is real-analytic at and near bD, which
is the desired assertion.

NOTE. Global real-analytic hypoellipticity of D means that if f is real-
analytic near and on bD, and Og = f, then g is real-analytic near and on
bD. This property of D for a class of domains including real-analytic bounded
strictly pseudoconvex domains was proved by Komatsu [23] and indepen-
dently by Derridj and Tartakoff [7]. Local real-analytic hypoellipticity
of D has more recently been established by Tartakoff [31] and independently
by Treves [33].

In order to obtain a holomorphic extension of k(., zv) to a neighborhood
.D~ of D, we will use a form of Schwarz reflection principle which follows
from a lemma of Tomassini [32]. To this end, we consider a real-analytic
submanifold Xv of C’, with real dimension p. Near a point X~ is

defined by parametric equations of the form

where the ti are real coordinates in a neighborhood of 0 in R" and the f, are
complex-valued real-analytic functions. The rank of x, denoted r(x), is

defined to be the complex rank of the N X p complex matrix

The rank is independent of the choice of parameter t. We use this

notation in the next lemma.

LEMMA. III.18. (Tomassini) Suppose r(x) = N for each x in X’. Let f
be a real-analytic function defined on X?. Then f is the restriction to Xv of a

holomorphic function F defined in a neighborhood U of X" if and only if

REMARK. Tomassini proves a more general result for X" a real-analytic
submanifold of an N-dimensional complex manifold.

LEMMA III.19. Let D be a domain in CN, bD a(2N -1 )-dimensionaZ
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real-analytic manifold. If f E has real-analytic boundary values, 
extends holomorphically to a neighborhood of D.

PROOF. We apply Lemma III.18 with X2N-l = bD. Since f is holomor-
phic in D, we have 0 in D ; by continuity, the equality
persists on D. In order to apply m.18 we must show that r(p) = ~1T for
all p e bD. To see this, we choose holomorphic coordinates Zl, ..., ZN near p,
with Zi = it2i, j = 1,..., N, so that near p,

where G is some real-analytic function defined near 0 in R2N-1, and 
at 0. Then r(p) is the rank of the following N x (2N - 1) matrix:

The N x N minor consisting of the N odd-numbered columns of this matrix
is non-singular wherever G is defined, so r(p) = N.

Lemma 111.18 implies that there is a neighborhood ZT of bD in CN and a
holomorphic function .F’ which extends the boundary values of f. That F

extends f near bD is a consequence of the following fact applied f :
If domain in CN, and g has boundary values identically

zero in an open set E c then g is identically zero. (For a proof, see [17].)
This completes the proof of Lemma m.19.

PROOF OF THEOREM 111-15. Lemma III.17 asserts that k(z, w) satisfies
the hypothesis of Lemma 111.19, so k(z, Zu) extends in z to a domain

D,, D:) D. This completes the proof.

PROOF OF THEOREM 111.14 CONCLUDED. We have seen above that

0: c~’ (D) --~ c9 (D) is a bijection; it is clear from the definition that 0 is

an algebraic isomorphism. It remains to show that 0 and (/)-1 are continuous.
Let sequence of neighborhoods of D such that for all n,

00 _

and n Qn = D. Then 0(D) is the inductive limit in the category
~a=1

of locally convex spaces of the increasing sequence c O(Q,) c ... of

Frechet spaces, i.e., O(b) is a generalized L.F-space. As the dual space
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to the reflexive Frechet space 0(D, c~’ (D) with its strong dual topology
is also a generalized LF-space [8, p. 513]. According to [24], the open
mapping theorem is valid for maps between generalized LF-spaces, so it

suffices for our theorem to show that 0 is continuous.

A linear map A : X - Y of generalized LF-spaces is continuous if it

preserves convergent sequences; this follows from the fact that if .X is the
inductive limit of Fréchet spaces Xn, A is continuous whenever its
restriction to each .Xn is [8, p. 434].

Let be a sequence of compact subsets of D such that for all j,
00

and U Ki = D. The topology in 0 (D) is given by the semi-
;=1

norms jj Since 0 (D) is a perfect space, it follows (see, e.g., [12,
p. 57]) that a sequence converges to 0 in the strong topology on
c~’ (D ) if and only if

(i) for some fixed j, all Tn are continuous in the seminorm /I 
(ii) where sup 

oeO (D)

be a sequence in 0(D), and suppose that TIn -+ 0 in c~’ (D) .
To prove that 0 is continuous it suffices to show that --&#x3E;. 0 in O(D).

Let K cc D be chosen so that (i) and (ii) hold for .K K,, and T. = T fn.
Each is represented by a regular Borel measure ,un supported on K;
by (ii), the can be chosen so that the total variation lPn/ I tends to zero.
According to Theorem f n = where and is supported near
K. More precisely, if 6 = dist (K, bD) and q?: R is a smooth, radially
symmetric function supported in ~z: lzl  612}, satisfyingil 99 = 1, then thefunctions rpn can be written 

~~

where /In are regarded as compactly supported distributions. Thus K’cc D
can be chosen so that for all n, and lim o.

Let a neighborhood DK, of D be chosen according to Theorem 111.15.
By shrinking D., slightly if necessary, we can assume that the Bergman
kernel for D satisfies k(z, w) EeOO(DK,XK’). Hence for each n,

is holomorphic in a neighborhood of and
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where C is a constant independent of n. This shows that f n ~ 0 in the
topology of 0(D), and completes the proof of Theorem Ill.14.

What can be said about functions which represent analytic functionals
on domains with smooth but not real-analytic boundaries ? In view of

Theorem 111.3, it is natural to consider the properties of the orthogonal
projection P : ZZ (D ) --~ g2 (D ) on such domains.

For any positive integer t, let Wt(D) denote the Sobolev space of complex-
valued functions with square-integrable distribution derivatives up to or-
der t. For f EW t(D),

The subspace of holomorphic functions in Wt(D) is denoted Ht(D). In this

notation, H2(D) = HO(D), and L2(D) = W°(D); a priori, the orthogonal
projection P maps Wt(D) into We now consider a class of domains

studied by Bell [3, 4]:

DEFINITION. A smooth bounded domain D in CN is said to satisfy condi-
for each positive integer s, there is an integer M = M(s) such that P

is a bounded operator from W"’(D) to W’(D).
Domains of type .R include strictly pseudoconvex smooth domains,

smooth pseudoconvex domains with real-analytic boundary, and domains
of finite type in C2.

THEOREM 111.20. If D is ac domains satisfying condition .R, then any

f E .H2 (D) which represents an analytic functional has eco extension to D.

PROOF. Let s be a fixed positive integer. Given f as above, we write
j = Ph, where h In particular, e so Ph E Ws(D). Since s

is arbitrary, Sobolev’s lemma implies that 

COROLLARY. If D is type R, the Bergman kernel k(z, w) extends smoothly
to bD as a f unction of z for each fixed w.

PROOF. The analytic functional f --~ f (w) is represented on g2 (D) by
k(z, w).

On strictly pseudoconvex smoothly bounded domains D, the functions
which represent analytic functionals are dense in O(D). A result of Bell [5]
implies a stronger density theorem.
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THEOREM 111.21. Let D cc CN be strictly pseudoconvex with smooth bound-
ary, .K cc D any compactum with interior. The set

is dense 2n 

PROOF. Since .K has interior, it is a set of determinacy for holomorphic
functions on D. According to [5], finite linear combinations of the func-

k

tions k(z, w~), are dense in .g2(D). If f (z) wj), then there
is a C &#x3E; 0 such that for all 2 

i=i

Hence Since H,(D) is dense in O(D), the proof is complete.

IV. - Applications and Examples.

It follows from Theorems III.3 and III.10 that when U is the unit disc
in C1, functions are precisely those of the form f = Pu, where
u c- C’(U). Every such f represents an analytic functional on U which is
weakly carried on supp u. In this setting, an explicit solution E e~( ~7)
to the equation Put can be given as follows. Suppose for
some a &#x3E; 1, and let

By the proof of Lemma IIL6, P1jJ = f. The function 1jJ is not Coo, but this
is easily remedied.

LEMMA IV.1. Let a, f, U, and 1jJ be as above. Let 6 &#x3E; 0 be chosen so that

IJa -f- 6  1. Let ~ -~ ~ be any Coo function, radially symmetric about 0,
with supp 99 c 6 U an d fgg = 1. Set u = 1jJ * cpo T hen supp u c + ~ ) U
and Pu = f. c
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PROOF. The first statement is clear. For the second, we compute -

The third equality follows from the facts that k(z, w) is harmonic in w for
fixed z and t) is radially symmetric in w about t. This completes.
the proof.

REMARK. Lemma IV.1 shows that a function represents an
analytic functional on TT which is weakly carried on In particular,
this implies that an entire function corresponds to an analytic functional
weakly carried by the singleton 10}. Equivalently, any entire function f~
can be written

(the equation holds in the unit disc), where u can be chosen to be supported
arbitrarily near the origin. Can f be written f = Pv, where v has small.
support away from the origin? Equivalently, can the analytic functional 
be weakly carried by a point 0 ~

Questions of uniqueness for carriers of analytic functionals in several
vaziables have been treated by Martineau [27], Kiselman, [21], and others.
In one dimension, a special case answers the question raised above.

LEMMA IV.2. Let D be a domain in C and T E 0’(D). If T is weakly-
carried by compacta K, and K2 , where .K2 ) has no components com-

pact in D, then T is the zero functional.

PROOF. Let U1 and U2 be neighborhoods of Ki and .K2 such that U1 rB
n U2 = 0 and U~ ) has no components compact in D. By Runge’s..
theorem, there exist functions such that
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Let f E 0 (D) be arbitrary. Then hnf --~ f uniformly on Ul ; since T is weakly
carried on Ki I - If. But hn t -~ 0 uniformly on U2 ; since T is weakly
carried on ~2 , Thn f 2013~0. Thus Tf = 0, which completes the proof.

Lemma IV.1 implies in our case D = TI that no non-zero entire func-
f can satisfy f I u = Pv, if v has support in a disc disjoint from the origin.
We have shown that a one-to-one correspondence exists between ex-

tendible functions and analytic functionals on a plane domain with real-
analytic boundary. Perhaps surprisingly, real-analyticity is also a necessary
,condition, at least for domains with C2 boundary:

THEOREM IV.3. Let D be a bounded plane domain with C2 boundary.
The following conditions are equivalent:

(i) O’(D) c O(Ï5); more precisely, every f E H2(D) which represents an
analytic functionals on D extends across bD.

(ii) The constant f unction 1: D ---&#x3E;- C represents an analytic functional
on D.

(iii) bD is real-analytic.

PROOF. It suffices to show that (i) =&#x3E;(iii) and (ii) =&#x3E; (iii). Let D1 be a
domain whose boundary consists of disjoint circles, and 0: Di - D a bi-
holomorphism. Since bD is C2, 7 a result of Warschawski [34] implies that 0
extends to a homeomorphism of Ï51 and D, and that ~’ and (0-1)’ extend
continuously to bDl and bD. By the chain rule, neither derivative vanishes
on its respective boundary.

The constant function 1: is an analytic functional on Dl, so by
Corollary 111.4, ~*(1) _ is an analytic functional on D. If (i) holds,
then extends holomorphically across bD.

Let p be a point of bD and Up a simply connected neighborhood of p
to which extends. Then rp-l also extends to Since (~-1)’(p) ~ 0,
rp-l is univalent near p, mapping bD to bDi, so bD is real-analytic near p.
Thus (i) =&#x3E; (iii).

If (ii) holds, then (/);1(1) = 0’ extends holomorphically across bDl. For
p E bD, we apply the argument of the last paragraph to to

conclude that near p, bD is the image under a conformal map of bD1 near
Thus (iii) holds, and the proof is complete.

REMARK. It is not necessary that bD be of class C2 for (ii) and (iii) to
be equivalent. We use this fact in our next result:
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THEOREM IV.4. Let D be a bounded plane domain each of whose boundary
components OJ is a simple closed curve. Suppose further that each OJ is the
union o f C’ arcs which intersect transversally. Then 1 is an analytic f unc-
tional on D if and only if bD is real-analytic, i.e., if and only if each OJ is a
simple closed real-analytic curve.

PROOF. Let DI be a domain with circular boundary components and
~ : Di - D a biholomorphism. If 1 is an analytic functional on D, then
( ~-1 ) * ( 1 ) _ 0’ (and hence also extends holomorphically across bD1.
Suppose that ~’ (p ) = 0 for some p E bDi, and assume without loss of gen-
erality that = 0. Let I~ be any neighborhood of p on which 0 is
defined. Since is smooth at p, w = arg O(z) assumes on U t1 Di all

values in with at most one exception. By the assumption on bD,
we can choose a disc neighborhood V of W(p) = 0 such that for some Oj,
j = 1, 2, 0~9i D r1 V omits the sector {arg w E (01, 62 )~. This is a

contradiction; hence 0’ does not vanish on bDl. The proof of Theorem IV.3
now applies to show that bD is real-analytic, which is the desired assertion.

REMARK. In view of Theorem III.8, Theorem IV.4 implies that on
domains of this kind, 1 represents an analytic functional only if every ex-
tendible holomorphic function does.

An example of a non-smooth domain on which 1 represents an analytic
functional may be given as follows: Let D be the image under the map
~(z) - Z2 of the disc D,, = {z: Iz-iI  1~. Note that the cardioid bD is

piecewise real-analytic but that the transversality hypothesis of Theorem
IV.4 fails to hold at 0 E bD. Since = 2z, 4&#x3E;’ represents an analytic
functional on Hence 1 = ~*(~’) represents an analytic functional on D.

Consider the map I: H2(D) -* C given by

Whenever I is continuous in the O(D)-topology, i.e., whenever there exist
C &#x3E; 0 and a compact K cc D such that for all g c H2(D),

I extends to a (unique) element of 0’(D). Reworded in these terms, Theo-
rem IV.4 gives a criterion for I to be an analytic functional:
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COROLLARY IV.5. Let D be as in Theorem IV.4. Integration over D defines-
an analytic functional on D if and only if bD is real-analytic.

We illustrate these ideas with an example. Let U be the unit disc,
V = U r1 {Re z &#x3E; 0}. According to Theorem IV.4, integration over the

00

domain defines an analytic functional on U but not on V. If f = I 
,H2 ( U), then 

Thus integration over ZI is, up to a constant, evaluation at the origin, which
certainly defines an analytic functional on U.

On V, we consider the integrals fz" for odd n:v

If 1 were an analytic functional on V, then for some C &#x3E; 0 and .K cc V
we would have .

for all odd n, where A  1 is a constant. This is absurd, so integration over V
does not define an analytic functional on V.

We have seen that integration against 1 does not define an analytic
functional on domains with « corners ». Does integration against an ex-
tendible function vanishing to high order at the corners define an analytic
functional? The half-disc example shows that, in general, the answer is
negative:

THEOREM IV.6. If V is the half-disc, then no non-zero polynomial rep-
resents an analytic functional on V.

PROOF. Suppose p (z) = ao + a1 z + ... + represents an analytic
functional on V. Then there exist C &#x3E; 0 and r  1 such that for any n E N,

We will show that all odd coefficients of p vanish; the proof for the even
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-coefficients is similar. A computation in polar coordinates shows that

Thus for all n &#x3E; even, we have

since the left-hand of the last inequality is a rational function of n and

the right hand side is exponential, we must have that for every n E N,

’Thus, 0 for each l, and the proof is complete.
A result similar to IV.3 holds for certain smoothly bounded domains

in CN. In the absence of a conformal mapping theorem in several variables,
the hypothesis is strengthened.

THEOREM Iv.7. Let D cc CN be strictly pseudoconvex with smooth bound-
-ary. Assume there to be a biholomorphism 0: D, where Dl cc CN is

strictly pseudoconvex with bD, a (2N -1 )-dimensionaZ real-analytic sub-

mani f old of CN. If the monomials of degree 0 and 1 represent analytic f une-
otionals on D, then bD is a ( 2N -1 )-dimensional real-analytic submanifold
O f 

OOROLLARY. Let D be as in the theorem. If the monomials of degree 0
and 1 represent analytic functionals, then all extendible functions f E 0(D) do.

PROOF OF THEOREM IV.7. Let øl, 0.,, be the components of ø.

Since 1 and z; , j = 1, ..., N, are analytic functionals on D, the functions
~~ ~(1) and represent analytic functionals on

By Theorem 111.14, they extend holomorphically across bDl .
It is known ([9], cf. [28]) that biholomorphisms between strictly pseudo-

convex smoothly bounded domains extend smoothly to the boundary.
’Thus Jac 0 and Jac 0-1 extend smoothly to bD1 and bD ; by the chain
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rule neither vanishes on the boundary. It follows that for each j, l/J¡
extends holomorphically across bDl. In the neighborhood of any point
p E bDl, the extended function W is a biholomorphism, mapping bDl to bD.
This completes the proof.

We consider next some consequences of our duality results on domains
in several variables.

THEOREM IV.8. Let D CC CN be as in Theorem 111.14 and assumes

The following conditions are equivalent:

(i) f E O(D);
(ii) f E A OO(D) and f has real-analytic boundary values;

(iii) f == Pcp for 

PROOF. Lemma III.19 and Theorem 111.3.

REMARK. Theorem IV.8 provides an analytic counterpart to a result
of Bell [3], who proved that for D strictly pseudoconvex with smooth 
each u E A‘°(D) can be written u = Pcp, where 99 vanishes to infinite order
on bD.

From facts about weak carriers of analytic functionals, we can infer
results about the supports of functions which project to analytic functionals.
Following are two examples; note that analyticity of the boundary is not
required.

THEOREM IV.9. Let D cc CN be strictly pseudoconvex. Let Xl and .K2 be

disjoint compacta in D, such that KI U .K2 is holomorphically in D. If
f = = Pp2, where sUPP cpj c Kj, j = 1, 2, then f = 0.

PROOF. Since D is strictly pseudoconvex, is dense in O(D), so f
represents a unique analytic functional on D. Since KI U K2 is holomor-

phically convex in D, Theorem 4.3.2 of [18] implies that there exist func-
tions c~(D), n EN, such that

The proof of Lemma IV.2 applies to show that T f is the zero functional;.
hence f = 0.

THEOREM IY.10..Let D be as in IY.9..F’or j = 1, 2, assume
0 (D) -convex, and cPj E eOO(D) with supp CPJ c If f =
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= Pq;2’ then for any open set U such that U D I~1 fl X2, there exists
99 such that f = Pq;.

PROOF. The analytic functional Tf is weakly carried on each Kj. Lem-
ma III.15 implies that T f is weakly carried on The conclusion
follo18 from the remarks at the beginning of this section.

Theorem III.21 also has a counterpart in this setting :

THEOREM IV.11. Let D cc CN be strictly pseudoconvex with smooth bound-
ary. I f U cc D is any open set, then

is dense in O(D).

PROOF. Let V cc U be open. Every analytic functional T f weakly car-
ried by Y satisfies Pgg = f, for some 99 eC~(~7). By Theorem III.21, such f
are dense in 0 (D). This completes the proof.

Theorems 111.14 and IIL20 assert that functions in H2(D) extend

holomorphically across bD or smoothly to bD when they represent analytic
functionals. The proof of Theorem 111.9 shows that if D cc ~R’ is convex

with smooth boundary and 0 E D, a function f E H2 (D) represents an analytic
functional if its restriction to each complex line A through 0 satisfies the
following conditions:

(i) 

(ii) there exists C~ &#x3E; 0 and a compact such that for all

polynomials p in the single variable z (the coordinate on 1),

(We have used the fact that D is polynomially convex. ) We have shown :

THEOREM IV.12. Let D cc CN be convex, 0 E D, bD smooth, f e 
for all complex through 0, (i) and (ii) hold, then If, in addi-
tion, bD is a (2N -I)-dimensional real-analytic submani fold of CN, then

f E 0(15).

The duality theory can also be used to deduce results about boundary
behavior of biholomorphisms between certain domains.
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THEOREM IV.13. Let DI and D2 be strictly pseudoconvex domains, each
with boundary a (2N -1 )-dimensionat real-analytic submanifold of CN. Let

0: D2 be a biholomorphism. Both Jac 0 and 0 extend holomorphically
across bD, .

Theorem IV.13 was proved originally by Pin6uk [29].

PROOF. The constant function 1 is an analytic functional on .D2, so

Ø;1(1) Jac 0 extends holomorphically across bDl . Similarly, Jac 0-1
extends holomorphically across bD2 . Hence 0 on D1, and indeed
does not vanish on a neighborhood of D1.

The functions =1, ..., N, are analytic functionals on D2 , so ==

Oj -Jac 0 is an analytic functional on DI for each j, and hence extends
holomorphically across bDl. Since 0 near D1 and extends holomor-
phically across bDl, y Oj itself extends holomorphically across bDl. This

completes the proof.

THEORE3i IV.14. Let Dl and D2 be strictly pseudoconvex domains, D2
as above, and Dl with C° boundary. Let 0: D2 be a biholomorphism.
Yhen Jac 0 extends smoothly to bDl.

PROOF. The constant 1 is an analytic functional on D2 , so Jac 0

is an analytic functional on Di. By Theorem I11.20, Jac ø ex-
tends smoothly to bDl.
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