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Irregular Obstacles and Quasi-Variational Inequalities
of Stochastic Impulse Control.

JENS FREHSE - UMBERTO MOSCO

Po. - Introduction.

In this paper we study variational inequalities (v.i.) for second orde]
nonlinear elliptic operators and irregular obstacles, that is, obstacles whicb
are not continuous functions and do not belong to Sobolev spaces.

Our study has two main motivations. The first one is very classical and
.comes from potential theory. It is well known that capacitary potentiah
associated with elliptic operators are weak solutions of unilateral Dirichlel
-problems involving obstacles of the form y = XRn-E’ where E is som{
subset of Rn and xs denotes the characteristic function of S, if S c Rn,
That was indeed the starting point of the whole theory of variation

inequalities, as developed in the sixties by G. Stampacchia [30], J. L. LionQ
and G. Stampacchia [24] and H. Lewy and G. Stampacchia [22], [23]. Thes(

obstacles are discontinuous accross the boundary r of E and the regularity
-of the corresponding potentials depends on the (local) behaviour of h, aq

precised by the classical conditions for regular points.
The second motivation to irregular obstacles is of more recent origin

and arises in stochastic control theory. The problem is that of the optima:
impulse and continuous control of a system that evolves in time according
to a stochastic Ito differential equation in Rn. As shown by A. Bensoussan
and J. L. Lions [1], [2], here a dynamic programming approach leads tc
characterize the Hamilton-Jacobi function of the problem as a solution

of a quasi-variational inequality (q.v.i.) of obstacle type, that still involves
a second order (nonlinear) elliptic or parabolic differential operator. Th(

implicit obstacle 1jJ = M(u) of such a q.v.i. depends on the (weak) solution 14
-viac a map that behaves irregularly on Sobolev spaces. Here again wE
are thus confronted with v.i. whose obstacles are not, « a priori », continuouq
functions and do not have finite energy.

Pervenuto alla Redazione il 17 Gennaio 1981.
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Despite the irregular behaviour of the obstacle in both problems above,,
however, we still expect the solutions to share a certain degree of smoothness,.
under fairly general assumptions on the remaining data.

We are thus led to investigate the weakest requirements to be demanded
to an obstacle 1jJ in order to ensure the continuity or Hölder continuity of
the weak solutions of the corresponding variational inequalities. It is of-

great significance, even if not entirely surprising, that both for potentials
and Hamilton-Jacobi functions of stochastic control the regularity we are
looking for can be obtained under the same mild regularity assumptions
on 1jJ. These can be indeed formulated in a unified manner, as suitable

unilaterat regularity conditions of Wiener type, as those described in Sec-

tion 3 below.

To the proof of such continuity results are devoted the first four sec--
tions of the paper, where we consider a v.i. of the following type:

Here 0 is a bounded open subset of Rn and

is an elliptic operator in 0, the functions ai : OxRxRn -+-R, i = 1, ..., n,,
being measurable functions that satisfy natural growth and coerciveness
conditions. The lower order term is assumed to have quadratic growth.
in Vu, i.e. , I

on every region 0 X as is natural in optimal control problems..
Here and in the following we denote by H’(0), H’(0), W~(0) for q &#x3E; 2,,
the usual Sobolev spaces in 0 and we write (w, z) for arbitrary

q &#x3E; 1, q’ = q~ ( q -1 ), where f denotes integration over 0.
The obstacle 1p in (0.1) is taken to be a measurable function bounded

from below in 0 and satisfying unilateral Wiener conditions as (3.1) or (3.6}
of Section 3.

We then prove the continuity and Holder continuity of every bounded
solution of (0.1 ), first in the interior of 0 (Theorems 3.1 and 3.2) and then~.
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-under some additional regularity assumptions on the boundary data, up
to the boundary h of 0 (Theorems 4.1 and 4.2). The proofs are based on
suitable integral estimates of Morrey type, as in [8], [9], leading to inequal-
ities such as

for given z c 0 and all .R E ]0, Ro], with c &#x3E; 0, ~8 E ] 0, 1[ and m &#x3E; 2 suitable
constants. Here f denotes the integration over 

* R

and f the one over BmR(z) - BR(z). From estimates of this kind the so called
mR

« hole filling &#x3E;&#x3E; technique from Widman [33] and Hildebrandt-Widman [17]
yields, for instance, the following local behaviour of Vu

from which the Holder continuity of u with exponent a -follows by a clas-
sical lemma of Morrey.

As a further step in our study of regularity, we then look in Section 5
for conditions ensuring that a solution belongs to the Sobolev spaces 
for all q &#x3E; 2 and has therefore Holder continuous first order derivatives in c~.

Our approach here is that of reducing the regularity problem for v.i. to
the analogous problem for equations, for which classical results are available.
This is achieved by relying on dual estimates of the form

for a solution u of (0.1). The inequalities above and the infimum A have
to be intended in the sense of measures in O. Such an estimate is also of

potential theoretic nature, the solution u being connected with the notion
of r6duite, and was first obtained by Lewy and Stampacchia [23], in the
framework of a classical Perron approach to the unilateral Dirichlet problem.
The interest of establishing an estimate such as (0.6) for weak solutions
of v.i. , as done in [26] for a linear operator, is that it clearly implies that u
satisfies an equation like

in the distribution sense in 0, provided a function exists which is

a lower bound of -f- Vx)] in 0, in the sense of measures
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(notice that again a one-sided condition on V comes in). From (0.7) the
regularity of u can then be obtained by relying, for instance, on

Ladyzenskaya-Uralt’zeva [21] or Tomi [32].
Our proof of (0.6) is based, as in Hanouzet-Joly [14] and [27], on the

natural lattice structure of Hi( 0 ) as a Dirichlet space and the corresponding
lattice properties of the operator A.

In the same framework we also prove another estimate from potential
theory, namely

again in the sense of measures in 0, where is a family of functions
in and the infimum A is extended over all indexes a. This estimate

is used in Section 7 in our application to control problems.
Let us point out that our study of regularity is done by assuming that

a bounded solution of (0.1) actually exists. Sufficient conditions for bounded-

ness have been given in [8] for general v.i. as (0.1). Existence results for

v.i. and q.v.i. connected with stochastic control problems are the subject
of a joint work with A. Bensoussan [4].

The remainder of the paper, Sections 6, 7 and 8, is devoted to the study
of Bensoussan-Lions q.v.i. of stochastic impulse control. This q.v.i. can
be formulated in the stationary case as follows

Here

is a linear elliptic operator and H(x, r, p), x E 0, r E R, p E Rn, is a Hamil-
tonian functions of the form

is a given set of admissible controls, that we do not
require to be bounded. Therefore, it is natural to allow the function H

to grow at infinity with Ipl, and we assume that the growth of H is quadratic
in I on every region of the form C~ X Rn.
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The implicit obstacle

in (0.9) is given by

where c(x, ~) is a given function that represents the variable cost of carrying
the system under control from the state x to the state x -[- ~, and the
constant k &#x3E; 0 is the fixed cost associated with any stopping of the system.

We assume (Section 6) that a solution u of (0.9) exists and we prove
that it is bounded. We then consider (0.9) as a v.i. of the form (0.1), with
the obstacle 1jJ given by (0.12), and u as a bounded solution of it. This

allows us to apply all the results of the previous sections by simply veri-
fying that the assumptions made on y are now actually satisfied.

Under suitable assumptions on the function c(x, ~) and for k &#x3E; 0, it is

not difficult to verify the unilateral Wiener condition (3.6) and this yields
the Holder continuity of u up to the boundary (again Section 6).

Somewhat more cumbersome is to obtain an estimate from below of

the right hand side of (0.6), when y is the implicit obstacle (0.12). Under

additional assumption on c(x, ~) and for k &#x3E; 0, this is done in Section 7

by using the previous continuity result, the inequality (0.8) and estimation
techniques from [19], [7] and [29]. Then the and C1~°~ regularity of u
follows according to the remarks above.

The results of the present paper were announced in [11]. For previous
results on Holder regularity of solutions of v.i., see [8] and [5] for the case
of Holder continuous obstacles and [12] for irregular obstacles. For previous
results concerning the continuity of the solution of the q.v.i. of impulse
control, see [3], [25], where probabilistic methods are employed, and [15], [6]
for analytic proofs. However these results do not yield Holderianity and
do not apply to quadratic Hamiltonians. For the w2,q regularity
see [18], [19], [28], [7], [29].

1. - Notations and basic assumptions.

Throughout this paper we shall assume that

and that
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acre measurable fonctions with respect to x E 0, continuous with respect to

On each region C) x Rn where C is some given constant
~e assume the functions ai to satisfy the growth condition

with a suitable constant K possibly depending on C.

~Te shall also assume that

(1.4) The partial derivatives

,exist for x r E R, and p E Rn; they are measurable with respect to x E 0
and continuous with respect to (r, p) E R &#x3E;C Rn and satisfy

for ~c E 0, r E R, r :s;;: C~, p E R’, ~ E Rn, and K, Ko &#x3E; 0 suitable constants that

may depend on C.

Moreover, we suppose that

is measurable with respect to

with respect to (r, p) E R X Rn and

for suitable constants K1, 1[2 possibly depending on 0.

In the following sections, we shall consider a variational inequality of the type



111

where

(1.10) measurable function, essentially bounded from
below.

As already said, our study will concern the regularity properties of any
given solution u of (1.9), which we assume to exist.

Moreover, we shall be concerned with bounded solutions u of (1.9).
For results showing, under additional assumptions on the data, that any
solution u of (1.9) is bounded, we refer, for instance, to [8]. For a given
bounded solution u (1.9) we linearize the higher order terms in (1.9) as

follows. We denote by aik, i, k = 11 ... , n, the (bounded measurable) func-
tions on 0 given by

where

Clearl3T,

for and .x’e0. Hence we can rewrite the inequality
in (1.9) as follows

Note that by (1.5), (1.6) the functions ai, satisfy for all x E 0

A basic tool in the following will be the Green function, and the regu-
larized Green function, associated with the (elliptic) operator
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on a fixed ball Q » 0. For each z E 0, the Green function G = GI is de-
fined to be the solution

of the equation

It is well known that such a function exists, see e.g. [31], [34], and satisfies
f

the inequalities 
°

for all x in a neighbourhood Qo cc Q of z, with .g4 and .K5 suitable con-

stants depending only on n, Ko, .g3 and g4 , also on Qo. For each given
e &#x3E; 0, the regularized Green function Ge = Ge is defined to be the solution
Ge E J3~(Q) of the equation

Again, the function G~ exists and satisfies

Moreover, y as e - 0,

see [34].
We conclude the section by proving the following inequality

with G = Gx, n), that holds for every r1 L°’( 0 )
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such that v = 0 in a neighbourhood of z. We have, in fact, by (1.17)

Hence, inequality (1.23) follows by choosing s = 

2. - Some preliminary estimates.

In this section we establish some basic estimates which are satisfied by
any solution u G L°’(0) of the variational inequality (1.9).
Let ~ : 0 - R and be functions with the following properties

Let us remark that if 1~’ = 80 is smooth, then by the Sobolev imbedding
implies $ e C(0); however, all estimates of the present

section do not require any regularity of 80 and will be used also to obtain
local regularity results. The norm in will be denoted by 11 - 11~,.

We now consider z E 0 and for every 0  oo the approximate Green
function G 11 = GZ 11 defined in the previous section. We shall prove
that there exist suitable constants c = c(Ko, .K2, 11 u [I ~ 1100) and

c = c(K, .Ko , Ka, n, 11 u 11 ~ II 00)’ which are independent of z e0 and try
such that the following estimate holds:

where

for all 0  e  eo, c 0. Here x(M) denotes the characteristic func-
tion of M.
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The proof of (2.4) consists of the following steps (i)-(v):

(i) Let ~, ~o be arbitrary functions satisfying the following conditions:

If s &#x3E; 0 is small enough the function

is admissible in (1.9) and hence in (1.12). In fact, we have v E 
moreover, if E &#x3E; 0 is such that 1, we have by (2.7)

while

which together imply 

(ii) Let z E 0 be fixed, po &#x3E; 0 such that c 0 and 0  ~O  eo.

Let ~ and 7: be as in (2.1), (2.2), (2.3). We define in 0 the function

where Ge = 6’ is the approximate Green function defined in Sec. 1 and q &#x3E; 1
is a real number to be chosen. The pair ~, ~o we consider clearly satis-

fies (2.6), (2.7), so that the function v given by (2.8) can be inserted in

inequality (1.12). After cancelling the factor e we obtain

We evaluate the derivatives appearing in (2.10) and rewrite it in the form
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and

for every i, k = 1, ..., n.
We estimate the left hand side of (2.10) from below and the right hand

side from above by evaluating separately each term that arises from the
splitting (2.12) and (2.11).

(iii) Estimate of the left side of (2.10) f rom below: By the ellipticity
condition (1.14) the first term arising via Leibniz’ rule is bounded from

below by

The second term in (2.12), by the definition of Ge (1.19), is equal to

Taking (1.13) into account we can apply Young’s inequality to split the
term in (2.12) which is written in brackets [...] and contains the derivative
Dk(u - ~). Thus the term in [...], (2.12), contributes a quantity which is
bounded from below by the sum of the following two terms:

and

(note that 2(~-)-1)-~1). Here £ &#x3E; 0 is a constant to be chosen later.

As to the contribution from the term ~...~ in (2.12) (which vanishes if

~ = constant) the integral containing D~(u - ~) can be estimated using
Young’s inequality by the sum of a term like (2.15) and the term
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the remaining terms from are bounded by

.,

Combining these estimates we conclude that the left hand side of (2.10)
can be bounded from below by the sum of (2.13), (2.14), (2.16), (2.17), (2.18),
together with twice the term (2.15).

(iv) Estimate of the right hand side of (2.10) from above. By the growth
condition (1.8) the integral containing Vu) is bounded by the sum
of the term

and the term

We now estimate the contribution from the coefficients ai. The first term

according to the splitting (2.11) is of first order in Di(u - ~) and can be
estimated once again by Young’s inequality. By this and (1.3) we obtain
a bound which is the sum of

and

Finally, the contribution from the term [...] in (2.11) can be estimated by

Again combining the various estimates we see that the right hand side
of (2.10) can be bounded from above by the sum of (2.19)-(2.23).

Note that (2.21) is a term similar to (2.15) and that the contribution
of (2.20) can be assimilated by (2.17) and (2.22). Furthermore the term (2.23)
is a term like (2.18) but with replaced by 1.

(v) Combining the estimates obtained in (iii) and (iv), we deduce
from (2.10) the following inequality
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where

and

We remark in passing that if (1.8) holds with g2 = 0 (so that ao(x, r, p)
is bounded) then we obtain (2.4) from (2.24) above by choosing

and q = 1.
In order to handle the general case of a quadratic ao, we use the same
value of 8 but leave the parameter q &#x3E; 1 free. We then use (2.24) twice for
different values of q. When 8 is given by (2.26) and q = 1, (2.24) yields

where ue is given by (2.25) and ca = c(go, K2), C4 = c(.Ko, = (K, Ko,

The additional term in (2.27), with respect to the case .K2 = 0, is the

first integral at the right hand side of (2.27). In order to estimate this term,
we introduce a new parameter 1 &#x3E; 0 and we decompose the integration

I

f = over 0 into an integration f over the region
I I

I

and an integration f over is bounded by l. The

second integral is easily estimated from above by

Hence for I small enough this can be absorbed into the integral on the left
side of (2.27). In order to obtain a bound uniformly in I for the integral
over Op we return to the estimate (2.24) with 8 still given by (2.26), but
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where we now choose

This yields the estimate

where

Similarly, we obtain the estimate

Again the estimate is uniform in l.

By combining the two estimates (2.28) and (2.29), we obtain

By substituting this inequality into (2.27) and choosing I = 1 = l(Ko, Ii 2)
small enough so that

we finally conclude the proof of (2.4).
From inequality (2.4) we now derive two estimates that will play a

crucial role in the following.

LEMMA 2.1. Let u E be a solution o f (1.9) and let us suppose that
there exist functions ~ and ~t satisfying (2.1), (2.2), (2.3), with ’r = 1 on some

open subset 00 of 0. Then

where c is some constant independent of z E 00.
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PROOF. Inequality (2.4) implies

for all e &#x3E; 0. As a consequence of and

for 1 C q  sln, uniformly f or O - 0.
This shows that the last two terms at the right hand side of (2.31) stay

bounded as e - 0. The first term at the right hand side of (2.31) also

remains bounded as e - 0, because Vi vanishes in a neighbourhood of the
singularity of G = Gz. Therefore, (2.30) follows from (2.31) by virtue of
Fatou’s lemma. o

For fixed z and every- &#x3E; 0, we shall denote by i = a function

satisfying (2.2) such that in addition

LEMMA 2.2. Let u E be a solutions of (1.9) and z E 0. Let ~ be an
arbitrary function satisfying (2.1) and (2.3) with some z = 7:R as above. Then

we have

and if z is a Lebesgue point of u, we f urther have

* z

(s - where j denotes integration over BR(z) r1 0, and 1 = f integra-’ 

R R’ R’

tion over [BR, (z) r1 0, .R’ &#x3E; R. The constant c depends on K, go, ...,
..., .K3, n, 11 u II 00’ 1100’ 11 V$ 11 ~, but not on z and .R.

REMARK. If $ = constant, any real fl E ]0, 1[ is admissible.

PROOF. We shall apply the estimate (2.4) for the case at hand. We first
remark that by (2.32) the term ue can be estimated from above, as (! - 0,
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by erfl, with ~ _ and c a constant depending on and 

but independent of z and 1~. Moreover, the first term at the right hand side
of (2.4) converges to the integral

.,

This can be estimated from above by

Here we have used the estimate

(For the case n = 2 one has to use the « local » Green function G E 
i.e. G(x) = log (4Rllxl)).

In turn, the last integral above can be estimated according to (1.23),
by introducing a Lipschitz continuous function w on R,, such that

B2R(z) - = 0 on U CB4R(Z), ~~ ~ c 2R-1.
’This yields

where c is some constant depending on Ko, K3, n, and independent of z
**

and .R. Here I denotes integration over B4R(z) - BR~2(z). (For n = 2, use
4R

the above  local » Green function in the proof, y since the latter is bounded
on B4R(z) - BR~2(z)).

We obtain from (2.4) and the above estimates
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The passage to the limit e - 0 is justified by Fatou’s lemma. Thus (2.35)
follows by replacing R with 2R. If z is a Lebesgue point of u, we obtain
from (2.4) as e -~ 0

from which (2.36) follows. 

3. - Interior regularity.

We suppose in this section that the obstacle 1jJ satisfies the following
unilateral condition of Wiener type:

(3.1 ) There exist constants m &#x3E; 4 and eo &#x3E; 0 such that the following holds:
For every z E 00 cc t~ and every 6 &#x3E; 0 there exists a constant .Ra =

&#x3E; 0, independent of z E 00, such that B(z, c c~ and such

that for every R E ]0, there exists a closed set:

with the property

(3.3) The capacity of TR(z) with respect to B2mR(z) is larger than 
and

If TR(z) is an (n - I )-dimensional manifold we can replace condition (3.4) by

where 1pR(Z) = j y(s)ds and f denotes the mean value taken over TR(z).
R R

Furthermore, in the case (3.5), the sets T R(z), R &#x3E; 0, have to

satisfy uniform weak regularity assumptions such that Poincaré’s inequality
holds in the following form
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*

Here f denotes integration over BR,(z) - BR(z) for .R’ &#x3E; R, and UR(Z) ==
R,

= f u(s) ds with f defined as above.
R R

THEOREM 3.1. Under the assumptions (1.1)-(1.8), let us suppose that 1jJ
satisfies (1.10), (3.1)-(3.4), and that u E is a solution of (1.9). Then u
is continuous in 0.

Let us assume that V satisfies the following unilateral Hölder condition

(3.6) There exist constants m &#x3E; 4, C1, cx &#x3E; 0 such that for every z E 0 and

every ball B(z, 2mR) c 0, 0  R  .Ro, there exists a closed set TR(z)
that satisfies (3.2) and (3.3) and is such that

f or all x E B2R(Z) and all y E TR(z) .

We then shall prove

THEOREM 3.2, Under the assumptions (1.1)-(1.8) let satisfy (1.10),
(3.6), (3.7) and u E solution of (1.9 ) . T hen u is Holder continuous in 0.

Moreover we shall prove that the following estimate holds

for some A E ]0, 1[ where G = Gz, the constant c being independent of

and Z E 00 CC O.

REMARK. For continuous obstacle p, cf. the results in [8] on the con-
tinuity of the solution u.

PROOF OF THEOREM 3.1. Let n E be a solution of (1.9) and 00 cc 0.

1. We first apply lemma 2.1 in order to show that

for all 00, where c is a constant independent of 00.
The functions ~ and 7: are chosen so that ~ = mo, where mo is a lower

bound of 1p on and = 1(00) is any function in C~(0) such that 7: = 1

on 
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2. We now apply Lemma 2.2 to show that the following estimate holds
for given z E 0, 6 &#x3E; 0 and R E ]0, Ra] such that B(z, c 0 with m, 
the constants appearing in assumption (3.1) and in (2.35) :

and moreover, if B(z, 4m.Ra) c 0 we also have

for every Lebesgue point ~ E B~(z) of u with d = d(z, .R) a constant to be
chosen later, independently of C and such that, in addition

Here T2R(z) is the set appearing in assumption (3.1); for the definition of
the «capacity-essential  supremum and infimum, and «c-inf », see

Appendix A.
In order to verify the assumptions of Lemma 2, we 

to be the constant function

-By applying (3.1) with R replaced by 2R, we conclude from (3.4) and the
that for every x E B4R(z) and y E T2R(z)

-Hence we have by (3.11)

which is a fortiori true for every x E B2R(’) and arbitrary fixed C E BR(z).
We are now in a position to apply Lemma 2.2 at any point ~ as above

:and with the above choice of ~. We notice that for z = 7:R satisfying (2.2)
and (2.33) (where z = C), we have ~1’ E and by (3.12), ~  1p on
supp 1’, since supp 7: c therefore assumption (2.3) of Lemma 2.2 is

:also satisfied. Thus, for C = z we have by (2.35)
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and for every Lebesgue point ~ E BR(z) we obtain via (2.36)

which hold for d E [Mo, M1]. From the above inequalities we can derive:
both (3.9) and (3.10) easily, y once we have estimated the term

First, we choose d E [Mo, M1] such that it realizes the minimum of the func-
tional I defined by

Thus we obtain by Poincaré’s inequality in the form as it is given in the
appendix that

Here we have taken into account that T2R(z) c B2mR(Z) - BkR(z) and that,
the relative capacity of is larger than co Rn-2. From (3.13) and (1.18),
we arrive at (3.9).

The term A2 is first estimated by

We then choose d E [Mo, lVl1] to minimize J(d) on M1] and apply
Poincaré’s inequality as above, but in the ball B4mR(Z). Proceeding as before
we obtain (3.10).

3. Using the  hole-filling » technique we can now derive from (3.9)’
the estimate

for every ~e0, ~&#x3E;0y and all such that B2mR(z) c 0..
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Here y E ]0, 1[, is a suitable constant, both c and y being indepen-
dent of z and R as above.

In fact, if we set 
-

we have  c where c is a constant independent of z and moreover, y

by adding to both sides of (3.9) and dividing the resulting inequality
by 1 + c, we obtain for a relation of the form

where 6 = c/(l + c)  1, c being the constant of (3.9), and v &#x3E; 1.

We now choose 8o such that 0  0o  1, and y E ]0, 1[ such that y  fl,
vv0 = 80. For fixed .Ro  min (1, R6) we set

Therefore, for all .R such that v-2 Ro  I~  we have

and by (3.15)

By iterating the above argument we obtain

for all j = 1, 2,..., and .R E ]v-Ci+l) Ro, 
Hence

for all .R E ]0, Rio[.

4. We are now in a position to conclude the proof of the theorem by
showing that for every ! &#x3E; 0 we have

for all Lebesgue points of u such that 
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xl) c 0. In fact, it follows from (3.10) and (3.14) that

for all Lebesgue points ~ E BR(z). Here d is chosen independently of C as above.
Setting z = ri, ( = XH x2 we obtain (3.16) with R6 = min {1, (2m)-’R,,, ~2~’’~. ·

PROOF oF THEOREM 3.2. By assumption (3.6), the hypothesis (3.1)
of theorem 3.1 is now satisfied with for each 6 &#x3E; 0, given by
Ro = + 2)*~~~. Therefore, for every given R E ]0, 1[ wlth B2mR(z) cO
we chose 6 = .R and we obtain from (3.14) that

with c a constant as above, independent of z and ~. Thus the conclusion

of theorem 3.2 follows by a classical lemma of C. B. Morrey. We remark
that it also follows directly from (3.16) that

with e a constant independent of 

4. - Boundary regularity.

In addition to the assumptions of Sec. 3 we now suppose that 1~ is

Lipschitz continuous or, more generally, that it satisfies a Wiener condition
of the following type

(4.1) There exist constants c &#x3E; 0 and Rl &#x3E; 0 such that for all x,, E 1~, 0  R  1~1,
we have,

Moreover, we suppose that the obstacle satisfies not only (3.1) but also
the following condition at the boundary.

(4.2) The convex set K of (1.9) contains a function
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REMARK. Clearly such a uo exists if 1p &#x3E; 0 in a neighbourhood of 
Its existence is also assured if 1Jl satisfies (3.7) with a &#x3E; 1 and r is Lipschitz
continuous. Note that y &#x3E; 0 on h since u E K.

THEOREM 4.1. Suppose that, in addition to the assumptions of Th. 3.1.,
both (4.1) and (4.2) are satisfied and let u E be a solution o f (1.9).
Then u E C(6).

THEOREM 4.2. Under the assumptions of Th. 3.2 and conditions (4.1), (4.2)
we have u E for some IX E ]0, 1[.

PROOF oF THEOREM 4.1. The proof below, which follows the same pattern
as the proof of Theorem 3.1., will supply additional boundary estimates on
regions B2mR(z) such that B2mR(Z) r1 c~ ~ ~ from which the regularity up
to the boundary can be derived easily.

1. We first prove that the estimate (3.8) now holds uniformly with
respect to all For this, we apply Lemma 2.1 with c~o = 0, $ = ~o,
7: =1 on 0. Note, in particular that the hypothesis (2.3) of the lemma

holds because and uo E H§(Q) with uo C 1p on c~.

2. We now prove that the following estimates hold

for every z E 1 which is a Lebesgue point of u, and for every R &#x3E; 0 such that

c being a constant depending on g, go , ..., n, m, but

independent of z E 1 and R &#x3E; 0, and P = (s - n)ls. We recall that f denotes
* R

integration over 0 and f integration over B(z)] n 0.
, 4rraR

In order to obtain (4.3) and (4.4) we apply Lemma 2.2 with ~ = uo .
Note again that the hypothesis (2.3) of the lemma is now satisfied for

arbitrary .1~ &#x3E; 0 since uo e K.
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We thus obtain

for all z e 6 and .R &#x3E; 0, z being a Lebesgue point of u in (4.6).
We now restrict our attention to those z e 0 and R &#x3E; 0 such that

[B2mR(z) - BR(z)] r1  c 0’ By our assumption on 80 we have 
and we

may apply Poincaré inequality to estimate

The last inequality holds because (4.2 ) implies for 1  

This completes the proof of (4.3) and (4.4).

3. From (4.3) and (3.9), via the  hole filling &#x3E;&#x3E; technique, we obtain
the estimate

with y E ]0, 1[, and c constants independent of

Therefore, from (4.4) and (3.16)

This completes the proof of the theorem.
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5. - Dual estimates.

We shall establish in this section some estimates of potential theoretic
nature involving the operator

As in Sec, 1, we suppose that

(5.1) 0 is a bounded open subset of Rn

and that

(5.2) i = 0, 1, ... , n, are measurable functions with respect
to x E c~, continuous with respect to (r, p) E R X Rn.

We suppose furthermore that the following growth conditions are satisfied

for almost all XE 0, all and all p E Rn, with K &#x3E; 0 cons-
tant possibly depending on C, and some f E L1(0). We also assume that
the following monotonicity condition is satisfied

c, K &#x3E; 0 suitable constants possibly depending on C.

Let us remark that (5.5) follows from the coerciveness assumption (1.6)
of Sec, 1 if simply

or, more generally, y

for C, p E Rn and almost all x E 0, with c a constant possibly de-
pending on C.
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In consequence of (5.2), (5.3) and (5.4), A(v) + ao(x, v, Vv) is well de-

fined as a distribution in 0 for every function v c H’(O) by the
identity

Now we consider the variational inequality (1.9). We assume that the
obstacle 1jJ appearing in (1.9) is such that

and we suppose, in addition, that the distribution A (y) is indeed a measures
in 0 satisfying the condition

where the negative part has to be intended in the sense of measures.
Then, we can estimate any bounded solution of (1.9) according to the

following

THEOREM 5.1. Under the growth and monotonicity assumptions (5.1) up
to (5.5), if the function 1jJ satisfies (5.8) and (5.9) then every solution u E LCO(éJ)
of the variational inequality (1.9) satisfies

in the sense of measures in O.

In order to prove this theorem, we approximate the function ao by a
sequence of functions aom, m = 1, 2, ... that satisfy the conditions

for almost all x E 0, all r E R, p E Rn ;

for almost all x E 0, all r E R, Irl ~ C and all p E Rn ;

for almost all a
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In the above conditions the cm are constants possibly depending on C
and m, unlike the constant c which may depend on C but is independent of m.

A possible choice of the approximate aom is

where ’im(t) = t if m, im(t) = m if It &#x3E; m and wm(p) = (,r,,,(p,,), ..., 
and ao is a suitable regularization of ao with

respect to the variables (r, p ) .

PROOF oF THEOREM 5.1. Let be a solution of (1.9). For each

m=1,2,..., I we put

for every

where A,. &#x3E; 0 is some constant to be chosen conveniently large.
It follows from (1.9) that u satisfies the inequality

for all v e H§( 0 ) r1 such ’ljJ.
For eachliixed m, we now define

and we consider the following auxiliary variational inequality

where

The standard theory of monotone operators does not apply to problem (5.19)
due to the term that does not belong to the dual space of H§(0).



132

However, y since the convex subset Q of is also bounded in 

suitable monotonicity arguments can still be used in order to prove that
if the constant A. is large enough then the solution z = zm of the variational
inequality (5.19) actually exists and is unique. For sake of completeness
in Appendix B we give a general result that can be applied to the

present case.
We go on with the proof of the theorem by showing that for every m

we have

Let us show first that it suffices to prove that

In fact, then v = z is allowed in (5.17), hence

the last inequality being a consequence of z E Q ; on the other hand, v = u
can be obviously replaced in (~.19), y hence

Therefore, from (5.23) and (5.24) we obtain

and this implies u = z in consequence of the monotonicity assumption (5.5),
provided lm is conveniently large.

For proving (5.22) we observe that the vector

belongs to Q. In fact, since z c- Q, u  1jJ and we have

v E moreover, u C z - u -~-1, therefore also v C u + 1.

By replacing v in (5.19) we obtain

and since
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we get from (5.26), by taking (5.8), (5.9) and (5.15) into account,

By (5.5) this implies (z -1J’)+ = 0, hence (5.22) holds.
As a consequence of (5.21) we get from (5.19)

For we if E &#x3E; 0 is small

enough, therefore from (5.28)

This means, by taking (5.15), (5.16) and (5.18) into account, that in the
distribution sense we have

which in view of u  1jJ implies

where

By (5.11), Jm - 0 a.e. in 0 as on - oo. Therefore the second inequality
in (5.10) follows from (5.29) by passing to the limit on - oo, by (5.4), (5.12)
and the dominated convergence theorem, once we notice that

for every non-negative continuous function C with compact support in 0.
As to the first inequality in (5.10), this follows directly from (1.9), once

we replace v = it - for arbitrary § E C(0)y 0.

REMARK 5.1. The theorem above extends to arbitrary obstacles y E 

satisfying (5.9), the proof being the same, provided one has growth condi-
tions with respect to with exponent 8 = nl(n - 2) in (5.3) and 2s

in (5.4) in case n &#x3E; 2, and with exponents s = 1 and 2s = 2 if n = 2.
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Then, ai(x, v, Vv) E L2( 0) and ao(x, v, Vv) E Z1(c~) for arbitrary v E .H1(c~).
Notice that y is always bounded from below, since 

REMARK 5.2. By taking the estimate (5.10) into account, the problem
of showing further regularity of bounded solutions of the variational in-

equality (1.9) is clearly reduced to the analogous problem for equations

for suitable regular g’ such that in 0. For

equations like (5.30) with a term ao of quadratic growth classical regularity
results are indeed available as given for instance in Ladyzenskaya-
Ural’zeva [21] and Tomi [32], cf. also [10].

BEMARK 5.3. An alternative way of applying Theorem 5.1 to study
the regularity of solutions of (1.9) follows from noticing that a solution

of (1.9) can be also viewed, u a posteriority as being a solution
of the variational inequality

where the is now considered as given. Thus

Theorem 5.1 yields

from which the estimate

follows, as well as, by the growth condition (5.4)

From differential inequalities such as (5.32) again further regularity of u
can be derived, according to the regularity of f and as also shown

in references [32], [10].
The following result, which is of some interest in itself, will be used

in Sec. 7 to obtain an estimate of the implicit obstacle of the quasi-varia-
tional inequality of impulse control theory.

THEOREM 5.2. Under the monotonicity and growth assumptions (5.1)
up to (5.5), let open subset of (9 and let va be a family of functions
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satisfying in 0’ the following properties

where the intimum 1B is extended over all indeces and in (5.35) is intended

in the sense of measures in 0’.
Then, we have

in the sense of measures in 0’.

PROOF. We put

where the constant A &#x3E; 0 will be chosen conveniently large.
We then consider the following variational inequality

where

and

for every and w E g o ( ~’ ) r1 L°° ( c~’ ) .
The existence and uniqueness of the solution ø, for Â &#x3E; 0 large enough,

can again be shown by applying the theorem of Appendix B, as in the
proof of the previous theorem.

For arbitrary « let us set

We have 0  ~a E .H1 ( c~’ ), moreover 0~
 ~/~ ~a  ~  1 + Therefore,
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and from I

On the other hand, by (5.35), since

Since v -’- ~ - va = ~ - ~a, it follows from (5.39) and (5.40)

hence, by (5.5), that is, 
Since a was arbitrary, we get

On the other hand,

thus, 0 = 0.
This shows that (5.37) reduces to

By cancelling the term Â(v, w) from both sides, we finally get

For ~ &#x3E; 0, we have W:=tCEQ if t &#x3E; 0 is small

enough, therefore (5.41) implies

as measures in 0 ’ and the theorem has been proved.

REMARK 5.4. The assumption for every a can be dropped
provided in (5.3) a growth condition in Ir’ is satisfied as in Remark 5.1.

However, y by (5.34), y all Vex are still required to be bounded from below.
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6. - The control problem : Holder regularity.

We consider now the quasi-variational inequality of impulse control

theory, y see A. Bensoussan and J. L. Lions [1], [2]:

where 

(6.2) c~ is a bounded open subset of Rn

(6.3) aik are bounded measurable functions in 0, i, k = 1, ..., n.

for almost all a~ E 0 and all $ E Rn with some constant ao &#x3E; 0.

In the control case, the Hamiltonian H(x, r, p) is of the form (0.11)
of the introduction. We assume here only that

is a function satisfying
(6.5) H(x, r, p) is measurable in x and continuous in (r, p) E Rn+1

for every x E 0, 0, p E Rn, with K a suitable constant possibly de-

pending on C.

For conditions on f and g in (0.11) implying the required property of H
we refer for instance to [2].

The implicit obstacle 1jJ = M(u) is given by

where k is some given constant
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and is a given function satisfying

for every x E 0, all ~ &#x3E; 0 such that x + ~ E ’0 and all q &#x3E; 0, and, moreover,
such that for every x E 0 and given 6 &#x3E; 0

with or = ~a a suitable constant independent of x E 00 cc 0.

We shall also consider the stronger condition

for every x E 0  ~o , ~ &#x3E; 0, &#x3E; 0 and a E ]0, 1 [ are given con-
stants, and Go &#x3E; 0 is some constant independent of x E 00 cc 0.

We now introduce the functions y~ on 6 by setting, for every x E "0

where

and

where

We remark in passing that since c(x, ~) is interpreted as a cost of shifting
the state x of the controlled system into the state x -f- ~, we interpret 
as the minimum cost for attaining the state x from the boundary, and

F+(x) as the minimum cost for attaining the boundary from x, only non-
negative shifts being allowed.

For proving the boundary regularity of u, we also need the following
assumptions
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As it will become clear from the proof below, it is sufficient to assume that

for some ; «

Using the results of the previous sections, we now prove the following
theorems

THEOREM 6.1. Let u be a solution of problem (6.1). Under the assump-
tions (6.2), up to (6.10), u is continuous in 0 and, if (6.11 ) also holds, then u
is HOlder continuous in 0. Moreover, u is bounded and

for all x 

THEOREM 6.2. In addition to the assumptions of theorem 6.1 suppose
that (6.12) and (6.13) are satisfied. Then, u is continuous up to the boundary
and, i f (6.11) also holds, then u is Hblder continuous on 6.

The proof of these theorems depends on some preliminary lemmas

LEMMA 6.1. Let u be any solution of ( 6.1 ) . Then, the inequalities (6.1~ )
hold, for a. e. x E 0.

PROOF. Since u = 0 on r in H1-sense, we have for almost all x c- 0

for all z E 7~+(~) and the second inequality of (6.15) follows. On the other
hand, for all y E r and almost all x E 0

where we have used a suitable representative a.e. of u which vanishes every-
where on 1~’. Note that M(u) is defined pointwise on 0 and does not depend
on the representative a.e. of u. From (6.17), the left hand side inequality
of (6.15) follows.

Since y_ and y+ are bounded on 0, it follows from Lemma 6.1. the

following

LEMMA 6.2. 

We now prove

LEMMA 6.3. Let 1jJ(x) = lVl(u)(x), x E c~, where u is a solution of (6.1).
Then
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Moreover,

PROOF. For every x E 0, y = x + ~ c 6 and almost all ?7 &#x3E; 0 we have,
in consequence of (6.9)

hence (6.18) holds. 
_

In turn, inequality (6.18) for all x e 0 and every y E .1~ (x) implies

where u is an a.e. representative of u vanishing everywhere on The

above inequality clearly implies the left hand inequality in (6.19) while
the right hand inequality follows from (6.16).

PROOF oF THEOREM 6.1. We apply theorem 3.1 to the variational in-

equality (6.1) with y = Jf(u). We remark that, by Lemma 
which also implies - Moreover, it is easy to check, by
lemma 6.3, that y satisfies the hypothesis (3.1) of theorem 3.1. We do

this by choosing for every x,, c 0 and &#x3E; 0:

e = (19 ..., 1) E Rn. In fact, w E TR(XI) and y E B2R(XO) imply y, hence,
by (6.18) and ( 6.10 ) , for every ~ &#x3E; 0 :

 ~a .

This shows the continuity of u in 0. For proving the Holder continuity
of u, we apply theorem 3.2 again to (6.1) with y = M(u), by checking that
assumption (3.6) of that theorem is now a consequence of (6.11).

PROOF oF THEOREM 6.2. We apply theorem 4.1 and 4.2 to (6.1) with

1jJ = 

Assumption (4.2) can be satisfied, in consequence of (6.13), by taking
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uo = y- and noticing that y_(x) = 0 for all x E T due to the fact that x E r
implies x E 1~ (x) and hence 0  y-(x) C c(x, 0) = 0.

REMARK. The theorems above, due to the generality of the theorems 4.1
and 4.2 on which they rely, also hold if the linear operator

appearing in (6.1) is replaced by a non linear operator

as in Sec. 1. The functions ai are then assumed to satisfy the coerciveness
and growth conditions (1.2),..., (1.6), all other assumptions of Theorems 6.1
and 6.2 remaining unchanged.

7. - A dual estimate for the operator M.

We consider a second order operator A(v) and a first order operator
ao(x, v, Vv), satisfying all the assumptions of Sec. 5.

Our main goal here is to establish a one-sided dual estimate for the

operator M introduced in Sec. 6, i.e. ,

Such an estimate plays a crucial role in our approach to the regularity
control problem we deal with in Sec. 8.

Let u be a function of the space which is continuous in 0" and
whose second order derivatives are locally bounded up to the boundary
of 0 in the region Cl of 0 where u(x)  

We shall prove then that M(u) satisfies a Lipschitz condition on the
whole of 0 and, moreover, that lVl(u) can be dually estimated from below
by a constant, in the sense of Sec. 5, that is,

as a distribution in Oy where co &#x3E; 0 is some constant (that may depend on u).
Therefore, the original regularity information about it is somehow transported
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over all 0. We assume that the given constant k and the given function
c( . , . ) appearing in the expression of M satisfy the following conditions:

such that x + ~ E c~ and all q &#x3E; 0.

(7.4) c(x, ~) is non-decreasing in $ for each x E 0"

,uniformly with respect to bounded sets of vectors ~.

also assume that

~do &#x3E; 0 and for some constant c &#x3E; 0, as a distribution in 0, where y+ is the
function defined in Sec. 6. Notice that, because of the definition of y+ in-
volving the boundary 1~ of 0, some regularity of .1~ (such as (6.12)) is

implicitely admitted by (7.6).
We then have the following result, where

THEOREM 7.1. Under the assumptions (1.1), ..., (1.8), (5.5), and (7.2),...,
~(7.6), let u be any f unction satisfying

for every open subset D, D c Cu. Then we have M(u) E Lip (0) and the

,estimate (7.1) also holds.

The proof relies on the dual estimate of Theorem 5.2 and comes from
the following lemmas 7.1, 7.2, 7.3. Lemma 7.1 yields a local representation
of M(u) based on an idea from Caffarelli-Friedman [7], see also [29]. The

proof of Lemma 7.3 adapts the dual estimation techniques from [19]
:and [29] to the present case.

LIF,MMA 7.1. Let u E r1 and ic be the extension of u by zero
-over ~0~. Then, for every z there exists a ball B,(z), e &#x3E; 0, a subset
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Tz c and an open subset V z c Rn, such that

f or every x E Bi(z)

PROOF. For every x E 0 we denote by the set of all y E Õ of the
form y = x -E- r~, such that

Then, we have

In fact, we have by (7.3)

Since k &#x3E; 0, this implies u(y)  M(u)(y), that is, y E Cu.
It follows from (7.12) that is a compact subset of Cu therefore we

can choose 30 &#x3E; 0 so that the open subset of R"

where 86 := for arbitrary 3, satisfies condition (7.11).
We now choose 61 so that 0  61  60. Since the multivalued mapping

r - is upper semicontinuous, there exists e1 &#x3E; 0 such that

for all Hence (7.13) holds for all where 

has been chosen such that 0  o  ~O1 and, moreover,

From (7.13) we obtain
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Therefore, if we define

we find

Hence

the last inclusion being a consequence of (7.14).
Thus, condition (7.10) is also satisfied. Finally, y since for

every r1 0 and c(x, ~ ) is non-decreasing, we have

for every and all Hence (7.9) also holds.

,

Then

PROOF. It suffices to prove that for every z E 0 there exists o &#x3E; 0 such that

We choose T, and Yz as in Lemma 7.1. By ( 7.11 ), we have

and hence the functions

in consequence of (7.20), satisfy a Lipschitz condition on Be(z) n 0 which
is uniform with respect Therefore, property (7.16) follows from
the above representation, (7.9), of M(u).

We have shown, in particular, that for u as in Lemma 7.2 we have
Therefore, is well defined as a distribution in O

and it belongs to the dual space of H§(0).

LEMMA 7.3..Let n C(6) r1 for every open subset D,
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D c eu. Then, there exists some constant co &#x3E; 0 such that

as a distribution in 0.

PROOF. It clearly suffices to prove that for every z E 0 there exists

e &#x3E; 0 such that

as a distribution in Be(z) r1 O, where c &#x3E; 0 is some constant possibly de-
pending on z.

We choose Bg(z), again as in Lemma 7.1. Let y+ be the func-

tion introduced in Sec. 6. Since

we can also write the local representation (7.9) of 31(u) as

for every xEBe(z), where v~ is given by (7.17).
For ~ E Tz and 8 &#x3E; 0, we define

as a function on r1 0. For every fixed e &#x3E; 0, we have

where = 1, 2, 1 are the open subsets

We first estimate the distribution

from below 
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By (7.11) we have

Therefore, by (7.11), all functions v~, ~ E Tx, are bounded in with their

first and second order derivatives, by constants that depend neither on

~ E Tz nor 8 &#x3E; 0. It follows that the distribution

is also bounded from below by a constant independent of both ~ and c.
Therefore, we can apply Theorem 5.2 to the functions Vç and (y+ - e)

in t~’ : = 01,8 and we obtain, by taking (7.6) into account, that

as a distribution in for some constant c &#x3E; 0 independent of ~ E Tz
and e  

We now estimate the distribution above, this time over 
Noticing that v~(x) &#x3E; y,(x) - 8 in c~2~~, obtain from (7.6) that

as a distribution in 0~% where the constant c is independent of ~ e Tz
and ê  o .

It follows from (7.21) and (7.23) that

as a distribution in Bg(z) r1 0, with c a constant independent of ~ E Tz
and ~  Eo .

By letting 8 -~ 0, w e obtain from (7.24) that

in Be(z) r1 0, with c a constant independent T~.
We now consider the family of functions

They satisfy a uniform Lipschitz condition on c~’, where 0~:== n 0,
and their infimum belongs to n L°~(0’), by (7.20)
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and (7.16). Moreover, they are uniformly estimated in l9’ according to (7.25).
Therefore, the estimate (7.19) follows from Theorem 5.2 and the proof of

the lemma is concluded.

Let us now consider the case that the operator A commutes with transla-

tions, by assuming that

Then, according to a similar estimate in [19], the following variant of The-
orem 7.1 holds:

THEOREM 7.2. I n addition to ( 1.1 ), ... , (1.8), (5.5) and (7.2),..., (7.6), let

us suppose that (7.26) also holds. Let u be an arbitrary function satisfying

for every open subset D, D c Cu and a suitable constant c &#x3E; 0, possibly de-

pending on D. Then, M(u) E Lip (0) and the estimate (7.1) also holds.

The proof of the present theorem is the same as that of Theorem 7.1
once we remark that in the proof of Lemma 7.3 above the distribution

can be now estimated in the open set by using (7.28) and noticing that
A(v~)(x) = A(v)(x + ~).

8. - The control problem: W2,p regularity.

We come back now to the control problem of Sec. 6, that is, to the
quasi-variational inequality (6.1).

Under suitable assumptions on the data we shall prove that every solu-
tion u of (6.1) satisfies

so that we obtain, in particular, the following global regularity result
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We shall prove indeed more, namely that

where A is the second order operator (6.20).
Our proof relies both on the continuity results of Sec. 6 and on the dual

estimates of Sec. 5 and Sec. 7.

In order to estimate the implicit obstacle M(u) of (6.1) according to
Theorem 7.1, we must verify, in particular, that u has second order deriva-
tives which are bounded on every open set D, D c C", C" being the set (7.7).
Since by (6.1) the solution n satisfies the equation

in the (open) region 0 in the distribution sense, the above regularity
information about u can be obtained from the existing regularity theory
for bounded weak solutions of equation (8.4), see [21], [32].

What we actually need in this respect is the following property:

(*) Let 0’ be an open subset of 0, .1" a smooth part of 90 and let

it E H§(0’) r1 be such that

f or every Then

for every open region D, 
According to the references quoted above, sufficient conditions ensuring

property (*) are the following ones

for some ~8 E ]0, 1], in addition to those of Sec. 6.

Then we have the following

THEOREM 8.1. Suppose that the coerciveness and growth conditions

(6.2),..., (6.6) and the regularity conditions (8.7),.., (8.9) for 1~, aik and H



149

are satisfied. Suppose also that the assumptions (6.10), (6.13) and (7.2),..., (7.6)
on the operator M are satisfied. Then every solution u of the quasi-variational
inequality (6.1) has the regularity (8.1),..., (8.3).

PROOF. By Theorem 6.2 n is continuous on 0. Since in addition u = 0

on 7~ it is easily checked from the definition (6.7) that M(u) also is con-
tinuous on 0.

We now consider the region Cu defined by (7.7) and the open set

0’ := 0. It follows from (6.1) that the restrietion ic of u to t’ is a

(bounded weak) solution of the equation (8.4).
Therefore, for any given open set D, D c C", by choosing T’ to

be a smooth part of .1~ such that we obtain from

property (*) that u E W2~°°(D).
Thus u satisfies all the assumptions of Theorem 7.1, so we obtain

that M(u) is Lipschitz on 0- and, furthermore, it can be estimate from

below according to (7.1).
Therefore, we can apply Theorem 5.1 to the variational inequality (6.1)

and we get

in the distribution sense in 0.

The known regularity results for equations like

(see again the references quoted above) imply the regularity (8.1) of u,
which in turn, jointly with (8.10), immediately gives (8.3 ) .

If the operator A has constant coefficients aik, then the further regularity
assumption (8.9) on H can be dropped. In fact, via property (*), it ensures
the regularity of u on D as above, as needed in Theorem 7.1 for the
lower estimate of A(M(u)). In case of constant aik we can get the same
estimate of A (M(u)) by relying on Theorem 7.2 instead than on Theorem 7.1
as in the proof above.

Therefore, by only assuming now the further regularity

is of class

(which is enough for W2 ’ regularity), we obtain

THEOREM 8.2. Suppose that the coefficients aik, i, k = 1, ..., n of the

operator A are constant and that the coerciveness and growth conditions (6.2),
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(6.4), ..., (6.6) and the regularity condition (8.12) are satisfied. Then, every
solution u of the q.v.i. (6.1) has the regularity (8.1),..., (8.3).

PROOF. From the equation (8.4), which is satisfied on every open D cc Cu,
we still obtain under our present assumptions on A and H that,

as it follows, from instance, from Tomi [32]. This also implies, in particular,
that u E Lip (D), so that we can apply Theorem 7.2 to prove that

M(u) E Lip (0) and that A (M(u)) is estimated from below according to (7.1).
The remaining of the proof is the same as above.

REMARK. Theorem 8.1 also holds if more general nonlinear operators A
of the form (5.3) are considered in place of the linear A appearing above.
All the results of previous sections used in the proof still hold in this general
case (see also the remark at the end of Sec. 6). The only point to be checked
again is the analogue of property ( ~k) stated above. If the functions ai ap-
pearing in the expression (5.3) of A are independent of Vv, the required
regularity result (8.6) follows from [21], [32], [10], under the assumptions
of Sec. 5. For the general case one has to adapt the methods of [21], [32]
and [8], see [10].

Appendix A. Poincaré’s inequality.

In the following, we consider concentric balls BmR, BkR with m &#x3E; k &#x3E; 0

fixed numbers and the set The integration over SR is

denoted by f. We need the notion of the relative capacity of a set T c B,,,,R

which is defined by

and for compact sets K

Here and in the following, HI-functions are considered to be defined every-
where except a set of capacity 0. For u E H1(BmR) we can define the «capa-
city-essential » maximum of u on T as the infimum of all « capacity-essential »
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upper bounds of u on T. A number is called « capacity-essential » upper
bound of u on T &#x3E; u on T except of a set of capacity 0. We shortly
write c-sup ~2c(x) Ix E T} or c-sup u.

T

The « capacity-essential &#x3E;&#x3E; infimum c-inf {u(x)tx E T~ is defined analogously.
We need Poincaré’s inequality in the following form.

THEOREM Al. Let T, c be sets whose capacity satisfies

with a constant c &#x3E; 0 as R - 0. Then there is a constant K independent of .R
such that

f or all &#x3E; Here

PROOF. Because of homogeneity, we need to prove the theorem only
for R = 19 T = Ti. We first show that there exists do E I = [Mo, such

that the B2m-capacity of both the sets

is larger than c/4. In fact, define

The set whose supremum is do is not empty since 0 = Mo is admissible.

Thus do exists and satisfies

on account of the upper semi-continuity properties of the capacity.
If do = 1~1 then
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and the B-capacity of both the sets (2) is larger than c/4 on account
of (3) and (4). Recall that B2m-cap T &#x3E; c.

If do then

for s -~ 0, E &#x3E; 0, and hence

Suppose that

Since

we obtain from (5), (6) that

which contradicts the hypothesis on T. Thus (6) cannot be true and the

capacity of both the sets is larger than c/4.
We now split

and both the integrals at the right hand side can be estimated by Kf¡Vu/2dx
R

since the B2m-capacity of the set of zeros of (u - do)+ and (u - do)- is larger
than c/4. This completes the proof of theorem Al provided we prove

THEOREM A2. Let w E g1 (Bm ) and

Then there exists a constant K = K(c, m, k) such that
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PROOF. Otherwise, there is a sequence of functions Wi E HI satis-

fying (7) and 

It follows that wj - constant = g0 # 0 in .H1 for a subsequence. Further-

more, it is well known that wj converges uniformly except on a set of

capacity smaller than E. Since the limit of the Wi is constant # 0 we ob-
tain that Wj =/:= 0 except possibly on a set of capacity smaller than 8, for
almost all w;. This contradicts (7). The theorem is proved.

Appendix B.

The following general result is used in the proof of Theorems 5.1 and 5.2:

THEOREM B. Let X be a reflexive Banach space, Q a nonempty convex
subset of X and

a function satisfying for arbitrary u, v E Q :

Let us suppose, in addition, that there exists a bounded subset B of X and a
vector wo E Q r1 B, such that

Then, there exists a solution U E Q of the inequalities

Moreover, the solution is unique, provided the sign &#x3E; holds in (ii) whenever u 0 v.

REMARK. When dealing with problem (5.19 ) in the proof of Theorem 5.1,
we apply the above result with .X = the set Q given by (5.20) and
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the function g, for fixed m, given by

for every u, v E Q, lm being chosen conveniently large. Note, in particular,
that (ii) and (v) follow from the monotonicity and growth assumptions (5.5)
and (5.13).

Similarly, for problem (5.37) in the proof of Theorem 5.2 we take X
as above, Q given by (5.38) and

for every u, v E Q.

PROOF oF THEOREM. The uniqueness of the solution is an immediate

consequence of (ii), where &#x3E; holds if u # v.

To prove the existence we set for every w E Q

and we prove that

where n, as in the following, carries over all WE Q.
The proof of (2) is achieved in two steps. We first prove that

the closure being in the weak topology of X. We then prove

In order to prove (3) we remark that, by (iv), the set

for each fixed w is convex and closed (hence also weakly closed) and, more-

over, by (ii), c H(w). Therefore, (3) follows from
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which in turn is immediately seen to be a consequence of (iii) and (iv).
[If (5) is false, then 0 ~ g(w, v) for some v E Q and all w e Q, whereas
g(v, w) &#x3E; 0 for some 10 E Q. Thus g(v + t(w - v), v) &#x3E; 0 for all t E [0, 1]
and, by (iii), for some 1 c- ]0, 1[, which, by (iv),
together imply

hence a contradiction with (i).]
The proof of (4) follows from a well known Lemma of Ky Fan [20],

once we notice that the following properties are satisfied in consequence
of (v) and (i), (iv), respectively:

(j) every is a weakly closed subset of X, moreover, y is

weakly compact in X;

(jj) the convex hull of every finite set 2v1, ... , W s in Q is contained

in the corresponding union

The proof is thus complete.

For more general existence results of this kind, see [18] and [27] .

REFERENCES

[1] A. BENSOUSSAN - J. L. LIONS, Contrôle impulsionnel et contrôle continu. Méthode
des I.Q.V. non linéaires, C. R. Acad. Sci. Paris, Série A, 278 (1974), pp. 675-679,
747-751.

[2] A. BENSOUSSAN - J. L. LIONS, Optimal impulse and continuous control: Method
of non linear quasi-variational inequalities, Trudy Mat. Inst. Steklov, 134 (1975),
pp. 5-22.

[3] A. BENSOUSSAN - J. L. LIONS, Sur le controle impulsionnel et les inéquations
quasi-variationnelles d’evolution, C. R. Acad. Sci. Paris, Série A, 280 (1975),
pp. 1049-1053.

[4] A. BENSOUSSAN - J. FREHSE - U. MOSCO, A stochastic impulse control problem
with quadratic growth Hamiltonian and the corresponding quasi variational

inequality, J. Reine Angew. Math., to appear.
[5] M. BIROLI, A De Giorgi-Nash-Moser result for variational inequalities, Boll.

Un. Mat. Ital. (5) 16-A (1979), pp. 598-605.
[6] M. BIROLI, An estimate on convergence of approximation by iterations of a solu-

tion to a quasi variational inequality and some consequences on continuous de-
pendence and G-convergence, Ann. Mat. Pura Appl., to appear.



156

[7] L. CAFFARELLI - A. FRIEDMAN, Regularity of the solution of the Q.V.I. for the
impulse control problem,, Comm. Partial Diff. Eq., 3 (1978), pp. 745-753.

Idem II, ibidem.

[8] J. FREHSE, On the smoothness of solutions of variational inequalities with ob-
stacles, Proc. Semester Partial Diff. Eq., Banach Center, Warszawa 1978.

[9] J. FREHSE, On Signorini’s problem and variational problems with thin obstacles,
Ann. Scuola Norm. Sup. Pisa, 4 (1977), pp. 343-362.

[10] J. FREHSE, On the regularity of solutions to elliptic differential inequalities,
J. Reine Angew. Math., to appear.

[11] J. FREHSE - U. MOSCO, Sur la régularité de certaines inéquations variationnelles
et quasi -variationnelles, C. R. Acad. Sci. Paris, Série A, 289 (1979), pp. 627-630.

[12] J. FREHSE - U. MOSCO, Variational inequalities with onesided irregular obstacles,
Manuscripta Math., 28 (1979), pp. 219-233.

[13] M. G. GARRONI - G. M. TROIANIELLO, Some regularity results and a priori
estimates for solutions of variational and quasi-variational inequalities, Proc.
Conf. Recent methods in nonlinear analysis and Applications, Roma 1978,
edited by E. DE GIORGI, E. MAGENES and U. Mosco, Pitagora Ed., Bologna, 1979.

[14] B. HANOUZET - J. L. JOLY, Méthodes d’ordre dans l’interpretation de certaines
inéquations variationnelles, C. R. Acad. Sci. Paris, Série A, 281 (1975), pp. 373-376.

[15] B. HANOUZET - J. L. JOLY, Convergence uniforme des iterées définissant la solu-
tion d’une inequation quasi-variationnelle, C. R. Acad. Sci. Paris, Série A, 286
(1978), pp. 735-738.

[16] S. HILDEBRANDT - K. O. WIDMAN, Some regularity results for quasi-linear
elliptic systems of second order, Math. Z., 142 (1975), pp. 67-86.

[17] S. HILDEBRANDT - K. O. WIDMAN, On the Hölder continuity of Weak Solutions
of quasi-linear elliptic systems of second order, Ann. Scuola Norm. Sup. Pisa, 4
(1977), pp. 145-178.

[18] J. L. JOLY - U. MOSCO, A propos de l’existence et de la régularité des solutions
de certaines inéquations quasi-variationnelles, J. Functional Analysis, 34 (1979),
pp. 107-197.

[19] J. L. JOLY - U. MOSCO - G. M. TROIANIELLO, On the regular solution of a quasi
variational inequality connected to a problem of stochastic impulse control, J. Math.
Anal. Appl., 61 (1977), pp. 357-369.

[20] KY FAN, A minimax inequality and applications, in Inequalities III, Shisha ed.,
Academic Press, New York, 1972, pp. 103-113.

[21] O. A. LADYZHENSKAIA - N. URAL’TSEVA, Linear and quasi-linear elliptic equa-
tions, Acad. Press, New York, 1979.

[22] H. LEWY - G. STAMPACCHIA, On the regularity of the solution of a variational
inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188.

[23] H. LEWY - G. STAMPACCHIA, On the smoothness of superharmonies which solve
a minimum problem, J. Analyse Math., 23 (1970), pp. 227-236.

[24] J. L. LIONS - G. STAMPACCHIA, Variational inequatities, Comm. Pure Appl.
Math., 20 (1967), pp. 493-519.

[25] J. L. MENALDI, Sur le problème de contrôle impulsionnel et l’inéquation quasi
variationnelle degenerée associée, C. R. Acad. Sci. Paris, Série A, 284 (1977),
pp. 1499-1502.

[26] U. Mosco - G. M. TROIANIELLO, On the smoothness of solutions of unilateral
Dirichlet problems, Boll. Un. Mat. Ital., 8 (1973), pp. 57-67.



157

[27] U. MOSCO, Implicit variational problems and quasi variational inequalities, in
Nonlinear operators and calculus of variations, Proc. Bruxelles, 1975, edited by
L. WAELBROECK, Lecture Notes in Math., 543, Springer-Verlag, 1976.

[28] U. MOSCO, Nonlinear quasi-variational inequalities and stochastic impulse control
theory, Proc. Conf. Equadiff IV, Praha, 1977, edited by J. FÁBERA, Lecture
Notes in Math., 703, Springer-Verlag, 1979.

[29] U. MOSCO, On some nonlinear quasi variational inequatities and implicit comple-
mentarity problems in stochastic control theory, in Variational Inequalities, Proc.,
edited by R. W. COTTLE, F. GIANNESSI and J. L. LIONS, J. Wiley, 1979.

[30] G. STAMPACCHIA, Formes bilinéaires coercitives sur les ensembles convexes, C. R.
Acad. Sci. Paris, Série A, 258 (1964), pp. 4413-4416.

[31] G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second
ordre à coefficients discontinus, Ann. Inst. Fourier Grenoble, 15 (1965), pp. 189-258.

[32] F. TOMI, Variationsprobleme vom Dirichlet-type mit einer Ungteichung als Neben-
bedingung, Math. Z., 128 (1972), pp. 43-74.

[33] K. O. WIDMAN, Hölder continuity of solutions of elliptic systems, Manuscripta
Math., 5 (1971), pp. 299-308.

[34] K. O. WIDMAN, The singularity of the Green function for non-uniformly elliptic
partial differential equations with discontinuous coefficients, Technical report,
Uppsala Univ., 1970.

Institut f. Angewandte Mathematik
der Universitat

Beringstr. 4-6
53 Bonn, W. Germany

Istituto Matematico dell’Universita

Citta universitaria
00100 Roma

and

Université Paris Dauphine, ERA 249
Pl. du Mar6chal de Lattre-de-Tassigny
75775 Paris, France


