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Antilocality of Complex Powers
of Elliptic Differential Operators with Analytic Coefficients.

OTTO LIESS

1. - Introduction.

1. Consider a real analytic, connected, n-dimensional manifold, and
let T: C§°(X) - C-(X) be a linear operator. We say that T is antilocal, if
supp f u supp T f = X, for every f E Co (.X), f -~ 0. Interesting examples of
antilocal operators appear in theoretical physics. Thus H. Reeh and S. Schlie-
der have proved in [10] that the operator (n%21 - 4 )1’2, 4 the Laplacian,
is antilocal. This result has been extended by R. W. Goodman-I. E. Segal [4],
Murata and K. Masuda [8], who showed that arbitrary nonintegral powers
of m2I - 4 and square roots of very general second order elliptic operators
are antilocal.

In this paper we prove analoguous results for complex powers of general
elliptic operators with analytic coefficients. The main result of the paper
is theorem 1.3, and its variants.

2. Complex powers of elliptic differential operators are defined in two,
not completely equivalent, fashions, and before we can state the results of
this paper, we must briefly recall these definitions.

Thus consider p(x, D) an even order elliptic linear partial differential
operator with real analytic coefficients defined on X. In a local coordinate

system, p(ø, D) == ~ a,, (x) D", D" = i = 
"

for some, locally defined, functions a" , which are real analytic. Real analytic
functions may have, if not otherwise specified, complex values. The fact

that p is elliptic means that == ~ the principal symbol,
lal=m

which is a function defined on -7,*Xl is ~ 0 0. In a fixed coordi-

nate neighborhood, we will also use the notation

Pervenuto alla Redazione il 2 Agosto 1980.
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In order to speak about complex powers of the operator p, we must
suppose that the range of ~): T*X --&#x3E;- C avoids some halfray in the
complex plane C. Without loss of generality, y we will assume that ~)
avoids R_, the negative part of the real axis. It is then possible to define
for every C a C°° function p’(x, $), $ =A 0, by

where - a  arg if t E C. Moreover, for every zo there is a coordinate
neighborhood V and M&#x3E;0 such that p(x, ~) ~ R_ for x E V and I ~ &#x3E; M.
It follows that pz(x, ~), the principal value of the z-th complex power of p,
defined in a similar way with p~, is a C°° function for x E TT and ~~~ &#x3E; M.

3. The first method of defining complex powers of p (x, D) has been
studied by R. T. Seeley [14] and T. Burak [3]. Suppose that .X is a real ana-
lytic compact manifold, and consider p(x, D) an elliptic differential operator
defined on X, which has real analytic coefficients (for the moment, we may
suppose that X, and the coefficients of p are just C°°). Suppose that 
does not have real negative values, and suppose that 0 is not in the spectrum
of the closure )5 of p in In this case it is possible to choose a constants
such that the set (- oo, -1 ) u (I E 0; IÂI I  11 is not in the spectrum of Q15,
and such that still does not take real negative values (cf. e.g., [14]).
We assume that ~O = 1, and denote by ll. the contour (- oo, -1- i0) U
U S U (-1 + i0, - oo), where S is the unit circle in C, with initial point
at -1 and anticlockwise orientation. Finally we set for Re z  0,

(p 2013 A)-’ is here the resolvent of p. The integral makes sense in view of the
estimate Â)-ll1  (cf. [14]). pz(x, D) is called the z-th complex
power of p. It is a remarkable fact, proved in [3], [14], that the operators
pz(x, D) are pseudo-differential operators. By functional calculus, it follows
that pxl (x, (x, D) = pZl+ZI(X, D) and that p-1(x, D) = (p(x, D))-’, such
that we may extend the definition of pz(x, D) to all z by setting pz(x, D) =
pk (x, D) pz-k(x, D), where the natural number k is chosen, for Re z ~ 0,
such 0.

4. Another approach to complex powers has been used by M. Nagase-
K. Shinkai, [9]. Using only symbolic calculus, they proved the following
result:
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PROPOSITION 1.1. Consider U eRn, an open domain, and let p (x, D) =
’I - be an elliptic partial differential operator (p may have Coo

coefficients, for the moment), de f ined on U, such that pm(x, ~) ~ .Z~_, 0.

Then there are entire analytic functions z - C,,7, and symbols p,,, E Rn),
such that the symbols 

°

have the following properties

the p(z; x, ~) are uniquely defined by the properties (3), (4),
(5), (6), i f suppose them of form

for some finite numbers N(j), some entire OJ,k and some Pi,k E U, 

Here R") is the standard space of symbols of pseudo-differential.
operators, and all relations from (3) to (6) are in the symbol algebra.

We may now introduce pseudodifferential operators associated with

the symbols p(z; x, ~), and call the resulting operators p(z; x, D) again
complex powers of p(x, D). In view of the unicity in proposition 1.1, the
definition of p (z; x, D) can be extended to the case of C°° varieties (we always
assume varieties to be paracompact.) No global conditions are needed this
time, but instead of p(zl; x, D)op(z2; x, D) = p(zl -~- Z2; x, D), we only obtain,
in the general case, D)op(z2; x, D) = p(zl + z2; x, D) + z2),
where K(z,, z,) is an integral operator with C°° kernel.

5. We cannot expect that an operator T which is defined only up to
integral operators with C°° kernel is antilocal. Therefore we must restrict

our attention in the sequel to the category of analytic pseudodifferential
operators, introduced in [2], [13]. For this purpose we need the following
proposition:
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PROPOSITION 1.2. Suppose that p(x, D) from proposition 1.1 has analytic
coefficients, and let p(z; x, ~) be the formal sum from (2). p(z; x, ~)
is a formal analytic symbol on ( U, .RnB~0~), in the sense of L. Boutet de Monvel.

Proposition 1.2 will be proved in § 3. In view of this proposition, we can
define for every an analytic pseudodifferential operator p(z; x, D):
e~( ( U) ~ e~( ( U), which is associated with the formal analytic symbol p (z; x, ~).
The definition of formal analytic symbols and of the analytic pseudodifferen-
tial operators associated with such symbols, will be recalled in § 2. Let us

note however, that when p has constant coefficients, when p is elliptic,
and when pm(~) ~ R- then we can define D) f by

and get an analytic pseudodiflerential operators associated with p(z ; x, ) =

P-1~(~), if M &#x3E; 0 is suitably chosen.

6. we can now state the main result from this paper.

THEOREM 1.3. Consider U c Rn an open domain, and let p(x, D) =
= I aiX(x) DiX -’ be an elliptic partial differential operator, with coefficients aa

which are real analytic functions in U, and such that -R- for x E U
and ~ E Consider z E C such that mz is not an even integer, and let
p(z ; x, D) be an analytic pseudodifferential operator associated with the formal
analytic symbol p(z; x, ~). Then p(z; x, D) : ~o ( U) ~ eOO( U) is antilocal.

lVloreover, if f E C- U) is such that supp f c {x; for some XO E U, and
if there is 8 &#x3E; 0 and a real analytic f unction h, defined on Ix - xo C ~ such
that h = p (z ; x, D) f on Iw - wOI C E, xn  x.’I, then it follows that xo 0 supp f.

Theorem 1.3 will be proved in 9 5. All other results on antilocality which
will be considered in this paper, are consequences of theorem 1.3.

THEOREM 1.4. Consider X a connected real analytic manifold, and p (x, D)
an elliptic partial differential operator of order m on X with real analytic coef-
ficients. Suppose that pm(x, ~) 1= R- and let z E C be such that mz is not an

even integer. Suppose further that p(z; x, D) : e~(X) -¿. is a given linear
operator which is an analytic pseudodifferential operator associated with the
formal analytic symbol p(z; x, ~) (c f . definition 2.9 below). Then p(z; x, D)
is antilocal. Moreover,, if g is a real analytic functions on X and f E e;,(X),
then
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Theorem 1.4 will follow from results proved in 9 5.
Finally, we want to transfer theorem 1.4 to the case of exact complex

powers, studied by R. T. Seeley and T. Burak. This is possible if we use
the following result:

THEORE&#x3E;i 1.5. Consider X a compact, analytic, mani f otd and p(x, D)
an elliptic partial differential operator of order m, with real analytic coeffi-
cients, such that n R- = 9~, and such that 0 is not in the spectrum
of the closure p of p in Denote D): the operator
associated by formula (1) with p. Further let U’ be a neighborhood of some
point XO E X, x : U’- I~n an analytic coordinate system on X, which maps U’
on .Rn and denote p(z; x, D) an analytic pseudodifferential operator, defined
on e;;’(Rn), associated with the formal analytic symbol p (z; x, ~), which one
obtains from proposition 1.2, applied to the differential operator D) f =
= ( p (x, D) f o x) o x-1. Then for every f E C- U’) there is a real analytic f unc-
tion g on .Rn such that (pz(x, D) f) ox-1- p(z; x, D)( f ox-1) = g.

Thus, if X is connected, and if mz is not an even integer, then pz(x, D)
is antilocal.

Roughly speaking, theorem 1.5 is the analogue in the analytic case of
some results proved in [3], [14] for the C- case. Since we have not found

this result in the literature, we will briefly sketch a proof for it in 9 6 below.

7. In concluding this introduction, we now want to explain, considering
a very simple example, some of the ideas involved in the proofs from this
paper. Thus we take n = 1 and consider the operator p(D) = D2 = - 
We want to show that the square root of p(D), defined on e;’(R) by

f = (ix~) d~ is antilocal. In order to do so, we do not

try to give the shortest proof, but rather show how one can prove this fact
with the arguments used below. Note that is an operator of the type
considered in theorem 1.3.

We start with some elementary remarks.
Let us then choose f E C;;’(R), f # 0. Our first remark is that IDIF is real-

analytic outside supp f. Thus supp IDIF contains any component II of

RBsupp f on which IDIF does not vanish identically. In particular, supp IDIF
therefore contains at least one unbounded component from .RBsupp f. In

fact, otherwise were an entire analytic function, which it is not.
Let us now show that both unbounded components from RBsupp f

belong to suppIDIf (I learned the following simple argument from prof. W.
Littman). To make a choice, assume for example that supp f c fx E .R; x ~ 0},
that 0 E supp f and that we want to show that R- is in supp IDIF. Assume
then, by contradiction (cf. the « first remark ») that IDIF = 0 for x ~ 0.
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Then however ~~~ f (~), defined on R, would have an analytic extension to the
complex upper half plane, which it has not.

We have now proved that supp contains both unbounded components
from .RBsupp f. The same argument also almost shows that supp IDIF
contains any bounded component U of R"’supp f. For, let, e.g., U be of
form U = {x E  1 ~ and write f = f 1 --f - f 2 with supp f 1 c ~x E .R ;
x -1, lesupp f2. Then 

and both and are nonvanishing analytic functions on lxl  1.

However, we cannot exclude a priori that - -IDff2! Therefore, in
order to prove the antilocality of ~DI we must prove a little more than just
that 0 for x C 1, namely that the restriction of IDlf2 to x C 1 has
no real analytic extension accross x = 1. After a translation it thus suffices
to prove:

LEMMA 1.6. Consider gEe;’(R), Suppose that

there is E &#x3E; 0 and a real analytic f unction h defined on ~x~  8 such that

T hen 0 ~ supp g.

PROOF OF LEMMA 1.6. Let g, be as in the statement of lemma 1.6
and denote by ~== IDlg - Dg - h. Thus g’ is defined for x ~  8 and supp g’ c
c ~x E R; x ~ 0}. Now

so IDIG - Dg, and therefore also g’ has an analytic extension to a set of form
fx e C ;  E’}, for some 8’  8. This is only possible if g’ = 0 for
Ixl  E’. Therefore

We conclude that Dg has an analytic extension to {0153 E C ; Im 1 x  E’l,
which implies, since supp g c (z E R; ~&#x3E;0}y that Dg = 0 for Ixl  E’. This

gives g = 0 for lxl  E’, whence the lemma.
We have now proved the lemma, and this also brings the proof of the

fact that ~D) is antilocal to an end.
The arguments used to prove antilocality for general complex powers

p(z; x, D) will be parallel to the above ones. Again we must know that
p(z; x, D) f is real analytic outside supp f. This will follow if we show that

p(z ; x, D) is an analytic pseudodifferential operator. Once we have proved
this fact, the type of antilocality which we study in this paper (antilocality
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« modulo real analytic functions ») is a local property of just one point from
the boundary of supp f for every component of Rn",supp f. This allows us

to transform the case of bounded components from Rn",supp f to the case
of an (or, « the », if n &#x3E; 1), unbounded component from Rn",supp f by means
of an analytic change of coordinates. In this way we can avoid some diffl-

culties which come from the fact that the methods of Fourier analysis are
hard to apply in the case of holes. The various extensions to the complex
upper or lower half plane, used in the proof of lemma 1.6, will then be replaced
by wave front set arguments. Finally let us recall the fact that during the

proof of lemma 1.6 we have twice tested the operator against the ope-
rator D. In the general case, when we consider p(z ; x, D) we must at first
introduce an operator which can replace D.

2. - Preliminaries about analytic pseudodifferential operators.

1. We briefly recall here some facts concerning analytic pseudodiffe-
rential operators. This is necessary since we cannot use them in their most

standard form as presented e.g. in [13].
First we need some notation. If is a compact, E &#x3E; 0, l1f &#x3E; 0,

and 1-’ c RnE(0) is an open cone, then we denote by Ke,M,r == {(~ C) E C";
distance

DEFINITION 2.1. Consider U c .Rn a domain and r e an open
cone.

a) is the set of all functions a(x, ~) from such

that for every compact K c U and for every open coneF’eer there
are E &#x3E; 0, M &#x3E; 0 and c &#x3E; 0 for which a(x, ~) extends to an analytic function
on which satisfies la(z, ’)1 ( c c(1 -(- on 

The elements from P) will be called analytic symbols of order g
defined on (U, F).

b) ( U, F) is the set of all formal sums
i

, such

that for every compact g c U and every open cone there are con-

stants and A &#x3E; 0, such that all ak(x, ~) extend to analytic
functions on and satisfy I ak(Z7 ~) ~  cA kk! (1 + I a,
will be called a formal analytic symbol of order Iz defined on ( U, h) . Further,
~ aj will be called a formal analytic symbol on ( U, 7~ if it is a formal analytic
symbol of some order p, defined on (U, -P).
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c) If Y bj E F), then we say that I c~~ is equivalent with
~ and bi in SFP (U, if for every compact .K c U and

every open cone T, there are constants s &#x3E; 0, M &#x3E; 0, c &#x3E; 0, A &#x3E; 0,
such that for all natural numbers s

Note that when F = then definition 2.1 reduces to werknown

definitions from [2].

PROPOSITION 2.2 (cf. [2]). Consider I aj E Sh’A( U, F), U’ a relatively
compact open subset in U F’cc F. Then there is a E S!:.( U’, h’) such that
a .~ ~ aj in S.F’A( U’, r’). element a from .1~) defines an element

PROPOSITION 2.3 (cf. [2]). a) if ’
then I c,, defined by

We will denote

2. DEFINITION 2.4. We denote Rn, F) the space of symbols a(x, ~)
from Sto( u, such that the restriction of a(x, ~) to U &#x3E;C h is 

and such that for every compact K c U there is c and A such that

For a E .Rn, r), we denote a(x, D) : C§°( U) - the pseudo-
differential operator

a(x, D) is called the hanalytic pseudodifferential operator associated with

a(x, ~).
Concerning the case r = we will use the following result :
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PROPOSITION 2.5. Consider K compact in U,
and f. suppose such that {.r; 

Then there are constants c, A, which depend only on K, ~, and the estimates
o f a, such that

Proposition 2.5 follows essentially from the fact that the distribution
kernel of a(x, D) in U) is an analytic function outside the diagonal.
Cf. anyway [7].

A remarkable property of a(x, D) is given in the following

THEOREM 2.6. 

Here denotes the analytic wave front set (also called analytic
singular spectrum, essential spectrum, etc.) of u, introduced by M. Sato [12]
and L. Horman,der [5]. For the equivalence of the definitions from [12]
and [5], cf. [1].

3. Suppose now If U’ is relatively compact and open
in U, and if 1-’’cc F, then we can find
~al ~ ~ aj in SF!:. ( U’, F’), respectively

such that

in r’). This is an easy consequence of the propositions 2.2 and 2.3.
We now introduce the operators

where the second expression is an oscillatory integral (in fact, we integrate
in y first).

a1(x, D) and D) are defined on C~(~7’) with values in but

it should be remarked that a2(x; D) is in a natural way defined with values
in 8’(Rn).
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a1(x, D) and a2(x; D) will both be called F’-analytic pseudodifferential
operators associated with I The definition is somewhat improper since
a1(x, D), a2(x; D) are not uniquely associated with I aj, and depend in
particular on U’. The operators al(x, D), a2(m; D) are however wellsuited
for microlocal analysis at points from The following result is then
useful :

THEOREM 2.7. f or any XO E U’ and

We also mention the following result :

THEOREM 2.8. (M. Sato, L. H6rmander). Consider a E SA( U, .R’~, .1~) and
suppose there is b E SA/-’( U, F) such that the restrictio&#x3E;i a of a to U X T satisfies

in F). Suppose further that

Then it follows that (XO, ~O) 1= f.

For proofs of the theorems 2.6 and 2.8, we refer the reader to [13] (where
similar statements appear) and to [7], where there is also a proof of theo-
rem 2.7. In particular, [7], was written essentially having the necessities of
this (and another) paper in mind.

4. ’Ve conclude this paragraph with a few remarks concerning global
definitions of analytic pseudodifferential operators.

DEFINITION 2.9. Let X be a real analytic mani f otd and T : C§°(X) - 
a linear operator such that for all We will say
that T is an analytic pseudodifferential operator of order It on X, if for every
x E X there are

I U an open set in Rn,
x: U - X a real analytic map which maps U diffeonzorphically on.

a neighborhood of x,

with the following property: for every the difference 
- a(x, D) g is real analytic on U.

Further if there is given a covering of X with open sets U’, x : U’ -~ U c Rn
real analytic diffeomorphisms of U’ onto U, I a~ (x, ~) E 
and if T: e;,(X) - is a given analytic pseudodifferential operator
on X, then we will say (by abuse) that T is an analytic pseudo differential
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operator associated with if the following happens: for every x:
U’ ~ U, every V, relatively compact subset in U, every a - I a (~, ~) E
e ,~A(T~’, Rn, and every g E C;’(V), we have that T(gox)ox-1 - a(x, D) g
is real analytic on V. Clearly, if the x : U’- U and aj e 4 
are given, then an analytic pseudodifferential operator associated with the

~ aj can only exist if the different I a, are related by some (obvious) com-
patibility conditions (which come out from possible coordinate transfor-

mations), but even if these conditions are satisfied, for the x: U’- U, !aj,
it is not clear how to associate an analytic pseudodifferential operator with

the I a~ . A notable exception from this occurs when X = U is an open
set in Rn and Y- ai E is given. We want to show how one
can then construct an analytic pseudodifferential operator (I D):
C-(U) -* C-(U) associated with L aj.

To do this, let E C~(~7), ~ = 1, 2,..., be a partition of unity for U and
choose Uk relatively compact open subsets in U such that supp cpk c Uk .
For every k we consider bk E Rn, such that 

in
I 11 11

and define

The sum I is finite for every f, and it is easy to see, using theorem 2.7,
that (~ ac~ ) {x, D) f = Y T, 99, f is an analytic pseudodifferential operator as-
sociated with! aj (when co-restricted to U).

3. - Proof of proposition 1.2.

1. The and pj,k from proposition 1.2 are unique, and we recall their
precise form fiom [9]. With the notation ~) = ~),
we have

where Pi = + ... + = 1, ... , k -1, and where the summation is

for all a$ such that IPl + ... + = j, 0, IPil + aa + ... + a 1 0,
’~==2,...~20131 and ...+~"~0.

Further = 0 and = z(z -1 ) ... (z - k + t for k ~ 2, such
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that if we denote

then
3~U

We want to show that p (z; x, ~) is a formal analytic symbol on ( U, 
such that now 1~ = If K c U is a compact set, then it follows from

Cauchy’s inequalities that there is 6 &#x3E; 0 and lVl &#x3E; 0 such that

on for and ~) = 0 for Iyl &#x3E; m.

Let us also introduce the following notations:

a) multiindices

(Note that I’ depends also on k, but k will be clear from the context).
In the sequel we will think about a = (ar) as part of a matrix in which the

lines are indexed by i and the columns by r.
It is clear that proposition 1.2 follows, if we can prove the following

LEMMA 3.1. There is a constant C, which depends only on ~2, such that

satisfies the estimate

In the sequel we will call

the weight of a.
It is possible to estimate Sj,k starting from the remark that p (-1; x, ~),

which is the inverse (in the symbol algebra) of p (x, ~), is known to be a formal
analytic symbol (cf. also lemma 6.1 below). One may also study the con-
struction of p (z; x, ~) from [9], and is then reduced to an estimate from [5].
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Here we prefer a proof which is more direct, and which takes into account
the combinatorial aspects of the problem.

PROOF OF LEMMA 3.1. The proof will be by doublestep induction, for
increasing j, and if j is fixed, for decreasing k.

Let us then suppose that we have found some C such that 

for all r  j and all k, and we want to show that also &#x3E;
is chosen suitably.

a) It is easy to see that Ak = 0 if k &#x3E; 2j. In fact, an a) enters in at
most two conditions I~(x) ~ 0 and there are k conditions ~= 0 which

must be satisfied in order to have ot c- At

Further, if « E the same argument shows that  I, for all i and r
and an easy induction in j (to be effectuated independently from the other
inductions ) , shows that Sj,2j = ( 2 j -1 ) ! ! ~ 2’ j ! for n = 1. For an arbitrary
n this gives

b) We now want to handle the case k  2j by lowering j or increasing 7~~.
With obvious notations we have

c) At first we will estimate 

Let then « E A§ be given with IIk(a) I = 1. Then there is only one i such
that 0. This element contributes also to Ii(«) ~ 0. If IIi(ex) &#x3E; 1, then
we can cancel the column with index k from a and get «’ E A!- 1. If = 1,
then after cancellation of the last column, Ii(«’) = 0. Cancellation of all ele-
ments which come in in I’and relabelling will however produce some Ai-1
Since the weights of «’ and a, respectively of «" and « are the same, we obtain

and therefore

since 1~ ~ 2j.

d) It remains to estimate I and this we will do by reducing our-

selves to sums of type 

For convenience, we will assume n = 1, for the moment.
Let then « E A4 k be given with &#x3E; 1, and denote ..., 0153~, 

the nonvanishing elements of the last column. For every figed s, 
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we will construct an element y(s) E Ak+ 1 in the following way:

It is clear from this definition that if s ~ s’ or if a, Ik(a) &#x3E; 1,
Further the sum of the weights of the different Y(8), 

for a fixed a, gives the weight of a. This shows that ~S’~,’~ ~ S~,k+1. " Together
with (1) this leads to The lemma now follows, at least for
n = 1. It is however clear that the construction of y(s) can be adaptated
for n &#x3E; 1, with only notational complications, and the argument then pro-
ceeds as before also for n &#x3E; 1.

4. - A technical preparation.

1. Consider U c Rn an open domain, x° E U, F c an open cone,

§° E r. To simplify notations, we will suppose that x.0 = 0 and that $° =
= (0, ..., 0, 1 ) . Let also .K c U be a compact which contains zo in its interior
and 

The main step in the proof of theorem 1.3 is the following technical
result:

PROPOSITION 4.1. ,Suppose there are aj E Rn, and con-

stants E, c, A, M, for which

a) All functions aj and b a,re analytic on ·

c) For every functions ~n - (~’, ~n)) can be

extended analytically for + 1$’I), and satisfy the estimate

+ I 
on that set.

Further choose supp f

Then there are constants y and C such that for every g E which satis-
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The integral here has the meaning of an oscillatory integral. When n = 1,
then we replace g with 1 in (1).

PROOF. We denote

oscillatory integral,

As an

To estimate this, we choose sufficiently great such that +
+ 1$’I) implies $ c F, and consider x, XI in Rn), which depend only
on $ and satisfy: 

With the notation -’ we now have

We will separately estimate the three integrals from the preceding equa-
lity f or k + -E- n + 1. (We may suppose that ,u is an integer.).

In fact the support of x’ ( ~ ) avoids a conic neighborhood of the points
such that it follows from the estimate of g that (1 -E- 

some C’.

This gives I) immediately.

Here we use the information that, on the support of x(~), and for y e K

To obtain the second inequality, y one uses Stirlings formula.

This estimate is based on the fact that and
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y E supp f. If we denote A,, the contour

A~, being considered with the natural orientation, then it follows from stand-
ard contour deformation that

We conclude that

In the last two integrals, the integral in y is over a fixed compact, and for F
we have, in view of the estimate 

 + for the (x, y, ~) which come in here. Since there

are k terms in each integral, this gives III), and therefore also the propo-
sition.

2. REMARK 4.2. Suppose there is given such

that in (U, and let a(x, D) f =

$)j($)d$ be the analytic pseudo differential ope-
rator associated with a. In view of theorem 2.7, the proposition 4.1 states,
in the case of n = 1, precisely that a(x, D) f is a real analytic function on
x  0, which has an analytic extension to the set Ix C ~ for some 6 &#x3E; 0.

We need a similar result also in the case n &#x3E; 1, but now, instead of knowing
that a(x, D) f is real analytic for xn  0 (near we only get (x°, ~) 1= WFA.

D) f for xn  0 and ~ E .1~ U - For this reason, we have first smoo-

thed out analytically in the variables z’= (xl, ..., In fact, if g E 8(Rn-i)
satisfies g(’) cegp - then g is real analytic, with estimates which
depend only on y, and G(x) = g ~~ b(y, ~) f (y) dy d~ with *’
denoting convolution in x’. The conclusion of proposition 4.1 implies then
that (T has a real analytic extension to the set {x;  61.
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5. - Proof of the theorems 1.3, 1.4.
I

1. We will reduce the proof of theorem 1.3 to the following

PROPOSITION 5.1. Suppose with the notations from theorem 1.3 (and § 2)
that U = .R’~, and let z, p(x, D) and p(z; x, D) be as in theorem 1.3. Suppose

further that supy and that there is e and a real analytic

function h defined on Ixl  E}, such that h coincides with p(z; x, D) f for
Ixl  E, xn  0. Then it follows that 0 W supp f.

In the proof of proposition 5.1 we rely on proposition 4.1, but before we
can do so, we need some preparations.

First denote tp(x, ~) the symbol of the formal adjoint of p. The principal
symbol of tp is Pm (x, - ~), such that tp is also elliptic. Moreover, it follows
from the hypothesis on p, that the principal symbol of tp does not take
values in .R_ for $ E Using the ellipticity, we can find for every
compact KeRn constants c &#x3E; 0 and 1~ &#x3E; 0 such that tp (x, C) =1= 0 if x E g

where ~’_ (~’1, ..., ~n_~). K will be in the
sequel a sphere.
We now consider the restriction of the function tpz(x, ~), (which function

is again defined with the principal value of the function In), to the set ~(x, ~) ;
In particular, then. If we denote

then we can use analytic continuation along curves in ~ X W, to define a
continuous function ~(z; x, ~) : .K X W -~ C which has the following three

properties a), b), c):

b ) For every ~~) the function ~ r (z ; x, ( ~’, is an

analytic function on the + ~’ ~ ) , 
To show that this is possible, we use the fact that lp(x, C) does not vanish
X W and that x W is simply connected.

We also claim that, from the hypothesis that mz is not an even integer,
it follows that there is 0 E C, 0 =~ 1 such that

c) r(z; x, ~) = 0 for $ E Rn,  - c~n, 1$1 &#x3E; M and x E IC.

In fact, since r(z; z, $) and tpx are continuous functions, it follows that
there is 8 of form 8 = exp iknz, k some integer, such that r(z; x, ~) = 0 tpz(x, ~)
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for ~ E ~~ ( c -- c~n, ~ ~) &#x3E; M and x E K. To show that e ~ 1, it remains to
find some (x, ~), x E K, $ E Rn,  - I~I:&#x3E; M, such that r(z; x, ~) 0
~ tpz(x, ~). Here we may fix x = xO, take ~’= 0, and reduce the situation
to the case when ~) coincides with its principal part. The latter is pos-
sible since

is an analytic function in 1 _ (0, in ), If ICI is great and x remains in K. Now
(0, ~n ) ) = d~., for some constant d, such that our claim 0 ;~ 1 fol-

lows from the fact that (~’)’ cannot be extended from -RB{0} to an analytic
function on the lower half plane, if mz is not an even integer.

From e ) it follows in particular that where V

is the interior of K and h’ is some open cone in which contains - ~0.
Further, denote q(z ; x, $) an analytic symbol in RnE(0)) such

that in Here

(tp L,k is the expression which one obtains when one computes formula (1),
§ 3, for tp instead of p. Now we choose x(~) E a symbol which
is a function which depends only on $, which has support in some suitable
conic neighborhood of 1$01 U ~- ~01, and which is identically one if $ lies
in another conic neighborhood of 1$01 U {2013 $01 and is great. We may choose y
with these properties such that

for some conic neighborhood 1~’ of ~0. Also r(z; x, ~)q(z; x, ~) ~ (tp)(z; x, ~)
in SF,’ F) if r is small enough. Here ( tp ) (z; x, ~) is the symbol as-
sociated in proposition 1.1 with tp. It follows from the unicity in propo-
sition 1.1 that

, ,

where

(Another more significant explanation of (1) follows from lemma 6.1 below).
Let us now denote 

’

2. PROOF OF PROPOSITION 5.1. We choose in the preceding discussion
for K the compact lxl c 2. It is clear that the conditions of proposition 4.1
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are satisfied for b(x, ~) = r(z; x, ~) q(z; ~, ~) X(~). It follows that there are

constants y, C, 6 such that

for any with 

If h is the function from the statement of the proposition, then it is clear
from D) f f c supp f, D) f - h vanishes if Ixl  E
and zn  fl~ x2. Moreover, it is clear that h must be defined, as a real analytic
function for x~, C ~ x~ and we must have p(z; x, D) f - h = 0, if IXnl  E

makes sense for 

and vanishes for - e 0.

It follows trivially that

It is also easy to verify that

In fact, since we are here interested only in the wave front set of p(z;
x, D) f, and not directly in p(z; x, D) f, we may use (cf. § 2) for p(z; x, D) f
the representation ,

where w(~) E C°°(Rn) is identically one for ~~~ great, and vanishes there where
is not C°°. In this case p(z ; x, D) f, as well as Po(z; x, D) f are in 8’(Rn),

and

vanishes in a conic neighborhood of 8° for 
We want to show that (2) and (3) lead to a contradiction if w c assume

that 0 E supp f. To do so, we apply the following result

THEOREM 5.2 (cf., e.g., [6]). Coitsider v E suppose that (0, 
1= WF A v and that Then it f otlows that 0 w supp v.
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To use this theorem, we introduce a function u(= ug) such that

and such that

Clearly then v = a~ - g ~’ ( p° (z; x, D ) f - p (z; x, D) f + h) vanishes for

and also satisfies such that v vanishes in a neigh-
borhood of zero, in view of theorem 5.2.

We obtain from (4) that

for ~x~ C ~’ and for any g E with 

We claim that (6) implies

Supposing for the moment that (7) is proved, it is easy to conclude the
proof of proposition 5.1. In fact, in view of c) from above, we can apply
the regularity theorem of M. Sato-L. Hormander from § 2 for po - p, and
obtain that (o, - ~°) ~ W.F’A f (the inverse for po - p near (0, - ~0) is

p (- z ; .r~ ~)/(0 -1 ) ) . Using again theorem 5.2, it follows that f must vanish
near zero. This completes the proof of proposition 5.1, modulo the proof of
of the fact that (6) implies (7).

3. PROOF THAT (6) IMPLIES (7). Consider g with ~ 0 and

Ig(~’)1 exp - 1’1~’I. The function gr¡’ = g(x’) exp ix’, 1]’), ~’ E BI-.’ is also in
S(R*n-1) and satisfies we denote again with

the ..., xn_1) defined on We want to show that

(0, - ~o) 1= D) f ), using condition (6) for the

functions g~, . In fact now we have

which gives in particular
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Therefore, if q E C-(- e’, e’) satisfies the estimate

then

The last expression is majorized by if 1r¡’1  dlr¡nl [ for some sui-
table d. Using L. Hormander’s definition we have now proved (7).

4. PROOF OF THEOREM 1.3. a) We start with the proof of the second
statement from the theorem.

This is a quite easy consequence of proposition 5.1. First we write

f = f 1 + f 2 with f 1, both concentrated in such that fi is
concentrated near x° and such that the support of f 2 avoids xO. In view of

the pseudolocality of p(z; x, D) we obtain that p(z; x, D) f2 is real analytic
near such that the hypothesis of f is also satisfied for fl. Now we choose
a small neighborhood V of x° for which there is a real analytic diffeomor-
phism X which maps V onto in zn &#x3E; £ x,2 and x° to 0. (Note that

..20131
. .. 4

is a diffeomorphism from Rn to Rn

which xz . We may suppose that supp 11 c V and
can therefore use y to reduce ourselves to the case U = Rn. In view of the

unicity in proposition 1.1, the operator which corresponds to p(z; x, D)
(restricted to ~o (Y)), under this diffeomorphism is of type p(z; x, D) in
the new coordinates. Therefore we are in the conditions from proposition 5.1.
Application of this proposition gives the second part of theorem 1.3.

b ) The proof of the fact that p(z ; x, D) is antilocal is now immediate.
In fact, if W is a connected component of UBsupp f, then p (z; x, D) f is
real analytic on ~W’, and it suffices to find some point x° E a supp f r1 W,
such that the restriction h of p(z ; x, D) f to W cannot be extended to a real
analytic function near must then be ~ 0, and since it is real analytic,
it follows that supp f DW.

To find such a point xO, consider x E W and let S be a sphere with center
in x which is contained in W. If we perform an inversion with respect to S
with center in x, we arrive at the situation considered in the second part
of the theorem, and therefore our claim about h follows for a suitable x°
from the part of the theorem proved already. This concludes the proof of
theorem 1.3, and it is also clear that theorem 1.4 follows from arguments
similar to those used in part b) of the above proof.



22

6. - Proof of theorem 1.5.

1. In the proof, we use ideas from [14]. In fact,

with notations and conventions from § 1.3, and we will try to approximate
(fi - ~,)-1 suitably with analytic pseudodifferential operators on relatively
compact subsets of coordinate neighborhoods.

LEMMA 6.1. Consider p(x, D) an elliptic operator as in proposition 1.2,
let z be with Re z C -1, and let V be an open, relatively compact subset in U.
For some c, we denote with A’ the contour

(natural orientation). Then we have, if c is small enough

where

PROOF. To obtain the expression of s(l; x, ~), we may just compute
with the aid of proposition 1.1, the -1-th power in the symbol algebra, of
p(x, ~) - 1. What we get is, = (p (x, $) - 1)(§) if I« + 0

For suitable c, c’, ~ 8, w e now have that p (x, ~) - ~, ~ ~ c’ (1 + + 1~lm)
on Â E A’ and the map I --&#x3E;- s (A; x, ~) which is defined on A’
and takes values in RllBfOl) is continuous, if we endow the latter
space with an obvious topology &#x3E; M). It follows easily that the inte-
gral in the statement makes sense, and it remains to take into account that

(cf. [4])
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We now apply lemma 6.1 for the situation which appears in theorem 1.5,
with U = Rn and for the operator defined by

D) v = (p(x, D) vo X) o X-1 (p is the operator from the statement of theo-
rem 1.5). For V we take an arbitrary relatively compact open set in Rn
which contains supp fox-I. We can then choose for every some

(in order to be able to apply proposition 2.2 directly, and not only its proof,
we apply lemma 6.1 for some V’ in which V is relatively compact). Moreover

(this time however, we must look at the proof of proposition 2.2 given in [2]),
it is easy to see that we may choose 9(2; x, ~) in such a way that the function
~,~ s(~.; x, ~) is continuous from A’ to SAm(v, RlBf 01), if we endow S.41n(V,

with some natural topology ( great). Let us also choose

h(~) E a function which is identically one if 1$1 is sufficiently great,
but which vanishes in such a neighborhood of the origin that h($) s(a.; x, ~) E
E SA m ( TT, Rn, with uniform estimates and constants for ~~ EA’ (by
this we mean that if .K c TT is a compact, then there are c &#x3E; 0, e &#x3E; 0, 0,
which do not depend on Z E ll.’ such that all functions s(~,; x, ~) can be ex-
tended to analytic functions on Ke, M, and satisfy the estimate

there. If we prefer, we may also assume that c, 8 and do not depend on ~").
Let us now define for Re z C -1 and x E V

and

such that

Further it follows from lemma 6.1 that
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such that q(z; x, D) is an analytic pseudo differential operator associated with
p(z; x, ~) on V. It follows that p(z; x, D)v - q(z; x, D)v is real analytic
on V for any v E C~(V).

It is now clear that the proof of theorem 1.5 comes, for Re z  -1, to
an end with the following lemma:

LEMMA 6.2. ( pz(x, q(z; x, real analytic on V.

PROOF. Let TV be an open relatively compact subset in V and choose
1jJ E C~(~7’) to be identically one on X-I(W). Since yY is arbitrary, it suffices
to show that (pz(x, D) t) ox-1- q(z; x, D)( f ox-1) is real analytic for x E W.

Now we decompose f in the form

with It follows that

When x E W, the first integral in the last expression vanishes and the
last integral is a real analytic functon on W. In fact, vanishes on W

and is C~, such that we can apply proposition 2.5 and conclude that 9(2;
is real analytic on ~W, with estimates for the real analyticity

which are uniform for (in an obvious sense). To see this it suffices to note
that the norm in the Sobolev space Je-m of uo x-1 has an estimate 11  C’

with C’ independent of 2 (since II (p - ~~ C and that in theorem 2.5

we can replace the norm with the norm in any given Sobolev space (es-
sentially this amounts to applying proposition 2.5 to the operator p(x, D)
4k, instead of p(x, D), where 4 is the Laplacian and k is an integer which
depends on what Sobolev space we are working with.). We can now inte-
grate over A’ and conclude is real analytic on ~’.
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To conclude the proof of the lemma, it remains to show that

is real analytic on W. Here I - 8(Â; x, D) (p(x, D) - I) is an analytic pseudo-
differential operator, and its symbol is easily seen to be - 0 in R-B{01),
uniformly in A. Therefore I - s ( ~, ; x, D ) ( p (x, D ) - ~,) must be an integral
operator with analytic kernel. Inspection of the proofs which give the last
result, also shows that the estimates for the real-analyticity of (I - s(~,; x, D)
. ( p (x, D) - depend on the L2 norm (say) of o x-1. Since

this norm can be estimated by I (in view of now

follows that 8(Â; x, D) (p (x, D) - ~,) ~ is real analytic.
We have now proved theorem 1.5 in the case when Re z C -1. The

case of a general z can be reduced to this one in view of (3), § 1.

7. - Comments.

1. A functional analytic approach to complex powers of elliptic opera-
tors, parallel to the approaches from [3], [14], has also been considered in [15].

2. One may compute the number of elements from the sets Ak in §3
explicitely, using results from [11]. The author is indepted to Laura Liess,
who drew his attention to these results, and also helped him to exploit them
on a computer.

3. Starting point for this paper, was the following, unpublished, result
of the author: consider ~(~) : 1~ --~ C a function which is piecewise algebraic,
but which is not a polynomial. Let also or(D)f be the operator =

a(D): Then supp a(D) f contains, for
0 0, all bounded, and at least one unbounded component of R"’supp f.

4. It is clear from the proof of theorem 1.3 that the antilocality which
we have studied in this paper is a local phenomenon. In the result which we
have mentioned in nr. 3 from before, there do also appear weaker forms of

antilocality, which are not of local nature. These weaker forms of anti-

locality lead to results of antilocality also for some cases of complex powers
of elliptic operators, where the results of this paper do not apply (i.e. when mz
is not an even integer).
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