
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

SERGIO CAMPANATO
Generation of analytic semigroups by elliptic operators
of second order in Hölder spaces
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 8, no 3
(1981), p. 495-512
<http://www.numdam.org/item?id=ASNSP_1981_4_8_3_495_0>

© Scuola Normale Superiore, Pisa, 1981, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1981_4_8_3_495_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Generation of Analytic Semigroups by Elliptic Operators
of Second Order in Hölder Spaces.

SERGIO CAMPANATO

0. - Introduction.

Let D be a bounded open subset of Bn with boundary 8Q of class C2.
If x = (x, ..., xn) c- Bn, 11 X 11 will denote its euclidean norm. By the same
symbol we shall denote also the norm of the points z = (zl, ..., zn) E Cn.
If u is a complex valued function defined in D we set Du = (-Diu, ..., 1 DnU)
where DZ = ’a/’a0153i and, as usual,

H1(Q) and H§(Q) are the usual Sobolev spaces, i.e. the completion in the
norms (0.3) and (0.2) respectively of the space 0-(D) or Co-(D).

00,0’(D), with 0  ot  1, is the space of the complex valued functions
u : SZ ---&#x3E; C such that

with the norm

It is well known that the norm (0.5) is equivalent to the norm sup lul ] + [u]/X D) &#x3E;

9 
’

Pervenuto alla Redazione il 21 Ottobre 1980.
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We define

The operator E will have coefficients aii, bi subject to the following as-
sumptions :

(o .I ) aii, ij = 1,..., n, are real valued and continuous functions in D and
satisfy the ellipticity condition: there is a constant v &#x3E; 0 such that

(0.11) biE LOO(Q), i.e. are measurable and bounded complex valued func-
tions on Q.

We set

and for all

We have that

and then, for all u E Hl(Q),

Let p be a complex parameter and f E L2(Q). We consider a solution u
of the Dirichlet problem

If geu &#x3E; 1, such a solution exists and is unique because of (0.10).
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The aim of the present paper is to prove that if

then there exists Ao &#x3E; A such that, if Me /z &#x3E; Âo, the following estimate holds

where the constant .K does not depend on p and Âo.
The method consist of proving the known result that the solution of

(0.11) is oe-H6lder continuous on D by making use of the techniques of [5]
(see also [7]).

Without condition f = 0 on 3Q, estimate (0.12) is well known with

the L"-norms [2], [3] and C°-norms [8], [9], [10] but not yet for Holder
norms. Indeed estimate (0.12) is not true without the condition that f
vanishes on 3S [11], [12].

As it is known, inequality (0.12) is linked with the problem of knowing
whether the elliptic operator generates an analytic semigroup on the
closure in the Holder norm of the operator’s domain. Such a space can be
characterized as the subspace of the functions belonging to Co a(SZ) such
that

I believe that the result of the present paper could be extended further,
by means of the same technique, also to more general operators and more
general boundary conditions.

Thanks are due to my friend G. Da Prato who suggested me the question.

1. - Preliminaries.

If A is a measurable subset of Rn, with positive measure, and u : A - C,
we denote by u, the average of u on A

Let .S2 be an open bounded subset of .Rn with diameter dn - We set
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Recall that and

where the supremum is taken over all Sz (xo , a) with x,, c S2 and 0  J dQ
(see [51, [7J).

We have the following result [4]:

LEMMA 1.I. If i2 has the cone property and a E (0, 1), then

and

Let V be a closed subspace of Hl(Q) with

and with induced norm. Let f E L2(Q) and Me Iz &#x3E; A (1). It is well known

that if u is the solution of the problem

then the following estimate holds

where the constant K does not depend on p and A. We give a proof for
the reader’s convenience and because we will need it for the following
lemma.

In (1.4) we take 99 = u and recall (0.10). We obtain that
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On the other hand

From (1.6) and (1.7) it is clear that

and then (1.5) easily follows.
In a similar way we can prove also the following lemma:

LEMMA 1.11. If u is the solution of problem (1.4) with 9-- p &#x3E; Â and

V = Hl(Q), then

with K independent of p and 2.

PROOF. In (1.4) we take p = u - Un and we obtain that

From this point, the proof is completely analogous to that of estimate (1.5).
We will prove now two lemmas concerning Caccioppoli type inequalities.

LEMMA 1.111. Let U E Hl(Q) be ac solution of the equation

with fJlle p &#x3E; A. Let B(e), B(a) be concentric open balls contained in Q with
0  e  ar. Then we have the following estimates

where the constants c do not depend on p, e7 a7 Â.
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PROOF. Let 0 be a real valued function, of class Cl*(Rn), with

Choosmg 99 = 82u in (1.9), we obtain that

Then, recalling (0.9), we get for all e &#x3E; 0

Since f!l¿ p, &#x3E; Â, choosing 8 small enough, we obtain (1.10).
In a similar way we can prove (1.11): we set

Taking 93 = (J2(U - uO,B(a») in (1.9) and noting that

as before for the proof of (1.10), we get the inequality

From (1.14), we easily deduce (1.11) because
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We shall denote

Now aij and bi, ij = 1, ..., n, are functions defined on B+(1) which satisfy,
in B+(l), the assumptions (0.1), (0.11), and

LEMMA 1.IV. If u E Hi(B+(1)) is a solution of the equation

which vanishes on F(l) and f!Ã.e It &#x3E; Â, then for all py a, with 0  p  a:l,
the f ollowing inequality holds

with c independent of fl, e, (], À.

PROOF. Let 0 be a function as described in (1.12). Since u vanishes

on the flat part F(I), in (1.17) we can assume 99 = 02u and, by proceeding
exactly as in the proof of (1.10), we obtain (1.18).

We conclude this section recalling two lemmas proved in [5] (see also [7],
CAP. I, n. 1).

LEMMA l.V. Let cp and w be nonnegative functions defined in (0, d] and
let A and cx be positive constants. If

then for all 8 &#x3E; 0 there is GeE (0, d] such that Va E (0, Ge) and Vt E (0, 1 )

LEMMA 1. VI. Let qJ be a nonnegative f unetion de f ined in (0, d]. Let A, a, f1
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be positive constants with fJ  oc and B &#x3E;, 0. If for all t E (0, 1 ) and or E (0, d]

where K depends only on A, a, (3, 8 (2).

2. - Estimates for solutions of equations with constant coefficients.

In this section we shall prove, for solutions of homogeneous equations
with constant coefficients y some estimates which are a main step in our
method.

Let bij be, ij = 1, ..., n, real constants satisfying the ellipticity condi-
tion (0.6) and p a complex parameter with geu&#x3E;O. B(a) and B+(a) are
the sphere or the hemisphere defined as above.

We will prove the two theorems below:

THEOREM 2.1. I f uc-H’(B(or)) is a solution of the equation

then, for all t E (0, 1)

where c does not depend on fl, 61 t.

THEOREM 2.11. If u E Hl(B+(1 ) ) is a solution of the equations



503

which vanishes on T(I), then for all cr c 1 and t E (0, 1)

where c does not depend on ,u, o,7 t.

Estimates (2.2) and (2.4) are well known in the case of ,u = 0 [5]. Since

the most important thing is that the constants c, which appear in (2.2)
and (2.4), should not depend on ,u, it will be necessary to repeat shortly
the proof.

PROOF OF THEOREM 2.1. Since aB(a) is smooth, without loss of generality
we can suppose that u E Coo(B(a)). Then estimate (1.10), with c indepen-
dent of p, holds for all derivatives of u. It is enough to repeat the proof
of [5] coroll. 7.1 and 7.11:

From (1.10) we deduce that for all integer k

where c depends only on a.
Then, for Sobolev imbedding theorem, if 0  t c 2

Finally, y inequality (2.6) is trivial for 2 c t C 1. Hence we conclude that

f or all t E ( o,1 )

To specify the dependence on 0’, we dilate the spatial coordinates as usual.
The function TI(y) = u(ay) is a Coo solution of the equation

Then, since the constant c in (2.7) does not depend on the coefficient of U,
for all t E (0, 1) 

- -

with c independent of ,u and or.
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(2.2) easily follows from (2.8).

PROOF OF THEOREM 2.11. The proof will be divided in two steps. First

let us suppose that

bil being Kronecker’s symbol.
Equation (2.3) becomes

Since u vanishes on .1’(1 ), the proof is obtained by transforming our problem
into an interior problem by a type of reflection, and then by using the result
of theorem 2.1. Let

where x’ _ (xl, ..., 0153n-l). Then ZJ’ E .g1(B(1 ) ) is a solution of the equation

and, by theorem 2.I, Vol and Ve(0yl)

hence

(2.11)

In the general case note that, if u is a solution of equation (2.3) and
vanishes on T(1), then u E C°°(B+ (1 ) u T(I)) and

Without loss of generality we can suppose that bij= bij and then the dif-
ferential equation (2.12 ), by a suitable linear transformation 9- on the

spatial coordinates, y can be written as
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where U(z) = u(.f-x). B+(I) is carried by ’7’ onto an open set with a flat
part of its boundary, y corresponding to JT(1), which belongs to the plane
xn = o.

We are thus back to the preceding case and leave the details to the
reader.

3. - Estimates for solutions of homogeneous equation with continuous

coefficients.

In this section, we shall be concerned with homogeneous equations,
defined in 9 or in a hemisphere B+ (1 ), with continuous coefficients. The

hypotheses (0.I) and (0.11) are always assumed. The results just obtained
for constant coefficients equations will be applied here to estimate norms
of the type

THEOREM 3.1. Let u E Hi(Q) be a solution of the equation

with -qe ft &#x3E; Â ( 3). Then for all E &#x3E; 0 there is a,, independent on p, such that
for all open balls B(a) cc S2, with a  as, and for every t E (0.1)

where c does not depend on p, t, a, A.

PROOF. Let us denote by co(o) the modulus of continuity of the coef-
ficients aij(x) and fix B(a) = B(xo, a) c Q. In B(a) u can be split as v + w
where w is the solution of the Dirichlet problem

(3) Â is defined as in (0.7).
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whereas v E Hl(B(a)) is a solution of the equation

Ohoosing q; = w in (3.3), for all 8 &#x3E; 0 we get the following estimate for w

Because Re /t &#x3E; 0, choosing 8 small enough, we obtain

where o(a) goes to 0 when a --&#x3E;- 0 -

Using theorem 2.1, we can estimate v in the following way, for all t E (o,1 ),

As u = v + w, from (3.5) and (3.6) we get, by a standard argument, that
for every t E (0, 1)

Then, by lemma 1.V, for every 8 &#x3E; 0 there is or, such that if or  a8 and

e(0,l)

On the other hand by Poinear6 inequality

Because -q-, p &#x3E; A, from (1.11) where we assume e = al2, if t E (0, 1) we

get that
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From (3.8) (3.9) (3.10), (3.2) easily follows if 0  t C 2 . Finally (3.2) is

trivial for -1  t  1.

THEOREM 3.11. If u E Hl(B+(l)) is a solution of the equation

which vanishes on T(1) and Me It &#x3E; À (4), then for all s &#x3E; 0 there is 0"61,
independent of p, such that if a  0"6 and t E (0, 1)

where c does not depend on u, t, a, 2.

The proof of this theorem is completely analogous to that of theo-

rem 3.1; this time we must use theorem 2.11 and estimate (1.18) instead
of theorem 2.1 and (1.11). Thus the proof is left to the reader. Note only
that because of the fact that u vanishes on T(1) we have, instead of (3.9),
the Poinear6 inequality

4. - Local interior and boundary estimates for the Holder norm of u.

Theorems 3.1 and 3.11 enable us to obtain local interior or boundary
estimates for the Holder norm of a solution of the equation

or

In both cases we suppose that assumption (0.I) and (0.11) are fulfilled.

(4) §l is defined as in (1.15).
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THEOREM 4.1. Ifu E Hl(Q) is a solution of equation (4.1 ), where f E cO,tX(Q)
and f!ae£ p, &#x3E; 1 (5), then for every ball B(a) cc Q we have the estimate

where c does not depend on p, A, or.

PROOF. Fix a positive 8  2(1 - Lx) and B(a) cc Q with or ,or,. In B(a
we write u = v + w where w is the solution of the Neumann problem

whereas v E Hl(B(a)) is a solution of the equation

There exists a unique w because of (0.10) and Me it &#x3E; À.
Using lemma 1.II we get the following estimate on w :

with c independent on p, I, a.
Since or (1e, by theorem 3.1 we deduce the following estimate on v:

for all t E (0, 1), where c does not depend on P2 t, a, Â.
As u = v + w, from (4.6) and (4.7) we get that for every t e (0, 1)

(5) §l is defined as in (0.7).
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Because % + 2 - s &#x3E; % + 2ce, from, (4.8) by using lemma l.VI, (4.3) easily
follows for a as (see [5] and [7]). Finally (4.3) is trivial for a&#x3E; ae -

REMARK 4.1. Because of lemma l.I, from (4.8) it easily follows that,
ander the hypotheses of the previous theorm, for every subset Do cc Q,
[U]lX,Do is finite and

where c does not depend on ,u and A (see [5]).

THEOREM 4.11. Let u E gl(B+(1) ) be a solution of equation (4.2) which
vanishes on T(1). Suppose that f E C°’"( Q ) and f = 0 on T(I). Suppose
that We IZ &#x3E; A (6). Then for every a  1 the following estimate holds

with c independent o f u, 22 or-

PROOF. The proof is analogous to that of theorem 4.1. Fix a positive
s2(1-a) and cr  Ge/Bl. In B+(G) we write u = v + w where w is the
solution of the Dirichlet problem

whereas v c HI(B+ (or)) is a solution of the equation

which vanishes on F(a).
By (1.5) the following estimate on w holds

(6) Â is defined as in ( 1.15 ) .
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As f vanishes on .T(or)

Since a  aE, by theorem 3.11 we deduce the following estimate on v :

for all t E (o,1). The constants c which appear in (4.14) and (4.15) do not
depend on p and Â.

As u = v + w, from (4.14) and (4.15) we obtain, for every t E (o, 1 ),

Since n + 2 - s &#x3E; n + 2cx, from (4.16), by using lemma 1.VI and the Poin-
car6 inequality, we easily obtain (4.10) for a  erg (see [5]). On the other
hand (4.10) is trivial for a,. a 1.

REMARK 4.11. Because of lemma 1.I, from (4.3) and (4.10) it easily
follows that, under the hypotheses of the previous theorem, for every a  1
the l’+la,w) iS finite and

where the constant c does not depend on 11 and A (see [5]).

5. - Conclusion of the proof of estimate (0.12).

Now we can conclude the proof of estimate (0.12) which was the aim
of the present paper.

The conclusion of the proof is, as usual, by a covering argument. By
the definition of boundary of class C2, about every 0153oE 8Q there is an

open neighborhood U which can be mapped, by a mapping of class C2

together with its inverse, onto the sphere B(1 ) = B(O, 1) and in particular
Un Q is carried in B+(1 ) and C7’n 8Q in the flat part T(1). Such a map-

ping preserves the desired properties of u and the properties (0.1), (0.11)
of the coefficients aij and bi in the trasformed differential equation.
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Since 8Q is a compact set, only a finite number of such neighborhoods
are needed to cover it, say Ul, ... , U,..

For each Ui we can suppose J close enough to 1 so that, if Ui(a) is the
inverse image of B(a), Ul(a), ..., U m(a) still cover aS2.

Then there exists an open subset Do cc S2 such that Qo, Ul(a), ..., U mea)
cover D.

REMARK 4.1 can be applied to subset Qo, then if gz 9 &#x3E; A we have
estimate (4.9).

REMARK 4.11 can be applied to each of the mapped neighborhoods Ui(a),
and therefore there exist A,&#x3E; ol i = 17 ... , m such that if -qe p &#x3E; A i

Set

From estimates (4.9) and (5.1) we derive that, if 9-- It&#x3E; lo

where c does not depend on It and Âo.
To obtain (0.12) we only need to apply (1.5) with Âo instead of A.
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