
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

PAUL GODIN
Hypoelliptic and Gevrey hypoelliptic invariant differential
operators on certain symmetric spaces
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 9, no 2
(1982), p. 175-209
<http://www.numdam.org/item?id=ASNSP_1982_4_9_2_175_0>

© Scuola Normale Superiore, Pisa, 1982, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1982_4_9_2_175_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Hypoelliptic and Gevrey Hypoelliptic Invariant
Differential Operators on Certain Symmetric Spaces.

PAUL GODIN

0. - Summary.

In this paper we find a necessary condition for the hypoellipticity of
invariant differential operators on a Riemannian symmetric space G/K of
the noncompact type. We prove that this necessary condition is also suffi-
cient in the following cases: when G has a complex structure, when G is
the product of real rank one groups, or when a tranversality condition is
satisfied. We obtain analogous results with hypoellipticity replaced by
Gevrey hypoellipticity.

1. - Introduction.

A differential operator P on a C°° paracompact manifold X is called
hypoelliptic if for each distribution U E Ð’(X), u and Pu have the same
singular support. If X is analytic and s &#x3E; 1, P is said to be Gevrey hypoel-
liptic of class s if u and Pu have the same Gevrey singular support of class s
for each u E D(X). Here the Gevrey singular support of class s of v E 0’(X)
is the complement of the largest open set where v belongs to the s-th Gevrey
class G s .

If X is an open subset of Rn, Hormander has characterized hypoelliptic
and Gevrey hypoelliptic differential operators with constant coefficients

on X in terms of their symbol (see [12]; [13], chapter IV). The symbol
p($), $c-Rn, of a differential operator P(D) with constant coefficients on
X c R, is defined by P(D0153) (eiX,t;) ) = p ($) e,x,", where x E X, D = (Dl’ ..., Dn ),

Pervenuto alla Redazione il 16 Febbraio 1981.
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and

Then Hormander’s condition for

hypoellipticity can be written

and Hormander’s condition for Gevrey hypoellipticity of class s is

for some C &#x3E; 0 independent of $, when $ is large enough.
In this paper we shall study regularity properties of solutions of invariant

differential equations on Riemannian symmetric spaces of the noncompact
type, that is on coset spaces X = G/.g, where G is a connected Don compact
semisimple Lie group with finite center and g is a maximal compact sub-
group of G. There is an action 7: of G on X defined by the formula z(g)(hg) _
= (gh) g if g, h E G. By « invariant differential operators» we mean those
who have complex coefficients and are r-invariant. As shown in [4], they
form a commutative algebra which we shall denote by D(X). Helgason [6]
(resp. [11]) has proved that any non zero P E D(X) is locally solvable (resp.
is surjective from C°°(X) to C°°(X)).
A function E C’(X) is called spherical if

is an eigenvector of Q.

Harish-Chandra [3] determined all the spherical functions of X. If

G _ KAN is an Iwasawa decomposition of G, he proved that they can
be parametrized by a* (the complexified space of the dual a* of the Lie
algebra a of A ) when one associates with C E a* the spherical function

Here we have to explain the notation in the right-hand side: dk is the

Haar measure on K with total measure equal to 1, f2 = § z ma a is the half
(XEE+

sum of the positive restricted roots a (counted with their multiplicity mj
relative to the choice of a positive Weyl chamber, and H: G - a is defined
by exp H(g) = a if g = kan is an Iwasawa decomposition of G. Two sphe-
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rical functions 99, and gg,. are equal if and only if 03B6’= gC for some element 8
of the Weyl group W (see [3] and [4] chapter X).

With P E D(X) we may associate a complex polynomial p on a, W-inva-
riant, by the formula Pgg, = p(;) cp(03BE) (see for example [4], chapter X, where
p(03BE) is denoted by T’(P)(i03BE)).

The purpose of our paper is to study relations between the hypoellip-
ticity (resp. Gevrey hypoellipticity of class s) of .P’ and condition (A) (resp.
(As)) imposed on p. This paper is divided into three sections.

In section I we prove some useful properties of the polynomial p.
Section II is devoted to the study of hypoellipticity. In II.1, we prove

that p satisfies (A) if P is hypoelliptic.
To study the sufficiency of (A) for hypoellipticity, we construct in IL2 ac

parametrix i3 of P, which is the  convolution &#x3E;&#x3E; by some T E Ð’(X). When G
is complex, we show in 11.3 that (A) implies hypoellipticity. In IL4 it is

proved that T is smooth in X’ when (A) is fulfilled. Here X’ is the set of

regular points of X. The method of 11.4 is then used in 11.5 to show that
(A) implies hypoellipticity when G is a product of real rank one groups.
In 11.6, we consider T as the pullback of a distribution on a and introduce a
transversality condition (condition (B)). We show that when (A) is ful-

filled, T is smooth in a neighbourhood of each point where (B) is satisfied.
Therefore P is hypoelliptic if (B) is satisfied at each point of Xg(X’W {K}).
(Here K denotes the origin of GIK) (1). We end 11.6 by presenting some
examples.

Section III, which parallels section II, is devoted to the study of Gevrey
hypoellipticity. In IIr.I, we prove that (A8) is a necessary condition for

Gevrey hypoellipticity of class s. In III.2, y we reduce the problem of suf-
ficiency of (A8) to the study of T. The sufficiency of (As) is proved in III.3
when G is complex and in m.5 when G is a product of real rank one groups.
In III.4, we prove that T E Gs(X’) if p satisfies (As). In IEEI.6, we introduce
condition (B,). When it is fulfilled at each point of XB(X’u {K}), P is
Gevrey hypoelliptic of class s as soon as p satisfies (As). Examples are
given to conclude paragraph 111.6.

This paper makes use of the theory of Riemannian symmetric spaces
and of the theory of hypoelliptic differential equations with constant coef-
ficients in Rn. For all unexplained notions on the first topic we refer to

[4], [5]; see also the beginning of [6], [8] and [10]. For the second topic
we refer to [13]. 

’

(1 ) Added in proof: After this paper was written, Professor J. J. Duistermaat

pointed out to me that the use of Abel transform allows to eliminate the transver-
sality hypothesis.
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I. - Some properties of the polynomial p.

In this section we collect some properties of p which we shall need in
the sequel. First we recall some well known facts (see [4], chapter X).

Denote by D(G) the algebra of left invariant differential operators with
complex coefficients on G. Let DK(G) be the subalgebra consisting of those
operators of D(G) which are also right invariant under K. If n: G - X

GIK is the canonical projection, there is a homomorphism p: DK(G) -+
- D(X) given by the formula (I"(Q) f) on = Q(fon) if Q e DK(G) and f e OCO(X).
If f is the Lie algebra of K, the kernel of ,u is equal to DK(G) r1 D(G) f. On
the other hand, if l(a,) is the algebra of complex polynomials on a which
are invariant under the Weyl group, there is a canonical homomorphism
v: DK(G) --&#x3E;’(a,) with kernel DK(G) n D(G)f. From p and v we get a ca-
nonical isomorphism of algebras F: D(X) -+ I(ac) such that Pq;l;== (r(p)(i))ffJl;
if P E D(X). As said in the introduction, we put p($) == -V(P)(i$).

If P E D(X), denote by ord P the order of P (as a differential operator)
and by deg p the degree of p (as a polynomial). Then the following holds:

LEMMA I.1. Ord P = deg p.

PROOF. (a) Let A+ be a positive Weyl chamber in A. We can define
the radial part rad (P) of P in A + . o. (We shall often denote by g .o the
point g{K} of X = GIK). rad (P) is the unique differential operator on
A +.0 such that P f I A+. o = rad (P) (fIA+oo) if f E C’(X) is K-invariant, where
IA+-o means restriction to A+ . o (see [3] or [9] chapter II).

Furthermore rad (P) = e-e r(p) ee + lower order terms, ([9], chapter II,
prop. 1.5), where e is as in the introduction half the sum of the positive
restricted roots with multiplicity. (Here of course we have identified the
polynomial e-er(P)ee with the differential operator on A it defines). This

equality shows that deg p = ord rad (P), which in turn is not larger than
ord P.

(b) Let g be the Lie algebra of G and p the orthogonal complement
of f in g, with respect to the Killing form, so that a is a maximal abelian
subspace of p. Denote by l(p,,) the algebra of complex AdG(g)-invariant
polynomials on p. Using the Killing form which allows to identify a and a*
(resp. p and p*) , we may consider elements of l(a,) (resp. l(p,)) as polynomial
functions on a (resp. p). Then the Chevalley isomorphism theorem ([3];
[4], chapter X) implies that any p E I(aJ has a unique extension to an
element p c- l(p,). Denote by A: l(p,) --&#x3E; DK(G) the symmetrization map
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defined by where J runs over the group of

all permutations of the set {1, ..., rl. We are going to show the following:

r-1(p) and pa(fo) have the same order equal to deg p and the same
principal part.

We prove (1) by induction on deg p which we denote by d. If d = 0,
(1) is clear, so we suppose that (1) is true for d c s and we prove it when
d = s + 1. By Lemma 6.12 of [4], chapter X, v2(j)) - p is of degree less
than or equal to s ; hence the induction hypothesis shows that ord r-1(y Â(p) -
- p) cs. But -P--l (,y2(p) - p) = p2(,Z) - F--I(p); furthermore ord IZ2(,Z) 
 deg Z = deg p = s + 1; and ordr-1(p»degp by part (a) of the lemma.
This proves (1) and completes the proof of the lemma.

In fact we can be more precise. Let P E D(X) be of order m and write
p = I pm-j , where Pm-j E l(a,) is homogeneous of degree m - j. Denote by

0 - i - m

a(P) the principal symbol of P in the usual sense of differential operators
theory; this means that a(P) is the function from T*XBO to C defined
by u(P)(z, $) = i-P(I-)(x)lm! I if f E CCO(X) vanishes at x and has a dif-

ferential at x equal to $. Denote by Exp the exponential map p - .X’ (that
is the composition of the exponential map of g restricted to p with the
canonical projection from G to X) and by 0. the canonical extension of pm
to an element of l(p,). Then we have:

where 0 denotes the origin of p.

PROOF. As noticed in the proof of lemma I.1, P and = zA(F(P))
have the same principal part. We are going to compute i-R(I-)(x)lm! t
when f E C’(X), f (x) = 0, df0153=;. Applying theorem 2.7 of [4], chapter X,
we see that R(f-)(x) = R’(f-or(g)oExp)(0), where R’ is the differential

operator on p defined as follows. Choose any basis ¥1’.’" Y, of p and
associate to the linear coordinates

(with the usual multi-indices notation) and
is defined by Note that ord

which by (1) is equal to m. Therefore I
The last expression is readily seen to be equal to

. The proof is complete.
In section III the following result will be useful:

LEMMA 1.3. For each C E a*, there exists p E I(ac) homogeneous and not
constant, such that p(C) =A 0.
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PROOF. Denote by S1’ ..., sr the elements of the Weyl group of a. They
act on a* by sE, H&#x3E; = ($, s-’H&#x3E;, $ E a*, g E a, and on a* by complex-
ification. If aj is the j-th elementary symmetric function in r indeterminates,
define fiE I(ac) by the formula where

I is such that 

are the r complex roots w of the equation
Therefore there must be rome j such

As explained in [4], chapter X, 9 6, I(a,) is finitely generated. Denote

by pl, ..., pl a set of not constant homogeneous elements of I(ac) which,
together with 1, generates -I(a,). Then we have the following obvious
consequences of lemma 1.3.

COROLLARY 1.1. If Q E a*, 0 there exists some j, 1 . j  1, such that p’(Q) # o.

COROLLARY 1.2. Put dj = deg pi and denote by "I any fixed norm in ci,*.
’I’hen there exists a strictly positive constant C such that, for all C E a::

II. - Hypoellipticity.

11.1. - The necessity of ( A ) .

In this section we are going to study operators P E D(X) for which the
corresponding p E I(ac) satisfies condition (A ) . Since p can be viewed as a

function on a*, the precise meaning of (A) is of course that p(cx)(03BE)/p(03BE) -&#x3E; 0

when ZJ+ 3 (X =F- 0 and $ - 00 (l = dim a), where pCcx) is computed in any
linear coordinate system ( E1, ... , El ) of a*.

Using the well known characterizations of polynomials satisfying (A)
(see [13], chapter IV and [17], chapter 7), it suffices to prove the following
theorem to show that p satisfies (A) if P e D(X) is hypoelliptic.

THEOREM 11.1.1. Let 8 be a not empty relatively compact open subset of X.
Assume that for each v E D’(S), Pv = 0 in 8 implies that v E 000(8). Then

the following holds: if C e a§ tends to 0o and satisfies p()) = 0, then Im i
tends to oo. (We write i = Re i + I Im ) ; Re F, Im ) e a*).

PROOF. The proof is similar to that of the corresponding theorem for
differential operators with constant coefficients in R". We equip N(S) _
= {v E Lt:c(8), Pv = O} with the topology induced by the usual topology
of L;;’(8). We have N(S) c 000(8). Denoting by 8’ an open subset of 8
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such that N’c S and by ( s, the restriction to S’, the mapping v i-* Evi.,
from N(S) to L’(S’) has a closed graph if .L denotes the Laplace operator
of X for the metric defined by the Killing form. Assuming, as we may,
that o E S’, the closed graph theorem implies that for some .F E COO(S) and
some positive constant C:

if v E N(S).
Now epCE N(S) if C E a: satisfies p (C) = 0. Furthermore corollary 2

of [3] implies that

where p = ! 2 ma a, as recalled in the introduction. We are using the fol-
tXe¿;+

lowing notation: if Â, p e a:, let HAE ao be determined by Â(H) = B(HA, H)
for all HE a, where B is the Killing form ; then we put (Â, 1"&#x3E; = B(HA, HI-,).
On the other hand,

Introducing (3) (resp. (4)) in the left-hand (resp. right-hand) side of (2),
we see that when p(C) = 0, Re C must remain bounded if Im C is bounded.
The proof is complete.

From theorem ][1.1.1 we can get some information about the real charac-
teristic points of P:

THEOREM 11.1.2. I f P c- D(X) is hypoelliptic and (r, $) E T*.XB0, then
Or(P)(x, $) = 0 implies that dl1(P)(x, $) = 0.

PROOF. By lemma 1.2, we have J(P) (g . o, $) = Pm(n), where q = $odc(g)oo
od Expo. So if u(P)(g . o, $) = 0, we have Pm(n) = 0. We are going to show
that dZ.(,q) = 0, which of course will imply that da(P) (g - o, e) = 0.

Denote by M the centralizer of a in jE" and by a+ a positive Weyl chamber
in a. Let 99: KIM x a+ --* p be defined by 99(kM, H) = AdG(k)H for k E .g
and H c a+ - 99 is a diffeomorphism onto a dense subset p’ of p (see [4],
chapter X). Put 99-1 (Y) = (x’( Y), xn( Y)) E KIM x a+ for Y E ,p’, and a’=
p’n a.

(a) Assume first that 77 c- p. We can find kEg such that 77’= AdG(k)rEa
Since = 0, we have pj?/) = 0 and so dp,,,(i7’) = 0 because pm
satisfies condition (A ) by theorem 11.1.1. Since in the coordinate system
(x’, x"), Pm is independent of x’, it is clear that dp.(77’) = 0, whence dZ.(,q) = 0.



182

(b) Assume now that q E p%p’. If dp.(,q) =A 0, the set B = (q’e p,
Pm(n) == O:A dp.(27’)} is a manifold throughq of dimension equal to dim 1.
Furthermore E c pBp I, as we have seen in (a). But dim (p%p ’ )  dim p - 2
(see [4], chapter X). This contradiction proves the theorem.

REMARK 11.1.1. If X = GIK is a rank one symmetric space of the
noncompact type, equipped with the metric defined by the Killing form,
then every nonzero P E D(JP) is a nonzero polynomial I a;L’ with complex
coefficients a, in the Laplace operator .L of X ([4], chapter X). Formula

(3) shows that the corresponding p satisfies condition (A1), hence (As) for
all s &#x3E;:L and (A). On the other hand, P is an elliptic operator with analytic
coefficients on the analytic manifold X, hence it is hypoelliptic and Gevrey
hypoelliptic of class s for each s&#x3E;l. Therefore when rank .X’ is equal to 1,
(A) (resp. (As)) is necessary and sufficient for hypoellipticity (resp. Gevrey
hypoellipticity of class s).

REMARK 11.1.2. When rank &#x3E;2, we can always find non elliptic opera-
tors P E ID(.X) such that the corresponding p satisfies (A). In fact let

r E l(a,) be the polynomial of degree 2 associated with the Killing form B.
Let q E l(a,,) be real and not elliptic. For example, we may take q H Ix 2

aEE+

Theorem 4.1.9 of [13] shows that the polynomial p($) = q($)’ + r(E) km- x + 1
satisfies (A) if m = deg q and k is an integer larger than or equal to 2. It

suffices then to take P such that r(p)(ie) = p($). Since P2mk vanishes at

some nonzero vector of a*, lemma 1.2 shows that P cannot be elliptic.

11.2. - Construction of a parametrix of P when condition ( A ) is satisfied.

We shall need suitably normalized measures, the definition of which

we recall now. Let g = f + p be a Cartan decomposition of the Lie algebra g
of G, with Cartan involution 0. Let G = KAN be a corresponding Iwasawa
decomposition and denote by if the centralizer of a in K.

We define Haar measures dk, dm, da, dn, dg on K, M2 A2 N, G by the
following conditions: jdk = 1, jdm = 1, (2nyank X/2 da is the Euclidean

K M

measure induced by the Killing form, 0(dn) is the Haar measure dn on

N = 8 (N) normalized by

and

for each f E Co (G) if g = kan is the Iwasawa decomposition of g defined
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above. (If Y is a C°° manifold, we denote by Co (Y) the space of C°° func-
tions with compact support on Y). The G-invariant measure on G/g
induced by dg and dk will be denoted by dx. Finally the quotient B = Kf M
will be equipped with the K-invariant measure db of total measure one
induced by dk and dm.

Since G (resp. X) is equipped with a canonical positive 000 density dg
(resp. dx), we may view Ð’(G) (resp. D’(X)) as the dual of Co (G) (resp.
C§°(X)) in a canonical way.

Then if P_ E D(X) and T E :O’(X), PT is simply the map C§°(X) i f -
-&#x3E; T, tp/) e C, where tP denotes the adjoint of P with respect to dx.
We shall need some more notations (see [11]). If f E Co ( G) and S e

e D’(X), we put In(xK) === fl(xk) dk and 8(/) = S(ln). Then InE C§°(X) and
_ 

x

S e D’ (G) . If v e 6’ (X) and T e D’ (X) , we define v x T e D’ (X) by w X T,
F) = (lY * ’1’, p) if I’ e Co (,x), where * denotes the convolution on G.

To prove the hypoellipticity of P when condition (A ) is satisfied, we
shall try to construct a suitable T E D’(X) such that

where 6 is the Dirac mass at o.

With T we associate the continuous linear operator 13: C-(X) -+ C°° (X )
defined by i3v = v x T, i3 has an extension to a continuous linear operator
from 8’(.Z) to 0’(X) (with their weak topologies, say). Since P(v &#x3E;C T) _
- v &#x3E;C PT = Pv &#x3E;C T (see [11]), (5) implies that Pl3v = i3Pv = v + v x h,
where h = PT - 6 E C’(X). Hence i3 is a twosided parametrix of P.

The action of 13 on the singularities is given in the following lemma:

LEMMA 11.2.1. Assume that sing supp T c {o}. Then sing supp ’Gf c
c sing supp f for each f E 8’(X). 

°

PROOF. Assume that f is in Coo in a neighbourhood of g - o. If q; E C-(X)
is equal to 1 close to g.o and if y e Co (,X), we may write:

We choose ip with a small support; then yf E Co (.X’) and qi3yf E C°° (.X ) .
We take supp 99 small and y such that y = 1 in a neighbourhood of supp 99.
Then §5(g) (I - §J) (gy-1) = 0 if y E G and a(y) belongs to some narrow neigh-
bourhood of the origin. Therefore ql3(1 - V) f E Coo(X), which shows that
’Gf is in C°° in some neighbourhood of g. o. The proof is complete.

Classical arguments give easily:
COROLLARY IL2.1. I f T satis f ies (5) and i f sing supp T c {o}, then P is

hypoelliptic.
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To construct T satisfying (5), we shall use the Fourier transform on X,
for the study of which we refer for example to [10].

If x = g.o E X and b = kMeB, we put A(x, b) =-H(g-1k). Then the

Fourier transform Yu of u E C-(X) is defined for $ E a* and b E B by

(In [10], y Yu is denoted by 11, but we want to avoid a possible confusion
with the - operation introduced above).

There is a Fourier inversion formula:

where IWI is the order of the Weyl group W, c($) is the Harish-Chandra c
function, and (2nyankX/2 d$ is the Euclidean measure induced by the Killing
form on a*.

In the remainder of this paper we shall write 1;B2 for ;, $) if $ E a*.
Assume that p satisfies condition (A). Then for some R &#x3E; 0, we have
ip (E) I &#x3E; 1 if E &#x3E; B. Choose x E Ooo(a*), W-invariant, equal to 0 when )$) R
and equal to 1 when 1$1 &#x3E; 2B.

Hence (6) gives that :F(tpu)(F, b) === p( ) :Fu(, b). Therefore, an easy
computation using (6) and (7) shows that the distribution T, defined for

satisfies (5). The integral exists since, when $ -+ oo, :Fu(E, b) is rapidly
decreasing in $ uniformly in b and 1,0($)1-2 has polynomial growth (see
e.g. [10]).

11.3. - Study of T when G is complex.

If G = KA+ K is a Cartan decomposition of G, ([5], chapter IX), , each
g E G can be written g = k1 ak2, where k1, k2 E K and ac E A + . ac is uniquely
determined by g and we denote it by A+(g).
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Finally the mapping 93 defined on a by $(H) = B(H, H) is a polynomial
function on a, that is a polynomial on a*. We have

is the basis of a* dual to some B-orthonormal basis of a.

put

Then we have:

LEMMA IT.3.1. If G is complex, the following holds :

where log: A --&#x3E; a is the inverse of the exponential map of a.

PROOF. Since G is complex, we have the following simple expression
for 99, (see [9], chapter II) :

when a E A, where Since CPt; is K-invariant,

an easy computation gives (9).
Let us fix some go - o c- X and choose $ such that a(- i$) 99- (g - o) 0 0

for g.o close to go.o. Then (9) shows that g.o r+ 93(log A+(g)) is analytic
close to go. 0, and since go. 0 is arbitrary, the function is analytic everywhere
on X. It is positive and vanishes only at o. If d(g.o) denotes the Rieman-
nian distance from g .o to o, when X is equipped with the Riemannian
metric induced by the Killing form of g, one has:

To show (10) it suffices to show that d2( a .0) = lS(log a) for a E A, since
d(ka .0) = d(a .0) if k c- K. Put log a = H. Then {Exp tH, t E R) is the

geodesic through o and a - o (see [5], chapter IV), y and since

where 7: denotes the action of G on .X, we get that Id EXPtH’ H&#x3E;17H is

independent of t if ) 17H denotes the norm in T EXD tH(X) defined by the metric
of X. Since Id Expo, H) ]§ = 93(H), it is clear that d2(a.o) = $(log a).
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We are now able to prove the following converse of theorem II.1.1:

THEOREM II.3.1. If G is complex and T is defined by (8), one has

sing supp T c {o} as soon as p satisfies (A). In this case P is hypoelliptic.

if N e Z+ and u e C§°(X) . Since G is complex, we have c($) = n(g) fn(I$) ([9],
chapter II) ; therefore (9) shows that

where

tdenotes transposition with respect to d$.
Since p satisfies (A), we have for some C &#x3E; 0 and some s&#x3E;l: Ip(tX)(E)I

 C ) $ ) CJ p ($) ) if ] $ ] &#x3E; R. Hence for some r E lEg, we have It$N(Dt;)V(V)I
°N(l + E)r-2NI8, where CN &#x3E; 0 depends on N. Therefore, when N is large
enough, d2N T is a continuous function and we have:

which shows that for some fixed Po E R, d2N T E C’(X) if p  Po + 211% l s.
Hence T E C’(XB{o}). This completes the proof in view of corollary IL2.1.

11.4. - Study of T in the regular part of X.

When G is not complex, we have no simple expression for the spherical
functions and therefore we are not able to prove an identity as (9). However
let .X"’ be the regular part of X, that is the image of KA +K by the projec-
tion G --&#x3E;- X = G/K. It is known that X’ is open and dense in X and that

dim (XBX’) c dim .X’ - 2 (see chapter X of [4]). The following theorem
shows that T behaves well in X’ even if G is not complex:

THEOREM IL4.1. Assume that p satisfies condition (A) and let T be given
by (8). Then sing supp T r) X’= 0.

Before starting the proof, we have to recall some properties of the

spherical functions, the c function and the polynomial p.
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In A+, we have Harish-Chandra asymptotic expansion of §5_ j (see [31,
[10]), y which implies that

Here we are using the following notations (see [10]): L is the set of all
linear combinations of the form 2 n; a; , n; E Z+y where the aj are the simple

1-i- I

restricted roots. The -pl, are rational functions and c is the Harish-Chandra
c function.

We recall now a number of facts about the function

(see [3], [7], [8]). If r &#x3E; 0, put aT = () e a:, Im (a; , Q)  r for j = 1, ..., I).
Since the map C « T,(- Q) is holomorphic outside () e a:, ,u, Q) = )I(p, p)
for some p e ZB{0}}y it is holomorphic in Ue if E &#x3E; 0 is small enough.
Furthermore, if E &#x3E; 0 is small, the proof of theorem 2.4 of [8] (see also
lemma 2 of [1] ) shows that for each HoE a+, there exists a constant .g$o
such that for each p e .L :

Let S be a compact subset of a+. Choosing Ho such that (X,j(H - go) &#x3E; 0

for 1  j  I and all HE S, and taking c small enough, we see, using (13),
that the series is uniformly convergent if C E Us and H’

belongs to a suitable neighbourhood of S in the complexified space ac of a.
This shows that is holomorphic there. Also one

sees easily that for each translation invariant differential operator Q on A,
there exists a constant C such that
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As shown in [7], there exist constants C and m such that

for all 03B6 e a§ satisfying Im Xj, C)  0, j = 1, ... , l; c-1(C) is holomorphic in a
neighbourhood of that set.

On the other hand, since p satisfies (A), there exists some s&#x3E;l such that
[C[  C’(I + ]Ini Q[)s if p(C) = 0 and C e a§, where C’ is independent of ).
Hence we may use the following lemma, which is part of lemma 2.1 of [2] :

LEMMA II.4.1. Put ($) = (1 + [$] 2) + when $ e a*. Let v e a* be f ixed.
Then there are positive constants 01, R, ð, A such that

when ll&#x3E;B and OTCl&#x3E;’/’.
Since this is no restriction, we shall assume that the R of the lemma is

equal to the R introduced in the definition of X ( § 11.2).
We are now ready to give the

PROOF OF THEOREM II.4.x. We shall consider the functions

x E X’, where n E Z+ tends to 0o and O(H) == Ie -it;,H&#x3E;W(H) dH. Here
a

(2n)rankx/2 dH is the Euclidean measure on a induced by the Killing form;
w e Co (a) is W-invariant and jm(H) dH = 1.

«

It is clear that Tn E C°°(X) and that Tn, 1fJ) - (T, y) for any y e C§° (X)
when n - 00. Hence theorem II.4.I will be proved if we show that T n
is a Cauchy sequence in Ooo(X’) as n - 00.

Now the mapping q;: K/Mxa+-+X’ defined by

is a diffeomorphism ([4], chapter X). Hence (p-1 defines a chart of .X’’ in

which Tn is independent of the first variable. Therefore to show that theo-

rem IL4.1 holds, it suffices to prove the following result:

THEOREM 11.4.2. A+ 3 a « Tn(a) is a Cauchy sequence in C°°(A.+) as n ---&#x3E; oo.
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PROOF. We are going to show the following, which obviously implies
theorem 11.4.2:

(17) If a,c-A+, there exists an open neighbourhood V of ao in A+ such
that V D a -* T,,,(a) is a Cauchy sequence in C°°(Y) as n c&#x3E;o. ,

If ao E A+, lemma 35 of [3] implies that there exists some j, Ijl,
such that B(ej, log ao) &#x3E; 0. Relabeling the roots if necessary, we may as
well assume that j = 1. To simplify notations, we introduce suitable linear
coordinates in a* and a* (see [7]). Let e1, ..., e, be the basis of a dual to
the basis «1, ..., a, of a*. If $ E a*, we write H, $j ej. Then (E1’ ..., El )

i;i

are linear coordinates of a*. If + in with 77 E a*, we put Cj $j +
+ i,7j. Then (C,, . Ci) are linear coordinates of a*. We shall write $’=
= ($z, ... , $,) and identify functions on subsets of a* or a* with their ex-
pression in the linear coordinates just described. Let d$l (resp. d$’) be the
Lebesgue measure in $,-space (resp. $’-space). Then d$ = y d$., d$’ for some

y E R+%(0).
An easy computation, using (11), (12), (16), shows that:

if a E A+.
Let v c- a* be such that Hv = - e1. I We are going to let $ take complex

values in the direction of v. Put

Assume that for some constant 0 &#x3E; 0, B(e1, log a) &#x3E; 0; this is certainly
true if a belongs to a small relatively compact neighbourhood of ao with
closure contained in A+.

Apply Stokes formula for fixed $’ to the domain {03B61 I Re C, C w, - r($) 
 Im C,  0} and let w tend to oo. If n is large enough, say n &#x3E;,no, (14),
(15), and lemma II.4.1 show that for all a E V’: T,,(a) = En(a) + .Rn(a),
where
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where the integration with respect to dC, (resp. d;l dqi) is performed on
the curve ’1 = 03BE1 - ic($) (resp. on (($i , qi ) , - c( $)  ?yi O}).

In fact we have also, when n &#x3E; n,,:

by Fubini theorem. Using (14) we may differentiate (19) and (20) any
number of times under the integral signs and the results are Cauchy sequences
in C( TT’ ) when n -+ 00.

Hence (17) is proved. At the same time, we get the formula

REMARK 1l.4.1. If rank X = 1, then X’= -XB{o}. Hence in this case
theorem IL4.1 implies that any nonzero element P of D(X) is hypoelliptic.
In fact P is even elliptic: see lemma 1.2 and remark 11.1.1.

IL5. - Products of rank one spaces.

On the singular set XnX’, expansion (11) is not valid. We describe

now a very special situation where it is however possible to use the ex-
pansion of spherical functions to show that condition (A) implies that T e

G C°’ (Xl(°)) .
We assume the following:

(21) G is the Cartesian product GlX...XGa (with the natural product la2v
 gi , ...? ga&#x3E; gl , ... , gl ==  gi gl , ... , ga gl &#x3E; a%d produ«t ma%ifoid stru«ture)(gl’ ..., ga)(gl’ ..., ga) == (glgl’ ..., 9’a9’a) and product mani f oZd structure
where Gj, 1 ,1 = q, is a real rank one connected noncompact semisimple
Lie group with f inite center.

Then of course G is itself a connected noncompact semisimple Lie group
with finite center. Let K (resp. K;) be a maximal compact subgroup of G
(resp. G; ). Since K’ _ .Ki X ... X .Ka is a maximal compact subgroup of G, K
and K’ are conjugate under an inner automorphism of G ([5], chapter VI) ;
hence K must be of the form K1x...xKa, where K; is a maximal compact
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subgroup of Gj. Let Ij (resp. 9j) be the Lie algebra of Kj (resp. Gj ) and let
g; = fj + p; be the corresponding Cartan decomposition. Then a = al X ... X aa
is a maximal abelian subspace of p, x ... x p(, if aj is maximal abelian in pi;
correspondingly A= A, x ... x A,, if Aj = exp aj. If $; e (a*),,, denote by
(E1, ..., Ea) e a; the map a:3 (HI, ..., Hq) f----? 2 $;H; . Then the restricted

roots of a are of the form (PI’ ..., Pq) with Pm == 6m;a; for all m and some j,
I  m, j  q. Here 6mi - 1 if m = j and 0 otherwise, and a; runs over the
restricted roots of aj. For a + we choose ai X ... X aa . Harish-Chandra in-

tegral formula CPl;(g) = f eil;-Q,H(fJk» dk shows that CPl;(g) fl wi,(g;) if =
K i;a

== (li , ... , So) and g = ( g1, ... , gg ) .
We are going to prove the following result:

THEOREM 11.5.1. Let G be as in (21). Put X = GIK where K is a maximal
compact subgroup of G. Then P E D(X) is hypoelliptic if the corresponding
polynomials p satisfies condition (A).

PROOF. We shall show that for each m e Z,, Lm Tn is a Cauchy se-
quence in C(XBfo}) as n - 00, if L is the Laplace operator on X cor-
responding to the metric defined by the Killing form. As a first step we
are going to prove the following:

(22) Lm 1 nIA is a Cauchy sequence in O(A"’{l}) as n --* c&#x3E;o.

We know already by the proof of theorem 11.4.1 that Lm TNIA is a

Cauchy sequence in C(A+). Hence it suffices to study what happens in a
neighbourhood of aA’B{I} in ABIll where a means boundary in A, or in a
later in this paper. (Recall that Lm T is W-invariant). If a’= (ai, ... , a’) E
E aA’B{l} we have a;(log a’) &#x3E; 0 for some j, I-  j  q, where (Xj E a; is the

simple root corresponding to the choice of A:’. We may assume that j = 1.
Using (3) and (16) we get an integral formula for EM T.IA - When belongs
to a small neighbourhood of a’ in AB11.1, we may use (11) to expand - el(al)
and give complex values Ci to $1, with Im a,, C,&#x3E;  0. (a,, Cl&#x3E; is computed
in ai.) The proof of (22) is then a repetition of that of theorem 11.4.2.

Now the mapping Exp: p - X defines a chart of .X in which Im T.1,
is a Cauchy sequence in C(aB{o})y because of (22). In this chart, LmTn
is ADG(K) -invariant. Therefore it is clear that theorem 11.5.1 will be proved
as soon as we know that the following lemma is true:

LEMMA 11.5.1. Let 9 == I + p be a Cartan decomposition of a real semi-
simple Lie algebra g and a be a maximal abelian subspace of P. Let G acnd K

correspond to g and I as usual. For each n E Z+, assume that f.,, c- C(pBfOl)
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is Ada(K)-invariant. If for n --&#x3E; 00, t,,, 1,, is a Cauchy sequence in C(aB{0}), I
then f n is a Cauchy sequence in C(pB{O}).

PROOF. Let us fix some notation: for each Z c- p, there exists one and

only one point of a +, which we shall denote by Z’ throughout all this proof,
such that Z’ = Ada(ko)Z for some k,, c- K (see [5], chapter IX). We are
going to prove that:

Since (AdG(k)Z)’ is independent of k E K, we may as well assume that
Yoea+.

As we have already used before, the map 99: KIM x a + -* Ad,,(K) a +
defined by 99(kM, H) = AdG(k)H for k E K and HE a+ is a diffeomorphism.
cp-l gives a chart of AdG(K) a + in which the map Y « Y’ is just the projec-
tion on the second component. Hence (23) is clear if Yo E a + .

If Yo E 3a+B{0}, we have:

where d denotes the distance on p defined by the Killing form. In fact,
if (24) is false, we can find C &#x3E; 0 and a sequence Y,,, --&#x3E;- Yo such that

d (Y., {A Y(,, A &#x3E; 0}) &#x3E;C for all n. We have Yn = Ada(kn) Yn with k. E K and
we may assume after perhaps taking a subsequence that kn -* k,, c- K as
n -+ oo. Hence Y( - Ado(ko) Yo which must belong to 41 since Y’ does.
But AdG(ko) Yo 0 {ÂYo, A &#x3E; 0}. Hence Yo and AdG(ko) Yo are different, and
both in ii+, which is impossible ([5], chapter IX). Therefore (24) is proved.

On the other hand B(Y’, Y’ ) = B ( Y, Y) -+ B(Yo, Yo ) if B is the Killing
form. This, together with (24), proves (23). Now let S be a compact sub-
set of p%(0) and S’ its image by the continuous map Y « Y’. Since In is
ADG(K) -invariant, we have:

for each n, r, and the right-hand side of (25) is arbitrarily small when n
and r are large enough, since S’ is compact. This proves lemma 11.5.1.

11.6. - The transversality condition (B).

We are now going to introduce a condition on XB(X’u {o}) which
allows to prove that T (given by (8)) has no singularities there when p
satisfies condition (A ) .
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Using pseudo-differential notation, it is natural to write le(D) 1-26 for
the distribution on a defined by fe i(,H&#x3E; Since lo($)1-2 has poly-

0*

nomial growth, le(D)1-26 is well defined as an element of 8’(a). Denote

by E the pseudo-differential operator on a defined (with x, p as above, p
satisfying condition (A )) by

z E C-(a), .H E a, where £($) =fe-i(e,H&#x3E; z(H) dH is the Euclidean Fourier
a

transform of z. Then for some J &#x3E; 0, E is a pseudo-differential operator
of type So,o in the sense of [14]. So if we denote by WF( f ) the wave front
set of f E Ð’(a), the results of [14] show that WF(Ef) = WF(f) if f E 8’(a).
Clearly the same equality holds also if f E 8’(a) since E is the convolution
by a distribution which belongs to 8(a) outside the origin. Therefore

-WF(Ble(D)I--b) = Wl’(Ic(D)I--6).
Let us introduce the following transversality condition if x E .ZB{o}. We

shall say that condition (B) is satisfied at x if the mapping

has no normal contained in -WF(le(D) 1-26).
Here « normal » is used according to the terminology of [14] : a cotangent

vector (H, $) e T* a is called normal to the mapping f : B - a if, for some
b E B, f (b) == Hand l’df(b), 8) = 0.

Notice that condition (B) at x is equivalent to the following, which we
call (B’) at x:

If x = k, ao - o with ko E .K and ao c ABfl}, the mapping K 3k H(ao k) E a
has no normal contained in -WF(Io(D) 1-26).

To see the equivalence, note that A (k,, a,, - o, kM) - H(ao ’k 0 ’ k), which
is equal to H(aok(aûlko1k)) ([3], page 294). Here k(ao lko ’k) denotes the
element of .K in the Iwasawa decomposition of ao 1 ko 1 k. Since the mapping
K 3 k F-* k(ao 1 ko 1 k) is a diffeomorphism of .K ([3], page 294), the mappings
k H- H(aok(aûlk;lk)) and k H- H(ao k) have the same normals, which shows
the equivalence of (B) and (B’). 

"

The reason for introducing condition (B) is the following theorem, in
which we keep the notations of the above paragraphs:

THEOREM 11.6.1. Assume that p satisfies (A). If (B) is satisfied at

x E XBlo}, then x 0 sing supp T.
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PROOF. Put F,(b) = A ( y, b ) if y E X and b E B. Since condition ( B )
is satisfied, theorem 2.5.11’ of [14] shows that we can define the pullback

by Fy when y E .X belongs to a small neighbourhood V of x. If it,,, (y, b) is
the smooth function

(with the notations of § 11.4), the proof of theorem 2.5 11’ of [14] shows
that we have for any y e C°°(jB):

in the C°°( V) topology. (Using the results of [5], chapter X, pp. 369 and 380,
we see that db is induced by a K-invariant Riemannian metric on B. Hence
db is a C°° density which allows to identify 0’(B) with the dual of C°°(jB)).

If we take y(b) = 1 for all b E B, then u,,,, ’ljJ) is the function Tn defined
by (16), , computed at y. So (26) shows that the sequence T n converges in
the C’(V) topology when n --&#x3E;- 00. The proof is complete.

On the other hand, we know by theorem IL4.1 that sing supp T n X’= 0.
Theiefore, using corollary I1.2.1, the following result is clear:

THEOREM IL6.2. Assume that condition (B) is satisfied at each x E

E .XB(.X’ V {o}). Then P E D(X) is hypoelliptic if the corresponding p satisfies
condition (A).

Below we shall give examples. We shall see that condition (B) may
be satisfied at each x E XB(X’u {a}) but violated at some y E X’. In this

case theorem 11.4.1 is really needed to get the conclusion of theorem II.6.2.
We shall have to compute le(D) ]-2 3 and therefore use the formula (see [7]) :

for It E a*, B being Euler beta function.
Since we shall also have to make computations involving Iwasawa de-

compositions, let us recall briefly how these decompositions arise (see [5],
chapter VI). One starts with a Cartan decomposition g = f + p of the

Lie algebra g of G, where f (reap. p) is the eigenspace corresponding to the
eigenvalue + 1 (resp. -1) of a Cartan involution.
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For a one takes a maximal abelian subspace of p, and one puts n == 2 ga,
- tXEE+

where ga {X c- g : [H, X] = a(H) X for all .H E a} for all restricted roots a.
Then G = KAN, where K, A, N are analytic subgroups of G with Lie
algebra a, n respectively. If g E G, its Iwasawa decomposition will be
written g = k(g) exp H(g) n(g); we have already met some of this notation.

If .R is a p X q matrix, we shall denote by Rik the entry which lies on
the j-th row and the k-th column. We shall write Rj for Bjj -

One can simplify the computations somewhat if one remarks that (B’)
is satisfied at each point x E XB(X’u {o}) if and only if the following holds,
where A’ = U sA+ :

sew

(B") There exists an open subset U of oA’’’{l} such that

(ii) Wl’(Ic(D) 1-2 6) does not contain any normal to the map K 3 k «

H(ak) E a i f a E U.

Indeed if s E W, there exists k, c- K such that s(a) = k1 aki 1. Therefore

the two functions of k, H(ak) and H(s(a) k), have the same normals.
We are now ready to give examples.
EXAMPLE 11.6.1. The rank 2 space X of type A I in Elie Cartan’s ter-

minology, that is X = SL(3, R)j80(3).
$L(3, R) is the group of 3 &#x3E;C 3 real matrices with determinant equal to 1,

and SO ( 3 ) is the compact subgroup of orthogonal matrices with determinant
equal to 1.

We are going to show that condition (B") is satisfied. Hence theo-

rem 11.6.2 holds for this space.
As shown in [5], chapter X, we may take O(Y) = -tY as a Cartan

involution for the Lie algebra of SL(3, R), and correspondingly for a we
choose the set of diagonal 3x3 matrices .g whose trace is equal to 0. We
may choose the maps a12 (g) = gl - H2 , (X13(H) = 2Hi + g2 , oc23(.g) = HI +
-f- 282 as the set E+ of positive restricted roots. We have ma = 1 if a e Z+

and a+ = {H E a, - Hi j2  H2  H,}.

n2= 2013Ei+ 2E2 ?1. =- E1 + e2 , 1 where now $1, $, are the coordinates of $ in
the basis (X12, (X23, C is a strictly positive constant and th means hyperbolic
tangent.

If f(t) is the inverse Fourier transform i 6"t th A dh of th (in the distribu-R

tion sense), we get t E 8’(R) and f(t) = 2i p.v. llt + /i()y where p.v. denotes
principal value and 11 is analytic on R.
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If Q denotes a certain third order differential operator with constant
coefficients in the variables Hi, H,, we have Ic(D)/-2ð = Qt2 , where

In the last formula, all pullbacks and products are well defined (see
for example chapter II of [14]). We get by an easy wave front set

computation:

where T* a is the fiber of T*a at 0 E a and N(Y(H,, H,) = 0) denotes the
conormal bundle of q,(Hl, H2) = 0.

We want to show that the map SO(3) D k  H(ak) has no normal
contained in Wl (le(D) 1-26) when a E U, for some TI as in condition (B").

First we have to compute H(ak). Denote also by 0 the isomorphism
induced on SL(3, R) by the Cartan involution 6(.Z) = -’X of its Lie algebra
(see [5], chapter VI).
We have 0(g) = tg-1 if g E SL(3, R). To compute H(ak), we write the

Iwasawa decomposition of ak, that is ak = k(ak) exp H(ak) n (ak); then 8(ak) _
= k(ak) exp (- H(ak)) 0 (n(ak)), whence

Since k E SO(3), we have k-i = tk. On the other hand one checks easily
that nj(ak) = 1 and niz(ak) = 0 if j &#x3E; I since n(ak) E N. Then (28) gives:

We take U = {a c- A, a., = a2=F 1} = fexp H, HEa, HI= H2=F 0}.
If s E W is the reflection with respect to the root CX13, s transforms {H E n,

H, = g2  0} into {H E a, N1= - 2g2 &#x3E; 01. Hence U u S U:J aA+B{11.
To show that (B") holds, it suffices to show that, when a E U, we have:

where dk denotes the differential with respect to k when a is fixed.
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Using (29), we get when a = exp jEfe!7:

from which (i), (ii), (iii), (iv) follow easily.
Remark that on the other hand if .g1= 0 =A H,, (ii) is violated for

a = exp H, as a simple computation shows. Note that a - o E X’. So we

are in the situation referred to immediately after theorem 11.6.2.

EXAMPLE IL6.2. The rank 2 space X of type A II in Elie Cartan’s

terminology, that is X = SU*(6)lSp(3).
S U*(6) is the group of 6 X 6 complex matrices with determinant equal

to 1, of the form where A and B are 3 X 3 complex matrices.

Sp (3) = S U* (6) r) U(6), where U(6) is the group of unitary 6 &#x3E;C 6 matrices.

We are going to show that condition (B") is satisfied. Hence theo-

rem II.6.2 holds for this space.
As shown in [5], chapter X, we may take 0(Y) = - ’Y as a Cartan

involution for the Lie algebra of SU*(6).
Accordingly, for a we take the set of 6 X 6 matrices of the form

where Z is a real diagonal 3x3 matrix with trace equal to 0.

We may choose the maps cxij (H) = Zi - Zj, I i  j  3, as the set E+ of
positive restricted roots. Their multiplicity is equal to 4 and a+= 1,H:
- Zi/2 C Z2 C Z,,}. One sees easily that N is the set of complex 6 X 6

matrices of the form where U, V are complex 3 X 3 matrices

with th = 1, 7,= 0, Uik=Vjk= 0 for kj.
Since ma is even for each a E E+ , ]c($) ]-2 is a nonzero polynomial func-

tion and W-E (le(D) 1-2 6) = To aBo.
Reasoning as in example IT.6.1, we see that, to check condition (B"),

we may take U = exp {H E a, Z1= Z2-=1= 0}’ Using (28), where now 6(g) =
= (tg)-l since g E S U* (6), and k-l = ’k since k E U(6), we get, if H(ak) =
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From these formulas, one sees easily that the map Sp(3) 3 k « H(ak)
is of rank two when H(ak) = 0 and a E U, so that condition (B") holds.

REMARK 11.6.1. P E D(JT) may be hypoelliptic as soon as p satisfies

condition (A), even when condition (B) is violated on .ZB(-37u {o}). Take

for example X = (S U* (4) x S U* (4)) / (Sp (2) x Sp (2)), with obvious definitions
in view of example 11.6.2. On the products we put the product group law
and the product manifold structure. One can check that W-P’(IC(_D)1-26) -
- Tga%0, and that condition (B’ ) is violated at all points a-o with a =
- ( al , 1) E A, al:A 1, if 1 denotes the neutral element of S U* (4). However
theorem 11.5.1 applies to the space X.

III. - Gevrey hypoellipticity.

We are now going to make a study of Gevrey hypoellipticity which is
parallel to our study of hypoellipticity in section II.

We shall consider operators P E D(X) for which the corresponding p
satisfies condition (As). Since p can be viewed as a function on a*, the
precise meaning of (As) is that I p (a ) ($) 1 / lp (c) I  C 1 $1 - I’ll’ for some constant C,
when -+ 00, where p(’) is computed in some linear coordinate system
( e1, ... , El ) of a*.

Recall also the definition of the Gevrey class G$ : if TI is an open subset

of lEgn and u E C’(U), u is said to belong to the Gevrey class Gs( U) (s &#x3E; 1)
if for every compact subset K of U, there is a constant 0 K such that
ID,Ilu(x)l  Clol +’(Joel !)’, x E .g, for all multi-indices a. The definition is in-

variant under an analytic change of variables, so now if Y is an analytic
manifold, Gs( Y) is defined by means of local coordinates. Gl( Y) is the set
of analytic functions on Y.

If u c- 9)(Y), we shall denote by sing supp Gs(u) the complement of

the largest open subset of Y where u c- G,,, and by WFG,(u) its GS wave
front set in the sense of Hormander (see [15], where -WFG, is denoted by
WFL with Ek = (1 + k) ") -
A differential operator will be called Gs hypoelliptic if sing supp Gs(Pu) =

- sing supp Gs(u) for all u E 0’(Y). We shall write G’O" instead of Gs n Co-.

111.1. - The necessity of ( As) .

As in section I we shall sometimes use the symbol 1.1 ] to denote some
fixed norm on a*. We have the following result if P E D(X) :
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THEOREM III.1.1. Let S be a not empty open relatively compact subset
of X. Assume that for any v E D’(S) such that Pv = 0 in S, one has v E G8(8).
T hen p satisfies condition ( A s ) .

PROOF. We shall follow closely the proof of the corresponding Rn theo-
rem given in theorem 7.3 of [17], with modifications due to the structure
of D(X).

If I = rank X, there exist Q; E D(X), 1 c j c l, corresponding to algebra-
ically independent homogeneous polynomials q; E I(ac) of degree m; &#x3E; 0, such
that Q1, ..., Qz and I (the identity operator) generate the commutative
algebra D(X) (see [3]; [4], chapter X). If L-t c-Zl, we write Q" = Q i 1... Qi i
if L-t 0 0 and QO = I. Note that m; is the order of Qj and put m, (XI =

We topologize the space N(S) = {v E Ð’(S), Pv = 0} with the semi-norms

where V runs over the compact subsets of S, and r E Z+B{0}. Since N(S) c
c G,,(S), it follows that Ov,,(I)  oo if f E N(S). One checks easily that witli
the topology defined by those semi-norms, N(S) becomes a Fréchet space
whose topology is finer than that induced by L- (S) (equipped with its
usual topology).

In view of Banach theorem, both topologies coincide. So if we fix V,
then, for any r, there exists a constant C, and a compact subset S,. of S such
that for any v E N(S) :

There is no restriction to assume that o E S, since P is G-invariant. If

we take v = ggc, C E ai, such that p(C) = 0, we deduce from (30):

with some constant B’1’ depending on r; here qj is the polynomial such
that Q;q;, == qJ(I)Wi’ and we write Im C for n if C =:: $ + in with 1’ 7 E a*.

Adapting the proof of lemma 7.4 of [17], one shows easily that there
exist two positive constants C’ and C" such that

f or all R &#x3E;0.
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From (31) and (32) one deduces that Iqj()11/mJOr(1 + I Im C I) s + 1/’ for
all C c a* satisfying p(C) = 0.

Here 0, is a constant depending on r. Hence corollary 1.2 gives the
existence of a constant C" depending on r such that

for all C E a* such that p(C) = 0.
This means that p satisfies condition (A,+ llr) for any r E Z+ ",{o}, hence

condition (As) since {t, p satisfies condition (A,)} is a closed half-line (see
e.g. theorem 7.1 of [17]). The proof is complete.

From theorem III.1.1 we get obviously:

COROLLARY III.1.1. I f P c D(X) ig Gs hypoelliptic, the corresponding p
satisfies condition (As).

We are now able to characterize the analytic hypoelliptic elements of
(g) .

THEOREM 111.1.2. P E lm(X) is analytic hypoelliptic if and only it it i;,

elliptic.

PROOF. (a) The manifold X is analytic and one can easily see that the
elements of lm(X) are differential operators with analytic coefficients because
this is true for the elements of D,,(G). Hence if P E ID(X) is elliptic, it must
be analytic hypoelliptic (see [13], chapter VII).

(b) If P E D(X) is analytic hypoelliptic, theorem III.I.I implies that
pm(1) # 0 for 0 # $ E a*, if p = 2Pm-i with the notation of section I. Then

0 - i - m
lemma 1.2 implies that P is elliptic.

Thus (As) is a necessary and sufficient condition for Gs hypoellipticity
on .g when s = 1. So the problem to describe G, hypoellipticity in terms
of condition (A,) is solved when s = 1. Therefore we may assume that

s &#x3E; 1 in what follows, although this is not necessary for the validity of the
results we are going to prove. But if s &#x3E; 19 G, is not quasi-analytic so it
contains functions with compact support. This will simplify proofs in para-
graphs IIL 2 and 111.6.

111.2. - Study of the parametrix 13.

As in 11.2 we consider the distribution T given by (8) and the cor-

responding operator 13. Recall that, due to the existence of canonical C°°
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densities dg and dx on G and X, we may identify 0’(G) with the dual of
Co ( G ) and D’(X) with the dual of 0’(X).
We are going to prove the following result:

THEOREM 111.2.1. Assume that sing supp G,(T) c {o}. Then

sing supp G,, (73f ) c sing supp G, (f ) f or all f E &#x26;’(X)

PROOF. As said earlier, we assume that s &#x3E; 1. Let f belong to G,, in a

neighbourhood of g.o, where g c- G.
Take q, v c- G’O")Ik,,-CvL Ij with q equal to 1 close to g. 0; then

Choose V with support contained in a small neighbourhood of g - o; then
vt c- G’Om"(X). Since for each x, y c- G, the map y F-* y-"x is a diff eomor-
phism of G, we may apply theorem 4.1 of [15] to F’-G-V-f §5(%% * ’1’), which
gives that fli# E Gs ( G) . Hence gg’Gipf E Gs(X).

Assume that y = 1 in an open neighbourhood V of g.o, and that

supp 99 c V. If S is a compact neighbourhood of g - o, contained in V, one
sees easily that there exists a neighbourhood V’ of o such that, for any
x, y E G, one has n(y) E V as soon as x(r) E Sand n(y-"x) E V’. This implies
that 99 ((l - V) X FT) = 0 if F c- C-(X) has support contained in a small0
neighbourhood of o. 

’

But then 99’6(1 - V) 99 V) X (1 - F) T). We choose such a F
in Gsomp(X), equal to 1 in some neighbourhood of o; then (1- .I’) T belongs
also to G,(X).

So another application of theorem 4.1 of [15] shows that

whence cpb(l-1p)f E G,(X).
We conclude that ql3f E Gs(X). The proof is complete.
We have seen in 11.2 that PT - 6 E C’(X). A simple computation shows

that in fact PT - 3 E G1 (.X) ; therefore f X (PT - 6) E 7i(.Z) for any f E 8’(-Z).
Combining this with theorem III.2,I, one gets immediately the

COROLLARY 111.2.1. 7/ T given by (8) satisfies sing supp G$(T ) c {o}y
then P is G 8 hypoelliptic.
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Ill.3. - Study of T when G is complex.

When G is complex we are going to prove the converse of corollary III.1.1.
We keep the same notations as above.

THEOREM III.3.1. Assume that G is complex. If p satisfies condition

(As), then P is G, hypoelliptic.

PROOF. Put R = - L - e, Q&#x3E;, where L and (g, g) have the same
meaning as in the proof of theorem II.1.1. By theorem 11.3.1, we already
know that sing supp T c {o }. We are going to show the following:

(33) For any compact subset S of XB{ol, there exists a constant C &#x3E; 0

such that

In fact, since .R is an elliptic differential operator with analytic coef-
ficients, the theorem of elliptic iterates ([16], p. 55) shows that (33) implies
that sing supp G,(T) c {o}.

The proof of (33) is just a combination of the classical corresponding
proof of the R" case (see [17], theorem 7.4) with arguments already de-
veloped in 11.3, so we may be rather brief. Clearly (33) is a consequence
of the following:

(34) For any compact subset S of X, there exist positive constacnts C, 01, O2
such that the following holds : for each m E Z+ there exists N E Z+ such
that NC,m+ C, and Id 2N -RmT, u) c C-+1(2m!)sf lu(x) I dx, for all
u E 0;(8).

Here d is the distance to o as in 11.3.

Let us prove (34). Arguing as in the proof of theorem 11.3.1 and using
the same notations as there, we find that

Let el, ... , et be the basis of a* defined in the beginning of 11.3. It is

clearly orthonormal for the Killing form. If $ E a*, we write $ = Y E ei
and identify a* with R’ via the map $ F--* (E1’ ..., 7 $,). We also identify func-
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tions on a* with the corresponding functions on R. Then

With the identification described above, the right-hand side of (35) is

the sum of zm+N terms of the kind

strictly positive integers smaller than or equal to I.

We integrate by parts. Using formula 7.5 of [17], p. 404, we see that
each term of type (36) can be written as a sum with

where Do = D2N+l === I (the identity operator) and D, = i-1 for some r
if 1 ctc2N.

With the usual multi-indices notation in the E1, ... , variables, we
put E_ 03C0c(i) kl ... 03BE2km, where P E 7}+. Since p satisfies condition (As), esti-
mate (7.8) of [17], p. 406, gives the existence of a constant 01 such that
for all (X E Zl+ and all E sUPP X:

where the summation is extended to all a’, a" such that a’ -f- a" = ce and

(X; fJi for j = 1, ..., l, D; == i-I/XI altXljal... 8$?’ and )$] is the Euclidean norm
in R’.

.Also, with some constant C2 independent of a and fl, we have )Dgq($) ) 
 2 ’#’ C§"’ + ]a] t if $ e supp dx (see [17], p. 406). Therefore one checks easily
that for some fixed constant 0:
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Fix s &#x3E; 0 and choose N E Z+ such that

This implies that for some fixed constant C3, one has
c C3 and (2N)!  C3 +1((2m) i)s. Therefore (34) is a consequence of (37) and
(38). The proof is complete.

111.4. - Study of T in the set X’ of regular points.

We give now a result similar to theorem ][1.4.1.

THEOREM 111.4.1. If p satisfies condition (As) and T is given by (8),
one has sing supp G,(T) n X’= 0.

PROOF. We know already by theorem 11.4.1 that sing supp T n X’= 0.
In view of the theorem of elliptic iterates ([17], p. 55), y it is sufficient to

show the following, where R = -.L - Q, f2 &#x3E; as in the proof of theorem 111.3.1:

(40) For any compact subset S’ of X’, there exists a constant C such that

Using once more the diffeomorphism from K/Mxa+ onto X’ which
sends (kM, H) to Exp AdG(k)H, we see that (40) is a consequence of the

following:

(41) For any compact subset S of A+ there exists a constant C such that

Of course, to prove (41), it suffices to show that any point ao of A+ has a
compact neighbourhood VI in A+ such that (41) holds with S replaced by V’.
Using the notations of the proof of theorem 11.4.2, we may assume that
with some strictly positive constant C, B(e1, log a) &#x3E; C when a c-VI. Since p
satisfies condition (As), we may apply lemma 11.4.1 with the same s as in
condition (As). Repeating the proof of theorem 11.4.2 for -B----T, we find
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easily that when with

where (C,, $’) denotes the vector

Denote by T Euler gamma function. Then we get with various positive
constants C independent of m and some positive constant R’, also indepen-
dent of m :

This proves (41) and completes the proof of the theorem.

Ill.5. - Product of rank one spaces.

In this paragraph we assume that G satisfies condition (21). Then the

following holds:

THEOREM 111.5.1. Let X be as in theorem 11.5.1. Then P E D(X) is G 8
hypoelliptic if the corregponding polynomial p satisfies condition (As).

PROOF. In view of corollary 111.2.1, it suffices to show that

sing supp G$(T ) c {o}
if T is given by (8).

We already know by the proof of theorem 11.5.1 that sing supp T c {o}y
and we are going to show that (33) holds.

First we prove that the following is true:

(42) For any compact subset S’ of A%(I), there exists a constant C such that

To show that (42) holds, we may, in view of (41), y assume that S’ is a
small neighbourhood of a point of aA+B{:L}. Then an obvious refinement
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of the proof of theorem 11.5.1 (that is estimates similar to the ones of .Fl
and .F’2 in the proof of theorem 111.4.1) gives (42). We omit the details.

Now if Ye)), we define Y’ E a + as in the proof of lemma 11.5.1. In

view of the continuity of the map Y « Y’ proved in the course of that
lemma, (42) implies the following:

(43) For any compact subset S" of p%(0), there exists a constant C such that

Clearly, y (33) is a consequence of (43). The proof is complete.

111.6. - The transversality condition ( Bs) .

Now we are going to make a study similar to that of 11.6.
Using the canonical C°° density dH on a, we identify 0’(a) with the

dual of 0’(a).
Define

if z e 8(a). Then if E is as in II. 6, we have Ez = t * z, where * denotes
convolution on a.

First we prove the following lemma:

LEMMA 111.6.1. Assume that p satisfies condition (.As). Then WFGs(Eu) =
= WFGs(u) if u e S’(a).

PROOF. If p (D) u(.H) = ) IWlfeit;,H&#x3E;p(E)û(E)dE, one hasp(D)Eu-uEGl(a)
a*

when u e §’(a). Hence yY.FG$ ( u ) c WFGs(Eu). Note that if s = 1, the lemma
is an immediate corollary of theorem 5.4 of [15], so we assume that s &#x3E; 1.

For each H e a, we may identify T;(a) with a* in a canonical way.
Assume that (Ho, Eo) ft WFGB(u). Then if q e G$°mp(a) has its support con-
tained in a small neighbourhood of No ? there exist a conic neighbourhood V
of $° and a constant C &#x3E; 0 such that for all N E Z+:

If 1jJ E G""(a), we have 1jJEcpu = ’ * ( f cpu), where * now denotes con-
volution on a*. Hence estimates as in the proof of lemma 3.3 of [15] show
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that

for some C &#x3E; 0 and all N c- Z,, if V’ is a closed cone contained in V.

Choose 1jJ such that cp = 1 in a neighbourhood of supp y and denote
by F the distribution kernel of 1jJE(l - 99).

It is easy to see that FE 8 (a x a). Hence we may write, when UE 8’(a),
(X E ZZ+ and H E a:

for some r, t E Z and 01&#x3E; 0. Here of course fl c Z’ ; Dg means i-l-lal-il
laH’-... a.Hi where (HI, ... , gl ) are linear coordinates of a; similar defini-
tion for Dg Dg..

Now there exists a constant C such that the right-hand side of (45) is

bounded by oltXl+I(I(X/ !)8 for all OCEZz+ and H E a: one way to see it is to

deform the domain of integration in the definition of f as we did for T in
11.4 and 111.4. Therefore tpE(l- 99) u E Gs(a).

Together with (44), this shows that (HO, e°) WI’G,,(Eu). The proof is
complete.

We introduce now the following condition, similar to condition (B) of

11.6.

We shall say that condition (Bg) is satisfied at x c-,XB{o} if the mapping

has no normal contained in WFGs(/c(D)/-2ð).
Arguing as in 11.6 one sees that condition (Bs) is satisfied at each point

r e lt%(X’W {o}) if and only if the following holds :

(B;) There exists an open subset U of 8A’%(1) such that

(ii) WFGs(lo(D)I-2ð) does not contain any normal to the map K3kt-+
- H(ak) E a i f a E U.

We have the following result:

THEOREM 111.6.1. Assume that p satisfies (As). If (Bs) is satisfied at

x E XB{o}, then x 0 sing supp Gs ( T ) .
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PROOF. By theorem 11.6.1, we know already that x 0 sing supp T. Then
it suffices to combine theorems 3.10 and 4.1 of [15] and to use lemma 111.6.1.
We omit the details.

Using theorems 111.4.1 and 111.6.1, and corollary 111.2.1, we get the
following result:

THEOREM 111.6.2. Assume that condition (Bs) is satisfied at each x E

E XB(X’U {o}). Then P E D(X) is Gs hypoelliptic if the corresponding p
satisfies (.As).

EXAMPLES. The spaces S.L(3, R)/SO(3) and SU*(6)ISp(3) (see IL6)
satisfy condition (B") for any s&#x3E;l. In fact, if s&#x3E;l, -WFG.(Io(D) 1-2 6) c
c (Tg aE0) U N(H1 = 0) u N(H2 = 0) u N(81-f- H2 = 0) for the first space
and -WFG.(IC(D)1-2,6) c To aB0 for the second one. Hence theorem 111.6.2

applies to those spaces.
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