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A Rotation Invariant Differential Equation
for Vector Fields.

H. M. REIMANN

1. - Introduction.

In an attempt to transfer properties of analytic functions to vector
fields on Rn Ahlfors ([1], [2]) has studied the differential operator 8, which
maps vector fields v : into symmetric tensor fields with vanishing
trace, 99: 99 tr =99, trace 99 = 0:

with the notations V = I = If composed with the adjoint
operator S*

the resulting operator S* S is a differential operator mapping vector fields
into vector fields. Its fundamental property is its invariance under rota-

tions. The induced action of the special orthogonal group SO(n) on vector
fields is given by

and the operator S*S has the property (see Ahlfors [2])

In this article a solution of the Dirichlet-problem = 0 for the unit

ball Bn c with L2 -boundary data will be given. The space of square inte-

Pervenuto alla Redazione il 10 Febbraio 1981.



160

grable vector fields on the unit sphere can be decomposed according to the
action of Explicit solutions of S*Sv == 0 for the invariant parts can
then be exposed. So the solution appears as an infinite sum with coeffi-
cients taken from the expansion of the preassigned vector field on the sphere.
There is an apparent analogy to solving the Dirichlet-problem for the Laplace
equation by expanding the functions on the unit sphere into a series of sphe-
rical harmonics.

In the case n = 3 the differential equation S*Sv = 0 arises as a limiting
case of the elasticity equation

a grad div v - b rot rot ii = 0

with ac = 3 , b = 2 . Solutions for the elasticity equation are classical (see
Debye [3], Weyl [8]). In the following treatment the case n = 3 appears to
be rather exceptional.

The transformation group can be replaced by the group of Mobius
transformations, mapping the unit ball onto itself. Associated with it there

is the invariant metric

The differential operator (for vector fields)

is then invariant under the Mobius group [1]. Using this invariance Ahlfors
has given a solution for the Dirichlet-problem for the unit ball in the form
of a Poisson type integral [1]. The construction is based on the so called

center formula and on the fact, that any point x E Bn can be mapped onto
the center by a suitable Mobius transformation. The method can however

not be applied to the rotation invariant equation S*Sv = 0, since the action
of the group SO(n) on the unit ball is not transitive.

I am indebted to R. Coifman and A. Koranyi for their constant help
and encouragement. In particular, the construction of the solutions q in
section 3 is due to A. Koranyi.

2. - The decomposition of the vector fields.

Denote by H k the Hilbertspace of spherical harmonics of degree k. This

is the space of restrictions of (complex valued) harmonic polynomials in Rn,
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homogeneous of degree k, to the unit sphere 2" = aBn in with the scalar

product
I-

da is the normalized invariant measure on Z, Ida = 1. SO(n) acts on Hk, by
I

and Ug is a unitary representation of SO(n). The tensor product JC~ = Cn

is identified with the vector valued spherical harmonics of degree k or with
the vector valued harmonic polynomials, homogeneous of degree k. For this
purpose let ei, ..., em be an orthonormal basis in gk and f l, ..., f n the standard
basis in C". A basis in ~Cn is then given by the elements

and these elements can be given the meaning of a complex linear mapping
Hk -&#x3E; Cn with the property, that ei is mapped onto fj and ek for k =1= i onto 0.
The element

is then the linear mapping A : described by the matrix 

Hk 0 Cn is a Hilbert space with the scalar product

The representation Ug on Hk can be expressed by the matrices (Uki(g))

If Rg denotes the standard representation of SO(n) on C~
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then the induced representation Tg on Hk 0 Cn is given by

The en can now be identified with the vector

fields ~

This implies the following relations for the representation T~ : -.

where is identified with the matrix (gii). This is the way SO(n)
acts on vector fields.

The scalar product of the vector fields v and w

takes the form

and T, is unitary with respect to this scalar product.
Consider now the Hilbert space £2(Z) of square integrable vector fields

with the scalar product

and the action Tg :

Clearly, Jek = is an invariant subspace. Furthermore E2( E) is the

orthogonal direct sum of the spaces = 0, 1, 2,... This is a consequence
of the fact that
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To be more precise, let k = 0, 1, 2, ... be an orthonormal system of
spherical harmonics, efEHk, 9 i = 1, 2, ..., dk (dk = dim Hk). - Then for

vj E 

with

and the expansion converges in L2(E) . These formulas therefore give the
expansion for the vector fields v E £2(Z) with components The

completeness relation takes the form

It was already mentioned that J~~ is an invariant subspace. The representa-
tion T, on JC~ is however not irreducible. Let Rm, m = (ml, ..., mt) E ZZ
denote the representation of 80(n) with highest weight m. The integer I is

given by n = 21 if n is even and by n = 21 + 1 if n is odd. It is well known

that equivalent to the representation U9 on gk and R~~~°~...~°~ is
equivalent to the standard representation For n &#x3E; 5 (and the

tensor product representation decomposes as

into irreducible parts. For n = 4 R(k,l) further decomposes such that

The decomposition into irreducible parts for n = 3 is given by the Clebsch-
Gordan formula

(for this see e.g. Levine [6], Mihlin [7]).
The invariant subspaces of Jet, consisting of vector fields transforming

according to the irreducible representations R~k+ 1, o, ...&#x3E;~ B (k-1,0,...) Will be

denoted by and JY’k respectively. Qk is the subspace corresponding to
R(k,1,0,...) (n;~, 5), R(k,1) (j) R(k,-1) (n = 4) or (n = 3). Observe that in the

decomposition of .R~k~ °~ w&#x3E; Q .R~1, o,...~ any fixed irreducible representation



164

occurs at most once. Therefore

is an orthogonal decomposition of ~k.
Let us summarize the above statements in the following theorem.
A similar decomposition result can be found in Korányi-Vagi [5] (see

also Koranyi [4]).

THEOREM 1.

For n ~ 5, the representation T, decomposes into the irreducible parts

and for it = 3

The representations _R(k, 0,. -.) in this decomposition occur twice (for k &#x3E; 0),
or three times in the dimension n = 3. This leads to the complicated struc-
ture of the solutions pa defined in the next section.

PROPOSITION 1.

The functions u E gx are considered as harmonic polynomials in which

are homogeneous of degree k.
For the proof of the first formula consider the linear mapping L : Jek

given by Lu = grad u. The representation U = I~~k+l,o,...) on is given by
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and the representation T on Jek is

It suffices to show that LUf/= for all since we already
know that R(k+l,O, ...) appears only once in the representation T on jek. Setting

we have

For the second formula note, that the components of the vector fields are
harmonic and homogeneous of degree k :

The linear mapping to be considered in this case is

and it has to be shown that = T~~ for all g E SO(n) :

We finally observe that div Lu = cu for some constant c depending on k
and n.

PROPOSITION 2. The vector fields h E (2k, considered as vector fields of
homogenous harmonic polynomials satisfy the relations div h = 0

For the proof of the first relation consider the linear mapping Lh = div h
from t2k into Hk-1 . As above it suffices to establish that = Since
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Tg restricted to (any irreducible subspace of) Qk is not equivalent to 
the mapping .L then maps (2k onto 0.

Finally, y consider the mapping --, (h(x), x) from (2k into the space
pk+1 of polynomials, homogeneous of degree k + 1. The representation U~,
on decomposes into

since any polynomial p E can be represented as a sum

with uj harmonic, a, E C. Because none of the representations occurring in
the decomposition of U on Pk+l is equivalent to the representation T, restrict-
ed to (2k 7 the second relation in the proposition follows from LT, = UgL:

PROPOSITION 3. If n = 3, then

Consider the mapping L : given by

(vector product)
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It should of course be noted, that the components of x &#x3E;C grad u are harmonic,
if u is harmonic.

3. - Solutions for S*Sv = 0.

Let ... , eak be an orthonormal basis for the spherical harmonics It
(dk = dim H k). The functions can be chosen to be real valued. Ae-

cording to the context, the spherical harmonics are either considered as
homogeneous harmonic polynomials in Rn or as their restrictions onto the
unit sphere. We first exhibit an orthonormal basis for the spaces flk and JY’k.

PROPOSITION 4.

is an orthonormal basis in 

is an orthonormal basis in Nk.

If u is a harmonic homogeneous polynomial of degree k -~-1, it then fol-
lows from Green’s formula that

On the other side, the homogeneity implies

Replacing the surface measure dc~ on 1: by the normalized measure da it
follows that
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Similar calculations lead to the normalization for the functions n~ (~) and
to the orthogonality relations.

PROPOSITION 5.

is an orthogonal basis in 12k.

Note that lxxgrad is the length of the projection of grad u into the
tangent plane to E at x.

The orthogonality relations follow from the identity

For n  4 we choose an arbitrary orthonormal basis qk =12.. in
every space 

In order to describe the constant vector fields we use the notation

fs = mf for the standard basis in C" (i = 1~ ..., n). With these definitions

theorem 1 can be reformulated:

THEOREM 1’. Any vector field v E £.2(1;) has a unique expansion

= (v, = (v, = (v, 
The exp ansion and

THEOREM 2. The vector fields



169

with

are solutions of the equation = 0.

Observe that the vector fields pf’ are not homogeneous.
The proof for theorem 2 consists in a rather tedious but straightforward

verification. Note in particular, that the vector fields mf and qk both have
harmonic components and vanishing divergence (proposition 2). The solu-

tions pf have been found through experimentation. We omit the calcu-
lations.

Since = for ~x~ = 1, the system restricted to E

is an orthonormal system. A simple calculation shows that on E

If in the orthonormal basis of £2 (Z) the vectors nz are replaced by the vectors pk
then V E ~2 ( ~) has an expansion of the form

with

We conclude that
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The coefficients therefore satisfy the double inequality

4. - The solution of the Dirichlet problem.

The vector fields have been defined in section 3. A com-

plete orthonormal system in £,2(2;) is given by the restrictions of mf, n: and
qf to 27. The vector fields mk, pf and q are solutions of the equation = 0.

Restricted to 2;, these vector fields constitute a normalized basis of £,2(E),
however this basis is not orthogonal.

THEOREM 3. Given v E ~2(~), n ~ 3, there exists a unique solution u of
S* Su = 0 in the unit ball Bn cR" with L2-boundary values v :

This solution is given by the formula

with

The uniqueness of the solutions follows from the formula (see Ahlfors [1], [2])

which holds for 0’-vector fields u in Bn with compact support.
The only solutions u of the equation Su = 0 are the vector fields
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with A constant, a and c constant vectors and B a constant matrix with
B = - Btr. Hence if u is a solution of ~S*~Su = 0, which is smooth up to
the boundary (bounded derivatives) and if u has zero boundary values,
then u = 0. In the general situation, if u is a solution of S*Su = 0 with
zero L2-boundary values, then = u(rx), 0  r  1, is also a solution

of the differential equation. By the preceding argument, u,. is the unique
solution in Bn with boundary values Ixl = 1. This solution is there-

fore given by the formula in the theorem. The corresponding coefficients
eik(r) satisfy

We conclude that u = is the zero solution.

In order to complete the proof of the theorem, it remains to be shown
that the vector field zv defined by

has zero boundary values in ~2(~). We recall that is an orthonormal

basis in the space Hk of harmonic polynomials in homogenous of degree k.
We need the following lemma:

LEMMA.

any sequence al, a2, ... of complex numbers.

converges, then

is in the Hardy space of the disc and
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For the derivative f ’ the following estimate holds:

The Poisson kernel satisfies

therefore

On the other side

This completes the proof of the lemma.
We proceed now with the proof of the theorem. Making use of the formula

and of the orthogonality relations, the equality

results. Since it is clear that
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~(cl , c2 , ... denote constants depending on n only). The lemma is now ap-
plied to the sequence

and it follows that

and hence

Consider the partial sums

They satisfy

according to the preceding result. Since

it follows that

for arbitrary N. This then shows that
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