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Type I Criteria and the Plancherel Formula
for Lie Groups with Co-Compact Radical (*).

RONALD L. LIPSMAN

1. - Introduction.

This paper is another devoted to the Orbit Method-that is, the con-
struction, parameterization and characterization of the ingredients of har-
monic analysis on Lie groups by means of co-adjoint orbits. Here we consider
Lie groups G having co-compact radical. We shall accomplish two objectives
for such groups: (1) obtain criteria for them to be type I ; and (2) give a
description of their Plancherel formula.

To derive the Plancherel formula we shall need to impose a certain
hypothesis first enunciated by Charbonnel and Khalgui (see Condition (A)
in Section 2). The condition holds automatically if the group is connected,
and in the disconnected case it should be thought of as the analog of the
Harish-Chandra class condition for disconnected reductive Lie groups. The

condition guarantees the existence of invariant positive polarizations and
so enables us to explicitly realize the irreducible unitary representations
by holomorphic induction. However we shall not need to assume Condi-

tion (A ) in order to obtain the type I criteria.
The paper has two sections (besides this introduction). Section two

contains the derivation of the type I criteria and Section three the com-

putation of the Plancherel formula. In Section two we construct a gener-
alization of the Kirillov mapping for nilpotent groups. That mapping
(or parameterization) involves the co-adjoint orbits G-99 of allowable linear
functionals (in the dual of the Lie algebra), as well as certain irreducible

projective representations of the discrete group GIGO. The type I criteria
we derive, that is the necessary and sufficient conditions for a co-compact
radical Lie group to be type I, are that the orbits G - q? should be locally

(*) Supported in part by NSFMCS78-27576A02.
Pervenuto alla Redazione il 22 Maggio 1981.
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closed and the projective duals of G,,IG’ should be type I. We then turn
the latter condition into a structural condition on the group G,,IGO. The
main results are Theorems 2.7 and 2.8. In Section three we derive the

Plancherel formula for G. We make critical use of the preliminary case
of Lie groups having co-compact nilradical. Those groups have been treated
in [15]. In addition we make another assumption on G, namely that the
nilradical is regularly embedded almost everywhere (see Condition (B)
in Section 3). This enables us to avoid the algebraic hull and to dramatically
simplify Charbonnel’s method of proof for solvable groups. It is an open

question as to whether there exist any groups that do not satisfy Condi-
tion (B). The main theorem is Theorem 3.5.

Finally I call attention to Duflo’s paper [6]. He gives there an induc-
tive procedure for associating irreducible representations to admissible

orbits for a general Lie group. (See [15, § 8, Remark 2] for a discussion of
the relative merits of admissible versus allowable orbits. Recall that for

amenable groups-if one is considering only the irreducible representations
and Plancherel measure, not the characters-the latter are more convenient.)
Duflo indicates necessary conditions for the group to be type I, but not
sufficient ones. He omits the Harish-Chandra type condition (A)-but
without it, there is no explicit realization of the representations, only the
inductive procedure for describing them.

Notation and Terminology. G will be a locally compact separable group,
usually a Lie group. GO denotes the neutral component. We write dg for
right Haar measure. The symbol 0 indicates the set of equivalence classes
of irreducible unitary representations. If G is type I and unimodular, we
denote by pa the Plancherel measure on 61 corresponding to dg. We shall
write Cent G for the center of G. G is called a central group if G/Cent G is
compact. This is not to be confused with the terminology: T is a central
subgroup of G, which means only that r SCent G. If X is a unitary character
of a central subgroup T of G, we write Gx = ()r,x to denote the classes of
irreducibles n E 0 that satisfy nlr = (dim n)x. If X == 1, we let or = ()r,l.
We say Gr (or Gr,x) is type I if the space Gr (or Or ,x) is countably separated.

2. - Type I criteria.

In this section we shall describe necessary and sufficient conditions for

a Lie group having co-compact radical to be type I. More precisely, G will
denote a Lie group, .R its solvradical and N the nilradical. When we refer

to G as having co-compact radical we mean of course that GIB is compact.
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We do not require connectivity of G, but the co-compactness of jR insures
that GIG- is finite. We shall often assume the following property-which
is automatic if G is connected:

Property (A) should be thought of as the analog of the Harish-Chandra
class condition (see [8]) in the reductive case.

2a. The representations.

Let G have co-compact radical and satisfy Condition (-A). We begin
with the definition of the ingredients that go into the parameterization of G.

DEFINITION 2.1. 9[(C) == fgg e g* : 3X = X. a unitary character of Go such
that dX = igglg,,},

The elements of 9t(?) are called allowable linear functionals, and OE(Gg,) is

defined whenever cp c- W(G) - It is known that for every q; c- W(G), there exists
an invariant positive polarization % for T which satisfies the Pukanszky
condition and is strongly admissible [4]. We write n(gg, -r, Ind" -r
for the holomorphically induced representation determined by the data
(99, try see [15, § 6] for the definition. The representation n(gg, í, I)) can
also be realized as a group extension representation as follows. Let 6 = q;/n,
$ = ~lgo I)1 === I) n uc’ I)2 == I) n (go),,. Then § = I)1 + I)2 and I)1 is a positive
Go-invariant polarization for 0, 1)2 is a positive (Go)j-invariant polarization
for $ [15]. The following fact is taken as obvious in [6] and [11] but it is
instructive to write down the proof.

LEMMA 2.2. W(G) 1,, = 5lC(N), i.e. every 99 c- W(G) restricts to an element

0 c- W(N) and conversely every 0 E 5lC(N) is the restriction of some 99 c- W(G).

PROOF. Let 99 c- W(G). Then

So [no, no] 9 ntp. Therefore Ntp is a normal subgroup of No and No/Ntp is
abelian. But one also knows that NO-92 === q; + ( g e + n)-L (see [14, p. 271]
or [11, Lemma 2]). Thus No/Ntp I"’J Rn. Furthermore 99[no 9 no]= 0 implies
that [no, no] 9 Ker (991,,.). Hence [N., NO] c Ker (X,IV,,). If we put 0=
- Ker (Xp lv,,), rd = Nol C, B = Npl C, then we are in the situation of a con-
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nected abelian Lie group A, a closed connected subgroup B such that

A/B ^J R", and a faithful unitary character X E P. It is obvious that x
can be extended to A so that dx is any prescribed linear functional V
on a which extends (1/i) dy E b*. Hence X,, extends to a character yo of No
satisfying dXo = iO Ino.

Now for the converse. Let 0 c- W(N). We set

It is enough to show that WO(GO) is non-empty. Indeed if so, let 99 E g* be
any extension of both 0 e ol(N) and some 03BEE- WO(GO) - One knows that

[16, § 3], [6, IV, Lemme 5]. The existence of a unitary character v of GO
such that dXrp = iplgfP is then obvious. Now the non-emptinesslof W (Clr,) 91
is not immediately evident-it requires that we invoke some of the structural
assumptions we have made on G. Let go = Ker (OInt)’ and let Qo be the
corresponding connected Lie subgroup. Then G’IQ, is an almost direct

product of a compact connected semisimple Lie group and an at most 2-step
nilpotent connected Lie group (see [11, I, Lemme 2] where the word

« almost» is inadvertently omitted) in which Nofoo is central. The non-

emptiness is clear then from known results on co-compact nilradical

groups [15].

REMARK. It is not clear if Lemma 2.2 is true in the most general situa-

tion-e.g. without reductivity of Ge/Ne .
Now we complete the realization of n(O, i,h) as a group extension

representation. Set y = y(O) E N, where 0 --*,y(O) is the Kirillov map of N.
(Actually V - h1,, - IndNN, Xo.) Then y lifts canonically to a representation y
of Go satisfying y(ne) = xe(ne)-1 y(ne), no E No [5]. We know that (G(J)ç ==
= GpNo [16, Cor. 3.5, Formula A], and that the representation r extends
canonically to (G(J)ç. The group Go may have infinitely many components,
but we may still consider

According to [15, Prop. 3.9], it is irreducible, its class is independent of 1)2
and v( , T, 1)2) IN8 === (dim v) Xo. Therefore (v (8) y) (8) y defines a unitary re-

presentation of G, = Ge N, and
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[16, Prop. 3.10], [11, Th. IV, 4.4]. This proves irreducibility of x(q, 7:, % )
(because of the Mackey machine) as well as independence of §. We write

n.p"r for the class. Finally one knows that for 99, gg’c- W(G), -c c- 2E(Gq,),
,r’E 3e(G,,,) we have

(It is easy to remove the splitting and simply connected assumptions from
the results in [16].) Thus if we set

we get an injective map

I shall refer to x as the Kirillov map. In the type I situation which we
characterize in this section-the Kirillov map x is a bijection. We shall
find it convenient in Section 3 to depict this bijection by the fiber diagram:

2b. The connected cccse.

It is evident from the last subsection that the type I condition on G
must be tied to properties of the objects W(G)IG and 3E(G,). Since G being
type I amounts to « well-behavedness » of â, we expect it to be equivalent
to « well-behavedness » of 9t(6?)/C and ae(Gq;). Part of the interest of a the-
orem asserting such an equivalence would be the exact formulation of

 well-behavedness » of these sets. For the former, it amounts to the

G-orbits of 99 c- W(G) being locally closed in g*. For the latter, it must be
that Ind’g" is type I. But because of the structural assumptions on G

tp X9,
we shall be able to turn that into an equivalent statement on the structure
of Gq;. All this has already been done by Pukanszky in the case that G is
connected and simply connected. To state his result we need

DEFINITION 2.3. Let G be connected with co-compact radical. Let 99 Ew’( G),
Q = Ker z C GO. The reduced stabilizer is 199, {ge G,: [g, Glp] S QJ.
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If we denote by pv the canonical projection p,,: G9, - GIIQI I then

G9, = PIP ’(Cent (Gtp/QqJ)). (Note the difference in the definitions of Qo and Q.
Q8 is by definition connected, whereas Q,, is in general not.)

THEOREM 2.4 (Pukanszky [19, Th. 1]). Let G be simply connected with
co-compact radical. Then G is type I if and only if for every 99 c-W(G) we have

(i) G.q; is locally closed in g*; and

(ii) IGIF: 0,,]  oo -
REMARKS. (1) We observed in [16] that in the type I case, Gtp/Q - tp is a

central group (indeed its center G,,IQ,, is co-finite). In fact [GqJ:Gtp]  00
is equivalent to Gtp/Qtp being a central group which-by [20, Chp. I]-is
equivalent to Ind;ó Xtp being type I. In addition, 3E(? ) is a compact sub-117-90, ° °

set of (G,,IQ,,) ^ equal to: all of it if Q - GO; or the class one portion if

Ggo,IQ 9) - T [16, Prop. 4.2].

(2) It is proven in [16] that x is a bijection when G is simply con-
nected type I.

Now we extend Theorem 2.4 to the case of connected but non-simply
connected groups. Let G be connected with co-compact radical. Let @
be the universal covering group of G, p : @ - G the canonical projection,
T = Ker p. Then p generates a dual mapping p: 0 --* Or which is a topo-
logical homeomorphism. G is type I if and only if Or is type I. The fol-
lowing lemma consists of a sequence of easily-verified facts. I omit the

details.

Taking these properties into consideration and changing notation, we
see that to extend Theorem 2.4 to the connected case we must prove

THEOREM 2.6. Let G be simply connected with co-compact radical,
r ç Cent G a discrete subgroup. Then Gr is type I if and only if for every
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ga E Wr(G) we have

(i) G - 99 is locally closed in g*; and

PROOF. We make critical use of the results and of the terminology of [19].
All unexplained terminology and notation are as in [19].

We first prove necessity. Suppose Gr is type I. Let 99 c- Wr(G). Choose

any 7: E aer(G) and form a == n,,,. Then a c- 6.r - If we let J = Ker a (in
the sense of primitive ideals in the C*-algebra C*(G) ), then J is type I
(by the hypothesis). It suffices (by [19, Lemma 20 and Prop. 2]) to show
that 99 c- f2(J) (see [19, p. 31]). Let L = [G, G]N the nilradicalis6 of G.

L is simply connected and its nilradical N is co-compact. We write ?7 for
the canonical surjectionq: L W(L)/L. ive make use of the fact-obvious

from the co-compact nilradical theory [15]-that for y E N fixed, we have
co c- -L lies over y iff any ip cq(o-)) satisfies VI.,, c- L - 0. Now we know [18]
that ZIL is concentrated in a G-orbit, say G-a). More importantly, we also
know that nlN is concentrated in a G-orbit G ’ y, where y = y(0) and 0 = CPln.
This is because of the group extension realization of n. It follows that w

must lie over g ’ y for some g E G. But then any ip, c- 27 (a)) satisfies

V, 1,, c- E - (g - 0). Thus

Now V = ggl,c-%(L) [19; Lemma 7]. Therefore Vl,, = ggl,, = 0. Finally
.Q (j) = {g;1 E g*: g;lh E 27 (C; - (o) 1, G = alg hull G. Therefore g; E Q(J).

The argument for sufficiency is somewhat more subtle. Let J be a

primitive ideal which is the kernel of an irreducible representation trivial
on h. By [18], J = J(Q) for some e obtained as follows. There exists

oi E L, a (maximal) closed subgroup jC == K. 9 G and e c k such that

elL = w, n(} = Inde is primary, and J(Q) = Ker a,). It suffices (by [19])
to demonstrate that Q( J) n 5l(r( G) =F 0. So let 99 c- S2(J), cp II = 1p E q(m) .
The set Q(J) is invariant under translation by elements v E g*, vII = 0.
So the question is: can we modify 99 by such a v so that the resulting
character Xq;+v =1 on Go n. T.

First consider Go r) F 0 L. By [19, p. 23], GO o L == L’. Obviously

Lo C Lo, therefore G’ n F n L C L§ n F. Next we have m = (t) (V, -r) for

some z E 3i (L ) [15]. Therefore

The character X,, passes from GI n T to the quotient (G’ n F)I(G’ n F n L) gz
- (Go r’1 h),L/L. The latter is a discrete subgroup of the vector group ?/Z.
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Let v be any linear functional in (g/f)* such that eZV E (G/L)A is an ex-
tension of xg, on (G§ r) -P)I(GgO, n r r1 L). We lift v back to g and consider
99 -,p c-.Q(J). It is obvious that 1 on Go r) F. To finish, we must
show 99 - v c- W,(G), and for that it is enough to demonstrate that

Gtp = G-r-v i.e. Gv = G. But that is obvious since ’1’11= 0 and G/L is abelian.
We are now in a position to state

THEOREM 2.7. Let G be connected with eo-compact radical. Then G is

type I if and only if for every 99 c- W(G) we have

(i) G.q; is locally closed in g*; and

(ii) G,lQg, ig a central group.

This theorem follows from Theorem 2.6 and the reasoning preceding it
once we observe that the equivalence of [Gp:Op]  oo and Grp/QqJ central is
valid whether G is simply connected or not. Finally we note that the
exhaustion proof of [16] is also valid-simple connectivity is not required.
This is because Propositions 5.2 and 5.3 of [16] are true in the connected
case (see Proposition 3.3 and [6]). Therefore we have that in the type I
situation the Kirillov map x: 513(G)/G - l# is a bijection. Alternately the
fiber diagram (2.1) obtains.

REMARK. We conclude this subsection with a remark-which on the

surface is frivolous, y but-which will play an important role in the next
subsection.

Namely: for G connected, GGIQ,, is a central group if and only if it is a
finite extension of an abelian group. In fact in the latter case, G-,IQ-, must
be type I which implies Ind’Ilyg, is type I. We already commented (afterGo’ -

Theorem 2.4) that this forces Gg,109, to be finite.

2c. The disconnected case.

Now we assume only that G is a co-compact radical Lie group (not
necessarily satisfying Condition (A) ). We extend Theorem 2.7 to this situa-
tion, and then consider the map x when G is type I and satisfies Condi-
tion (A). The main result is

THEOREM 2.8. Let G have co-compact radical. Then G is type I if and

only if for every q; E 9f (G) we have

(i) G.q is locally closed in g*; and

(ii) GplQ,, is a finite extension of an abelian group.
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PROOF. Let H = GO so that [G:H]  oo. We first suppose that G is

type I. Then the open subgroup H is also type I [10, Prop. 2.4]. Let

q c- W(G) = W(H). Then by Theorem 2.7, H - (p is locally closed in !)* = g*
and [H P:Rv]  oo. But G-99 = UGIHg.(H.q;) is clearly also locally closed
in g*. Furthermore Ïlp/Qp is a co-finite abelian normal subgroup of Gp/Qp.
Indeed it is abelian by definition, normal since Hp and Qg, are normal in G,
and co-finite since Gp/Hp = Gp/(H r1 Gp) - GGHIH C G/.g is finite.

NOTE. The group H, may not be a central subgroup of Gq,; and the

group 199, may be no bigger than H§ in the disconnected case. We shall
illustrate this phenomenon with an example at the end of this subsection.

Now we prove the converse. Suppose that for every E ol(G), we have
properties (i) and (ii). It is trivial to check that, since H - 99 is an open
subset of G .q;, H.cp is also locally closed in g*. Next we see that HplQq,
must also be a finite extension of an abelian group (since G,,IH,9 is finite).
Therefore by the remark after Theorem 2.7, [H,,:j7,,]  oo. Hence by
Theorem 2.6 H is type I. Finally, since G is a finite extension of H, it too
must be type I [9, Th. 1 ) .

REMARKS. (1) By Theorem 2.8, if G is type I, every 7: E 3i(G.) is finite-
dimensional.

(2) The results of [6] suggest that Theorem 2.8 might be true without
assuming G/G° finite, but only GIGO amenable. That remains to be seen.

We next indicate (without details) why in the disconnected case, the.
Kirillov map x: 113(G) /G - l$ is still a bijection when G is type I. Of course,
it is enough to show surjectivity. We also assume Condition (A). Let

a c- 0, and let nO E 11 be a representation over which n lies. Then there

exists 99 c- W(H) = W(G) and a Eae(Hp) such that nO=np,a. We may choose
a positive polarization b for 99 which is Gg,-invariant. Then we have

a0 - grH(99, a, b). Now the stabilizer of n° in G is contained in G tpH. In

fact it is exactly (Grp)aH. Therefore (by the Mackey machine) there is an
irreducible representation v of (G,),,H whose restriction to .g is a multiple
of n° such that n = IndrGIP)aHv. What does v look liked The representa-
tion no extends canonically to a representation fíO of (Gg,),,, with the property
ifO(hrp) = a(hrp)-lnO(hrp). Everything in sight is type I and all extensions are

regular. Hence there exists an irreducible representation co of (Gq,)a, with
restriction to Hg, a multiple of a, such that
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But then í == Ind7Gcp)a(O is irreducible, belongs to ae(Gcp)’ and it is routine

to check that

That completes our discussion of surjectivity.

EXAMPLE. Consider the Lie algebra g of the motion group of the plane.
g has generators H, P, Q satisfying commutation relations [H, P] = Q,
[H, Q] _ - P. Let H = GO be the simply connected solvable Lie group
having g as Lie algebra. The two element group Z, acts on g by e(2?) = - H,
g(P) = Q, s(Q) = P, e2 = 1, and therefore gives rise to a group G which
is the corresponding semi-direct product of Z2 and H. The solvradical R

of G is H and the nilradical N is exp (RP + RQ). If we take g == e3 exp tH -

.exp xP exp yQ and = 7:H* + $P* + iqQ*, then we may compute that

for -r :A 0 and $2 + ’Y}2 = 0, then H,, = Hand G. = H ; but for $2 + q2 =A 0,
we have

while

The point is that GIG’ is a semidirect product of Z, and Z, and therefore
has no center. The group G does not satisfy Condition (A). I do not know

an example of a type I group which satisfies condition (A) for which Gvjo.
is not central.

3. - The Plancherel formula.

In this section we describe the Plancherel measure in the type I situation.
It is well-known that even if G is type I, the group N may fail to be

regularly embedded in G. Examples are found in [1] and [2]. However

we shall make the following assumption:

is countably separated a.e. ;
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that is, there is a G-invariant (Plancherel) co-null set X 9 9 such that
XIG is countably separated. I know of no type I group G that does not
satisfy Condition (B).

3a. The Plancheret formula and semi-invariants.

We give here the statement of the abstract Plancherel formula. Since

the groups we deal with may not be unimodular, we have to use the non-
unimodular version of the Plancherel Theorem [7], [12]. We shall work
with the non-unimodular Plancherel formula that contains the unbounded

semi-invariants in infinitesimal form. This of course avoids the domain

problems encountered (e.g. in [17]) when the semi-invariants are realized
globally. Actually, thus far all orbital presentations of the non-unimodular
Plancherel formula have been derived with the semi-invariants in infini-

tesimal form. It is an open and interesting problem to give an orbital inter-
pretation of the global semi-invariant.

Let G be locally compact separable and type I, with a choice dg of right
Haar measure. We denote the modular function by 3 = 3a so that

If a is an irreducible unitary representation of G acting on --Y., then by
a semi-invariant of weight 6’, r &#x3E; 0, we mean a positive self-adjoint closed
unbounded operator Dn on 3Qn satisfying

The Plancherel Theorem asserts (among other things) the existence of a
positive Borel measure pa on G and semi-invariants D,, on Fn (;rc-O) of

weight 3a such that for f E 6§fl(G).

(See [7]). The operator-valued measure DidlZG(7t) is uniquely determined
in the sense that if Dlidu’(n) is another satisfying (3.1), then there exists
a positive measurable numerical-valued function c(a) which obeys the relations
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We now construct the semi-invariants which will enter into the Plancherel
formula for co-compact radical groups. Let G be a Lie group, H a closed

subgroup. Fix right Haar measures dg, dh on G, H. We also fix a positive
continuous function q on G satisfying

Then q defines a quasi-invariant measure dg on 6f/.S’ by the formula

The measure dg is relatively invariant iff (ð Gð HI) IH extends to a positive
character w of G. Then we may choose q = oi-1 and w is the modulus of
the relatively invariant measure.

Now let a be a unitary representation of H. We may realize the induced
representation n = Indoor (as in [12, pp. 467 ff] ) in the space

The action is

Let oi: G --&#x3E;-R’ be a positive character. Suppose there exists V: G --*R’ 7
a positive measurable function satisfying y(hg) = V(g) and 1p(xg) = w(g) y(z) ,
h E H, x, g E G. The operator D = J9y defined by

is well-defined on 3Qn , and it is trivial to check that D is semi-invariant of
weight w. In particular, the above will be applied when y = w is a character
that is trivial on H.

The case 1jJ =1 is exactly [12, Th. 3.2]. We shall omit the proof of
this lemma. The proof is basically the same as that of [12, Th. 3.2] except
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that the presence of D introduces the function y into the kernel. The

resulting diagonal integration brings the factor 1p2 into the integrand.
Now we return to the case of a co-compact radical group satisfying

Condition (A). We have seen that the irreducible representations n(gg, í, §)
-which are defined by holomorphic induction-can also be realized as

ordinary induced representations by inducing from Gy = Ge.N, 6
y == y(O) c- S. To apply Lemma 3.1 to these representations therefore, we
need to show that 6 c , lg, = 1-at least for generic y. We do that now.

Since N is normal in G, we have 3j(g) = 6 GI N(g) 6 GIN(NG) 9 where 6GIN is the
modulus of the outer automorphism of N determined by g i.e. for any
choice dn of Haar measure on N we have

But GIN is unimodular (e.g. because it contains the co-compact central sub-
group R/N) . Thus

That is dn is relatively invariant (under the action of G) with modulus 3a.
If flN is the Plancherel measure of N determined by dn, i.e.

then It, is relatively invariant under the action of G with modulus 6 G 1.
Hence [12, § 2 ] for y,-a.a. y, the homogeneous space G-y--GIG, has a
relatively invariant measure of modulus 6G’. We write X,, for a G-invariant
flN-co-null subset of N such that

G - V has a relatively invariant measure of modulus 6G’, Vy E..IV 1 .

Then

From this we deduce that G. c Ker 6,, as follows. Since GIN is central, all
its closed subgroups are unimodular. Thus GIN is unimodular for every
/eJV. But then
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Hence ða11Gy = 1. T]3.erefore 6G, = 6G’IG,, = 11 which implies Gy is unimodular
and Gy ç Ker 6 Gfor any V E Xl. We summarize in

LEMMA 3.2. There exists ac G-invariant co-null set .Aí1 9 N such that for
every y E xl, GY is unimodular and contained in Ker ð G .

Finally, we construct the semi-invariant operators. Consider the map

By Lemma 2.2, this is surjective. Let us set 9ti(C) to be the inverse image
of %1. In subsection 3c we shall define a measure on W(G)ICT and we shall
see that W,(G)IG is of full measure. Now for T c- W,(G), -r c- 3E(Gg,), we have
1tfP,r realized by

/see § 2a). Thus for 99 c- W,(G), we may set

to obtain a semi-invariant of weight 6 G on the space of nq;,c.

3b. Some results on co-compact nilradical groups.

Exactly as the representation theory of co-compact radical groups used
representation-theoretic facts on co-compact nilradical groups (viz. GOIQO),
so does the derivation of the Plancherel formula of the former require that
of the latter. In fact we need results on the Plancherel formula of a co-

compact nilradical group with prescribed central character. These are a

straightforward generalization of the results of [15]. I state here only the
results the proofs involve nothing new beyond [15]. But first I recall the

unimodular projective Plancherel theorem.
Let G be locally compact separable and Z a closed subgroup of Cent G.

Fix x E Z. Suppose G/Z is unimodular. Suppose also that Indz G X is type I.
We fix a Haar measure dg on GIZ and put

Then there is a positive Borel measure ,u = ,uG,x on 0x such that
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Here f is C°°, satisfies f(zg) = x(z)-lf(g), )f) is compactly supported on GJZ,
and yr(/) denotes fa(g)f(g)dg.

G/Z

EXAMPLE. Let G have co-compact radical, satisfy Condition (A), and
be of type I. Let 99 Ew’(G). Then Ind G,, Xp is type I. Moreover GOIQ, is
a central subgroup of G IQ, - The discrete group G,,IG’ , has a counting
Haar measure, y and thus there is uniquely determined a positive (finite)
Borel measure dr on the compact space 3E(G,,) such that

Now let G be a Lie group, N its nilradical (not required to be simply
connected as in [15]) and suppose GIN is compact. G is type I. Let Z be

a closed subgroup of Cent G, x E Z. Of course G/Z is unimodular. We set

In this case every 7: EaeX(G) is finite-dimensional. For every ggc-wx(G),
there exists an invariant, y strongly admissible positive polarization § ; the
holomorphically induced representation n((p, T, 1)) is irreducible; its class a,,,,
is independent of § and is in ax. * If we set

then (q;, -r) -&#x3E; n,,, generates a bijection Ç]3x(G)/G ---&#x3E; Ox - We may also write

The representations a,,,, also have a group extension realization. For

99 c- W;,(G), we have 0 = 99 1. e W,,, (N), xl = Y lznn. The representation 7 = y(O)
extends canonically to a representation j7 of Go. Set = 99 1.. c- 9fox(GO),
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where

is a discrete set. We form

(using (Go)e = GlpNO as usual), and then

The projective Plancherel measure can be described as follows. Fix

Haar measure on GIZ. If we choose normalized Haar measure on GINZ,
then a unique Haar measure is specified on N/N n Z. We have the fiber
diagram (see [15, § 7])

Let ,uN,xl denote the projective Plancherel measure on Ñ Xl corresponding to
the Haar measure on N/N n Z already determined. We write PN,Xl for
its image on ÑxJG = ÑxJ(GjN). The space w’o,x(Go)jGo also carries a natural
discrete measure. Indeed exactly as in [15] we have a canonical projection

where (GO)^ consists of the irreducibles of GO that restrict to multiples
of y on Z, zo on No. GOINO Z is compact and has a normalized Haar
measure. This uniquely specifies a discrete projective Plancherel measure
on (G’) ^x,,. We take the image of that measure. Thus a natural measure is
defined (via (3.3)) on Wx(G)IG. We place the measure dim r on the finite
set Y,(G,,) and the resulting measured defined (via (3.2)) on Gx is the pro-
jective Plancherel measure.

Actually in what follows we shall only need the above results when Z
is connected and contained in N. In that case the presentation of the above
results simplifies considerably-e.g. Z r1 Ge = Z, Z r1 N = Z, zi = x and

Z n (GO)o = Z. Nevertheless, for potential future use, it is worthwhile to

state the most general results.
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3e. Definition of the Plancheret measure.

Let G have co-compact radical, satisfy Condition (.A ) and be of type I.
We recall the fiber diagram

It is necessary to define a canonical measure on the base W(G)IG. That is

the main content of this subsection.

We have a surjective map

It is obviously G-equivariant, so we get a map

The fibers of this map are computed in [16].

PROPOSITION 3.3..F’Zx 0 E W(N). Then Wo(Go) is non-empty. Let $ E Wo(Go).
Suppose 99 E g* extends both 0 and $. Then 99 E W(G). Moreover any two such
extensions are in the same G-orbit. Thus $ --* G - (p, Wo(Go) ----&#x3E; W(G)IG is well-
defined. It is Go-equivariant and factors to ac continuous injection

The image is precisely ff -l( G . y(8) ).

The first statement is Lemma 2.2. Everything else, except the last state-

ment, is found in [16, Prop. 5.2]. The last statement is clear once we ob-
serve that if 99 c- W(G), 0 = 99 1. and $ = qJ/g8’ then $ c- WO(G,9). This is because

0 c- W (N), (GO)’ == Go N,,, and Xo and zw agree on N,,.

COROLLARY 3.4. W,,(G,,)IG, is countably separated.
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Thus we have a Borel fiber diagram

We utilize (3.5) to define a measure on 9t(C)/C. As usual we fix right Haar
measures dg, dn on G, N respectively. Then Plancherel measure a, on N
is determined as usual. Now we use Condition (B). We form X2 = xr) xi ,
a co-null, G-invariant subset of 9 such that XIG is countably separated
and G - y has a relatively invariant measure of modulus bG 1 for every

y E %2. In particular Gy is unimodular and contained in Ker 3a for every
y c- K2 (Lemma 3.2). Let Y be a Borel cross-section for XIG. Choose

a pseudo-image fiN of ,uN on Y. It will take a while, but we shall show that
this choice uniquely determines a Borel measure go on Wo(Go)lGo, for every
y = y (0) c- K,., -

First, the choice of fiN uniquely specifies a choice of relatively invariant
measure pv on G -,y -- G/Gy such that

This in turn uniquely specifies Haar measures dgy on Gv so that

This further uniquely specifies Haar measures dgv on GIN so that

But GIN - Ge/Ne and so Haar measures on Ge/Ne are also determined by
the previous choices. Going on, we have uniquely specified Haar measures
on the open subgroups G8/N8. Then we invoke the results of subsection 3b
to see that projective Plancherel measures are uniquely specified on (Gg/Qo);:.
In fact since (Go)) is connected (see [16, Lemma 3.4]), it is easy to see that
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and the projective Plancherel measures of (GOIQO)- give canonical measures
/-lO,X8 on WO(GO)IGO. 0 We disintegrate /-lO,X8 under the action of GOIG’. 0 We

get the fiber diagram

because the stability group of Ge is (G,),G’. Each of the fibers has

counting measure, and thus there is uniquely determined a pseudo-image po
of fl(),X8 on the quotient WO(GO)IG,,. This is the promised measure on WO(Go)/Go.
It has a further property which we will use in the next subsection. It is

described as follows. The projective dual (Ge/Qe)xe satisfies a fiber diagram

We place the measures dz on the fibers, go on the base. Then it is routine
to verify (using [16, Lemmas 3.7, 3.8]) that the resulting measure on

(G8/Qe)xe is the projective Plancherel measure corresponding to the above-
determined Haar measure on Ge/Ne .

Next we take the pseudo-image on Y, the canonical measure go on

W,,(G,,)IGO and use (3.5) to get a canonical measure j1 on W(G)/G. It is clear

that the set W,(G) (subsection 3b) is of full measure. Finally we take dim

on the fiber, dil on the base in (3.4) to a get measure u on G. We shall
verify in the next subsection that D1/2,d,u is the Plancherel measure on G.

3d. The computation.

Let G have co-compact radical, satisfy Conditions (A) and (B), and
be of type I. We have the diagram

By means of this diagram we have defined a measure p on G in Subsection 3c.
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Furthermore the semi-invariants Dn({J,T have been defined in Subsection 3a.
Then we have 

THEOREM 3.5 (Plancherel formula). Let f E CC (G). Then

PROOF. The computation is modelled after those of [13, y [17]. On the
one hand we have

On the other hand we have

where {Jy , {,q,} are orthonormal bases of Yel,, 3Q respectively. Now let
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S2 g’! is of course a function on G,IN - GOINO 7 and we have

Comparing (3.7) and (3.8), we see that the Plancherel formula is proven.

REMARKS. (1) In this paper, we have constructed the Plancherel measure
of a type I co-compact radical Lie group (which satisfies Conditions (A)
and (B)). We used the formerly known structure theory and Plancherel
measure of co-compact nilradical groups to construct the basic ingredient
-namely, y the canonical measure on W(G)IG. One would like to have an

intrinsic scheme for constructing this measure. Duflo has indicated how

this might be done [6, Appendix]. His scheme is in terms of admissible

orbits. I also plan to change to admissible orbits in a later publication on
harmonically induced representations of non-amenable groups.

(2) It is interesting to speculate if the canonical measure on Çf!(G)/G
is the pseudo image of a canonical measure on W(G). Of course 9t((?) is in

general of lower dimension than g*. Nevertheless Vergne [21] has demon-
strated the existence of a measure on W(G) which is in duality with Lebesgue
measure on g by means of a generalized Poisson Summation Formula.
It would be interesting to relate Vergne’s measure to the canonical measure.

(3) The results of this paper are of course valid for connected solvable

groups the case treated by Charbonnel [3]. But the proofs here are dra-
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matically more simple than those of [3]. Condition (B) removes the need
for the algebraic hull. So it is important to determine if Condition (B)
always holds, or if there are counterexamples.

REFERENCES

[1] L. AUSLANDER - C. MOORE, Unitary representations of solvable Lie groups, Mem.
Amer. Math. Soc., 62 (1966).

[2] J. BREZIN, Unitary representation theory for solvable Lie groups, Mem. Amer.
Math. Soc., 79 (1968).

[3] J. CHARBONNEL, La formule de Plancherel pour un groupe de Lie résoluble con-
nexe, Thèse 3ième cycle, U. Paris VII (1976). (See also Lectures Notes in Math.,
587 (1977), pp. 32-76.)

[4] J. CHARBONNEL - M. KHALGUI, Polarisations pour un certain type de groupes
de Lie, C.R. Acad. Sci., 287 (1978), pp. 915-917.

[5] M. DUFLO, Sur les extensions des representations irreductibles des groupes de Lie
nilpotents, Ann. Sci. École Norm. Sup., 5 (1972), pp. 71-120.

[6] M. DUFLO, Construction de représentations unitaires d’un groupe de Lie, Cortona
(1980), preprint.

[7] M. DUFLO - C. MOORE, On the regular representation of a non-unimodular locally
compact group, J. Functional Analysis, 21 (1976), pp. 209-243.

[8] HARISH-CHANDRA, Harmonic analysis on real reductive groups - I, J. Functional
Analysis, 19 (1975), pp. 104-204.

[9] R. KALLMAN, Certain topological groups are type I, Bull. Amer. Math. Soc.,
76 (1970), pp. 404-406.

[10] R. KALLMAN, Certain topological groups are type I. Part 11, Advances in Math.,
10 (1973), pp. 221-255.

[11] M. KHALGUI, Sur les caracteres des groupes de Lie à radical co-compact, preprint.
[12] A. KLEPPNER - R. LIPSMAN, The Plancherel formula for group extensions, Ann.

Sci. École Norm. Sup., 5 (1972), pp. 459-516.

[13] A. KLEPPNER - R. LIPSMAN, The Plancherel formula for group extensions - II,
Ann. Sci. École Norm. Sup., 6 (1973), pp. 103-132.

[14] R. LIPSMAN, Characters of Lie groups - II: Real polarizations and the orbital-
integral character formula, J. Analyse Math., 31 (1977), pp. 257-286.

[15] R. LIPSMAN, Orbit theory and harmonic analysis on Lie groups with co-compact
nilradical, J. Math. Pures Appl., 59 (1980), pp. 337-374.

[16] R. LIPSMAN, Orbit theory and representations of Lie groups with co-compact
radical, J. Math. Pures Appl., 60 (1981), to appear.

[17] R. LIPSMAN - J. WOLF, The Plancherel formula for parabolic subgroups of the
classical groups, J. Analyse Math., 34 (1978), pp. 120-161.

[18] L. PUKANSZKY, Characters of connected Lie groups, Acta Math., 133 (1974),
pp. 81-137.

[19] L. PUKANSZKY, Unitary representations of Lie groups with co-compact radical
and applications, Trans. Amer. Math. Soc., 236 (1978), pp. 1-50.



285

[20] L. PUKANSZKY, Unitary representations of solvable Lie groups, Ann. Sci. fcole
Norm. Sup., 4 (1971), pp. 464-608.

[21] M. VERGNE, A Plancherel formula without group representations, preprint.

Department of Mathematics
University of Maryland
College Park, Maryland 20742


