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Steiner’s Formula for the Volume of a Parallel

Hypersurface in a Riemannian Manifold.

E. ABBENA - A. GRAY - L. VANHECKE

1. - Introduction.

Let P be a connected orientable embedded hypersurface of compact
closure in an oriented Riemannian manifold M. We suppose that P, M
and the embedding of P in M are all of class Coo (unless stated otherwise), y
and that the manifold topology of P coincides with the subspace topology.
For small r &#x3E; 0 we put

T (P, r) = fp c- X I there exists a geodesic of length  r from p to P
meeting P orthogonally} .

This is the tube of radius r about P. Also let

Because both P and Mare orientable, Pr will have two components, P/
and P;. These are the hypersurfaces parallel to P. Let

Sp(r) == (n -I)-dimensional volume of Pr , y

TT p(r) = n-dimensional volume of the portion of T (P, r) lying between

Pr and P .

We call the Y p (r) the volumes of the « half-tubes ». It is not hard to see

that 8§(r) = (djdr) V§(r) .
The purpose of this article is to determine the terms of order less than

or equal 5 in the power series expansion for Yp(r) ; in the case that If is

Pervenuto alia Redazione il 24 Dicembre 1979 ed in forma definitiva il 21 Feb-
braio 1981.
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Euclidean space or a simply connected rank 1 symmetric space we give
the complete formulas.

Formulas of this sort were first considered by Steiner in 1840 [STE].
He considered curves in the plane and surfaces in R3, assumed that they
were closed and convex, and found the formula for S’(r), where P/ is a

parallel hypersurface determined by the outward normal. Steiner also gave
a formula for the volume of the convex body whose boundary is Pl+.
In our notation this would be V + Vt(r), where V is the volume of the
convex body whose boundary is P. Generalizations of Steiner’s formulas

to higher dimensions and to spaces of constant positive curvature have
been given by several authors [AL2], [HAI-5], [HZ], [OH], [V AI-8]. Also

Fiala [FI] studied parallel curves on surfaces, and Federer [FD1] generalized
Steiner’s formula for Vp(r) for certain subsets of R"‘ other than submani-

folds. In the references at the end of the paper we list other books and

papers that treat Steiner’s formula and its generalizations.
There is also a relation between the functions V§(r) and Sl(r) and the

volumes of tubes as studied in [WY], [BG, pp. 235-256], [FL1], [GR5],
[GR6], [GV1-4], [GS, pp. 432-472], [HO], [WO]. Clearly

and

are the volumes of T(P, r) and its boundary Pr u Pr . In the papers just
mentioned the power series expansions for Vp(r) and $,(r) are given not
only for hypersurfaces, but also for submanifolds of arbitrary codimension,
which need not be orientable. Thus for orientable hypersurfaces Steiner’s
formula amounts to a refinement of Weyl’s formula for the volume of a
tube. In [WY] Weyl showed that when P c Rn the function Vp(r) is in-

trinsic to P, and in fact can be expressed in terms of the curvature of P.
This is not true for YP (r) and YP(r), however.

In section 2 we review the (generalized) Fermi coordinates and Fermi
vector fields introduced in [GV3]. The Fermi coordinates for a hyper-
surface are considerably simpler than those of a general submanifold. In

section 3 we use the formulas of section 2 to give our expansions for

S’p(r) and Vp(r). Using this expansion (formula (3.25)) one obtains at

once the following comparison theorem.

THEOREM 1.1. Let M be an analytic oriented .Riemannian mani f old and P
a eonnected, orientable, analytically embedded minimal hypersurface with com-
pact closure. Suppose that M has positive (negative) Ricci curvature at all

points of P. Then for sufficiently small r &#x3E; 0



where V p (r) denotes the volume of the half-tubes of radius r about P if P were
in Euctidean space (that is, formulas (4.6)).

Finally in section 4 we write down formulas for SP (r ) when P is a
hyper surface in Euclidean space or in a rank one symmetric space.

2. - Fermi coordinates and Fermi fields.

Let If be a C- Riemannian manifold of dimension n with metric tensor

field. Denote by X(M) the C°° vector fields on M, and let V and be
the Riemannian connection and curvature of M. Here R is given by
Rxy = V(Exy]) - [V x, Vy] for X, Y E X(M). Sometimes we write R(X, Y) Z
instead of .RgYZ. Denote by (! and r the Ricci and scalar curvatures of M.

Assume that if is orientable and that P is an orientable hypersurface.
Then on P there is a globally defined vector field N with 11 N 11 = 1 that
is everywhere normal to P. One orientation of P is determined by N, the
other by - N.

Let (xl, ..., xn) be a system of (generalized) Fermi coordinates as intro-
duced in [GV3]. They are defined in a neighborhood II of P. Here

xl, ..., zn_i when restricted to P form a coordinate system on P, while xn
measures the distance normal to P. We also recall the notion of tangential
Fermi f ield which in [GV3] was defined to be a vector field of the form

n-l

.,4 1 ga(alaXa), where the ga’s are constants. The vector field N is a
a=l

normal Fermi field in the sense of [GV3] because N = a/ axn . We denote
by X(P, m)T the finite dimensional Abelian subalgebra of X( U) formed by
the tangential Fermi fields.

In order to derive our generalization of Steiner’s formula it will be neces-
sary to calculate various covariant derivatives of the Fermi fields. We do

this in two elementary lemmas following the scheme of [GR5]. The cal-

culations for a hypersurface are simpler than those for a general submani-
fold. We write Vx,, ... x, Y = V’X1V’XZ ... Vx,, Y.

LEMMA 2.1. For A, B E X,(P, m)T we have

where y is a geodesic normal to P at some point

475
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PROOF. (2.1) is obvious from the definition of Fermi field. Further-

more N,(t) = ± y(t) / 11 y’(t) 11, so that (VNN) y(t) = 0, because y is a geodesic.
Taking successive covariant derivatives we get (2.2). To prove (2.3) we put

where A occurs in the s-th place. From (2.2) and the fact that [N, A] = 0
it follows that

The right hand side of (2.5) can be expressed in terms of the covariant
derivatives of R, A and N at m. However, if 2  s  p each term contains

a factor of the form CBl;...NN)m with u &#x3E; 0. Hence As = AS-l for 2  8  p.
On the other hand from (2.2) it follows that A1 = 0. Hence we get (2.3).

Finally for (2.4) we use the definition of the curvature operator, (2.1),
(2.2) and (2.3) to obtain:

In order to describe the embedding of P in M we shall make use of that
version of the second fundamental form known as the shape operator S
(see [BC, pp. 195-212], [ON, pp. 189-193]). We regard S as a linear trans-
formation 3C(jP) - Jl(P) given by

It is well known (and easy to prove) that (SA, B) == A, SB&#x3E;. When the
opposite orientation of P is used, we must change S to - S. Next we use
lemma 2.1 to compute the first four covariant derivatives of A e3C(jP, m)T
with respect to N at m. Let VN....y(B) denote the p-th covariant deriva-
tive of the curvature operator.

LEMMA 2.2. W e have

PROOF. (2.6) follows from (2.1) and the definition of S. Also (2.7) is

a special case of (2.4). Equations (2.8)-(2.9) are found by expanding (2.4).
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We have for (2.8) that

Next for (2.9) we compute

3. - The power series for the volume of a half-tube about a hypersurface.

Let co denote the volume element of M. We first compute the terms of
order at most 4 in the power series expansion of OJl...n= w( 8j8ri , ..., alax"),
where (xl, ..., xn) is a system of Fermi coordinates at m for the hypersurface P.
Here, we shall use the index conventions 1  a, fl, V, 6  n and 1  a, b, el d 
c n - 1. Denote by RT the curvature operator of the submanifold P, and
let .7, iT be the corresponding Ricci and scalar curvatures. The following
notation will be used:

(Here .H is the mean curvature vector field.)
If $ is a tensor field of type (2, 0 ) on if and n is a tensor field of type (2, 0 )

n- 1

on P, we write ,q&#x3E; == y 03BE03B1bnab&#x26;. · Finally we write R(N, Xa)N, Xb) =
a,b = 1

== RNaNb, etc. In all of the above it is assumed that all quantities are eval-
uated at the center m of the system of Fermi coordinates.

The curvature operators JR and RT and the shape operator 8 are related
by the Gauss equation:
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Let S?, D" be the curvature forms corresponding to jR and RT. Then

S2,,#(X,, X,5) = RtXPYð and Q,,lb(X,, Xd) _ B",d. Also let S8a be the 1-form
given by SfJa(Xb) = 8a(I17115) = Xa, SXb) == Sab at m. We can rewrite (3.1) as

Next let A be a 2k x 2k skew-symmetric matrix with entries Åab from a
commutative algebra over R. We recall that the Pfaffian .A.1, , , 2k of A is
given by

where A denotes the multiplication of the algebra,

and Ea is the sign of oB Here 62k denotes the symmetric group of degree 2k.
We denote by Åal".a2C the Pfaflian of the skew-symmetric submatrix of A
in which the indices range over the values al, ... , I a2c’

We shall be concerned with the case when .A is the matrix S2" - Q whose
entries are Q’ - S2.b * The following is a generalization of the Gauss equa-
tion that we shall need for our generalization of Steiner’s formula.

LEMMA 3.1. W e have

PROOF. We have from (3.2) that

where A is the matrix whose entries are SOa/BSOb. Using the definition (3.3)
of the Pf affian Aa18..aIlC we see that all the terms on the right hand side of (3.3)
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are the same. It follows then from (3.6) that

We also have

and from (3.7) and (3.8) we get (3.4).
To prove (3.5) we compute as follows:

..

We shall also need some of the formalism of [GR2], [GR3]. Let Ro be
a tensor field on P of the same type as the curvature operator of P. We write

B,,(TVAX)(YAZ) for the value of .Ro on W, X, Y, Z c a;(P), and we as-

sume that Ro has all the symmetry properties of the curvature tensor field
of P. In [GR3] the s-th power of .Ro is defined as a special case of multi-
plication of double forms. Here Bo’ is given by

where igs = {o’e(g2,jo-(2- 1)  a(2t) for t = 1,..., s}. Also following [GR2]
it will be useful to consider the contraction operators Ct. These are defined

inductively by 00(B’O) = R’ 0 and

for Xl, ..., X2S-0 Yl, ..., Y2s-t E X(P), were {El, ..., En-l} is an arbitrary
local frame. We shall write (RO)., ... a2, bl.. o b28 for Bso(Xal A o - o A Xa,.) (yb, A - - . A Yb2-)’etc. Further let S(al, ... , ad) denote the determinant of the submatrix of Setc. Further let (iy ...y ) denote the determinant of the submatrix of /S

in which the indices range over the values a,,..., a,. Then
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COROLLARY 3.2. (Generalized Gauss equations). We have

PROOF. (3.11) is immediate from (3.4) and the definition of the Pfaffian.
Furthermore (3.12) follows from (3.5) and (3.11).

Recall that (using our notational conventions given at the beginning of
the section)

LEMMA 3.3. yV’e have

PROOF. (3.13) is obvious from (3.11). For (3.14) we compute from (3.12)
as follows:
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We note the following special cases of (3.13) and (3.14):

We are now able to prove

THEOREM 3.4. The power series expansion for Wl...n in Xn = r is given by

PROOF. We have
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Using the formulas of section 2 we obtain

Similarly

Next we have
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For the coefficient of r4 we compute
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From (3.20)-(3.23) we get (3.19).
Now we compute the power series for Spl(r) and Vt=(r).
THEOREM 3.5. We have
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PROOF. We have

(This is an obvious generalization of lemma 7.1 of [GR6].) Then (3.24)
follows immediately from (3.19) and (3.26). Also (3.25) is a consequence
of (3.24) and the relation S;(r) = (dldr) Vl (r) ,

4. - The volumes of half-tubes in Euclidean space and rank 1 symmetric
spaces.

In this section we give the complete formula for $1 (r) where P is an
orientable hypersurface in Euclidean space or in an orientable rank 1 sym-
metric space. Then Vpl (r) can be determined from the relation (d/dr)YP (r) _
Spl(r). This sometimes involves a messy integration, and so we calculate
± (r) explicitly only when it is convenient to do so.

We shall need certain mean curvatures to understand the geometrieal
significance of the coefficients in the expansion of Spl (r).

DEFINITION. Let P be an orientable hypersurface of an orientable

Riemannian manifold M. The c-th integrated mean curvatures kc of P in M
is given by

Although the integrated mean curvatures are defined in terms of the
shape operator it is almost possible to eliminate the dependence on 8.

LEMMA 4.1. We have
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PROOF. This is immediate from (4.1), (4.2) and lemma 3.3.
In [WY] Weyl introduced the quantities kc (for c even) in the more

general situation when P is a submanifold of arbitrary codimension and
possibly nonorientable. These are the coefficients in his formula for the
volume Vp(r) of a tube about P, when P is a submanifold of a sphere or
Euclidean space. His main point was that the k2c are completely expres-
sible in terms of the curvature operator RT of P. (Actually when P is a
submanifold of a sphere, the k2c also depend on the value of the constant
curvature of the sphere. ) We shall generalize these results to the case of a
hypersurface of a rank 1 symmetric space, and at the same time obtain
formulas for 8§(r) and YP (r) .

In contrast to the situation with the k2c it is clear that the k2c+l depend
on the particular embedding of P in M, even when M is a Euclidean space
or a rank 1 symmetric space. Nonetheless we see from (4.4) that this de-

pendence is linear instead of something more complicated.
The integrated mean curvatures have also been used in [AL2], [BF],

[FD1], [FL2], [HAl], [SA], [SW], [VAl-8], but in these papers no use was
made of the relations between curvature and the second fundamental form

given by lemma 4.1. In the notation of Allendoerfer [AL2] (writing n for
Allendoerfer’s n +1) we have

We shall use Jacobi fields to compute Sp (r) for a hypersurface in Eucli-
dean space or a rank 1 symmetric space. Our method is to exploit the rela-
tion between Jacobi fields and Fermi fields given in [GR6]. Let y be a
unit speed geodesic in M meeting P orthogonally at a point m. We may
assume that y(o ) = m ; then 1"(0) EP-jn. Let (Xl’ ..., xn) be a system of

Fermi coordinates such that y’ (t) = N,(t) = Xnly(t).

.. 
. LEMMA 4.2. When restricted to y the following are Jacobi fields :

For a proof see [GR6] or the appendix of [GV2].
There are standard formulas (see for example [BS, p. 87]) that relate

Jacobi fields and parallel fields for Euclidean space and the rank 1 sym-
metric spaces. Because of this we shall be able to express Fermi fields in

terms of parallel fields. This will allow us to compute WI... fq and hence
also S:(r).



487

In terms of the Fermi coordinates (Xl’ ..., x,.) for P at m we define a
parallel frame field {El’.’" En) along the geodesic y. Let E, ,lv(t) be the
parallel translate of XfXlm along y for a = 1, ... , n. Then Elv(t) = Xly(t) ==
Nv(t). This holds for any Riemannian manifold. However the expres-
sions for the X,, in terms of the Ea for 1  a  n - 1 depend on the particular
Riemannian manifold. Also let SmEa denote the vector field along y such
that S.Elv(t) is the parallel translate of S.E,,,..

We are now ready to give our formulas for S.’ (r) and Yp (r) . For Euclidean
space we have

THEOREM 4.3. Let P be an orientable hypersurface of RD. Then

PROOF. For R" each Jacobi field is of the form I (aa + tba) Ea, where
each .Ea is parallel. From this fact, lemma 4.2 and the initial conditions
given by (V.,N). = - (SA)m we find that

From (4.7) it follows easily that

Integrating (4.8) and using the integrated mean curvatures we find (4.5).
A further integration yields (4.6).

It is not much more difficult to find the formulas for Spl (r) when P is
a hypersurface of a space of constant curvature A. For convenience we

assume A &#x3E; 0. The formulas for the case A  0 can be found by changing
all of the trigonometric functions to hyperbolic functions. Similar remarks

will apply to the other rank 1 symmetric spaces.
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THEOREM 4.4. Let P be an orientable hypersurface in a sphere sn(Â) with
constant curvature A &#x3E; 0. -Let kc(Â) = kc(Sn(Â), P). Then

PROOF. For S"(A) each Jacobi field is of the form I (aa cos il5t +
+ ba sin ilTAt) E,,, where each .Ea is parallel. Using this fact and proceeding
as in theorem 4.3 we find that

From (4.10) it follows that

The rest of the proof is the same as that of theorem 4.3.
The computations for the other rank one symmetric spaces are more

complicated.

THEOREM 4.5. Let P be an orientable hypersurface in the complex projec-
tive space CPn(,u) with constant holomorphic sectional curvature I-" &#x3E; 0. Then

PROOF. Let {E1, ... , E2n_2, E2n-l = IN} be a parallel frame field along y.
Here J denotes the almost complex structure. Proceeding as in theorem 4.3
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we find that

From (4.13) it follows that

where a, b = 12 ..., 2n - 1. This implies (4.12 ) .

THEOREM 4.6. Let P be an orientable hypersurface in the qu,aternionic
projective space QP’i(v) with maximum sectional curvature v &#x3E; 0. Then

PROOF. In a neighborhood of m = y(O) there are locally defined almost
complex structures I, J and :g such that IJ = - JI = K, etc. Let

{E1, ..., E4n-4, E4n--3 = KN, E4n-2 = JN, B4n-l = IN) be a paraflel frame
field along y. In order to achieve this it is necessary to make the proper
choice of the locally defined almost complex structures I, J and K. Pro-

ceeding as in theorem 4.3 we find
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From (4.15) it follows that

where a, b = 1, ..., 4n - 1. This gives the required formula (4.14). 

’

THEOREM 4.7. Let P be an orientable hypersurface in the Cayley plane
Cay P2(C) with maximum sectional curvature C&#x3E; 0. Then

PROOF. We proceed as in theorem 4.6. Let {E1, ..., E8, E9 = 1,N, ...
..., E15 = 1,N} be a parallel frame field along y with respect to a proper
choice of the almost complex structures lex. Then we find

From (4.17) we find

where a, b = 1, ..., 15. This implies (4.16).

REFERENCES

[AB] J. ABRAM, Tensor calculus through differential geometry, Butterworths,
London, 1965.

[AL1] C. B. ALLENDOERFER, The Euler number of a Riemannian manifold, Amer.
J. Math., 62 (1940), pp. 243-248.



491

[AL2] C. B. ALLENDOERFER, Steiner’s formula on a general Sn+1, Bull. Amer.
Math. Soc., 54 (1948), pp. 128-135.

[AL3] C. B. ALLENDOERFER, Global differential geometry of imbedded manifolds, Pro-
blemi di geometria differenziale in grande, C.I.M.E., Cremonese, Roma, 1958.

[AW] C. B. ALLENDOERFER - A. WEIL, The Gauss-Bonnet theorem for Riemannian
polyhedra, Trans. Amer. Math. Soc., 53 (1943), pp. 101-129.

[BGM] M. BERGER - P. GAUDUCHON - E. MAZET, Le spectre d’une variété rieman-
nienne, Lecture Notes in Mathematics, vol. 194, Springer-Verlag, 1971.

[BG] M. BERGER - B. GOSTIAUX, Géométrie Différentielle, Armand Colin, Paris, 1972.
[BDP] J. BERTRAND - C. F. DIGUET - V. PUISEUX, Demonstration d’un théorème

de Gauss, Journal de Mathématiques, 13 (1848), pp. 80-90.
[BS] A. L. BESSE, Manifolds all of whose geodesics are closed, Ergebnisse der

Mathematik, vol. 93, Springer-Verlag, 1978.
[BC] R. BISHOP - R. CRITTENDEN, Geometry of manifolds, Academic Press, 1964.
[BK] W. BLASCHKE, Vorlesungen über Integratgeometrie, Deutscher Verlag der

Wissenschaften, 1955.

[BR] W.BLASCHKE - H. REICHARDT, Einführung in die Differentialgeometrie,
Springer-Verlag, 1960.

[BF] T. BONNESEN - W. FENCHEL, Theorie der konvexen Körper, Ergebnisse der
Mathematik, Springer-Verlag, 1934, Chelsea reprint, 1948.

[CH1] S. S. CHERN, On the kinematic formula in the Euclidean space of N di-
mensions, Amer. J. Math., 74 (1952), pp. 227-236.

[CH2] S. S. CHERN, On the kinematic formula in integral geometry, J. Math. Mech.,
16 (1966), pp. 101-118.

[DC] M. DO CARMO, Differential geometry of curves and surfaces, Prentice Hall, 1978.
[ER] J. ERBACHER, Riemannian manifolds of constant curvature and growth func-

tions of submanifolds, Michigan Math. J., 19 (1972), pp. 215-223.
[FD1] H. FEDERER, Curvature measures, Trans. Amer. Math. Soc., 93 (1959),

pp. 418-491.

[FD2] H. FEDERER, Geometric Measure Theory, Springer-Verlag, 1969.

[FE] E. FFRMI, Sopra i fenomeni che avvengono in vicinanza di una linea oraria,
Atti R. Accad. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 31 (1922), pp. 21-23,
51-52, 101-103. Also The collected works of E. Fermi, vol. 1, pp. 17-19,
The University of Chicago Press, 1962.

[FI] F. FIALA, Le problème des isopérimètres sur les surfaces ouvertes à coubure
positive, Comment. Math. Helv., 13 (1941), pp. 293-341.

[FL1] F. J. FLAHERTY, The volume of a tube in complex projective space, Illinois
J. Math., 16 (1972), pp. 627-638.

[FL2] F. J. FLAHERTY, Curvature measures for piecewise linear manifolds, Bull.
Amer. Math. Soc., 79 (1973), pp. 100-102.

[GR1] A. GRAY, Minimal varieties and almost Hermitian submanifolds, Mich.
Math. J., 12 (1965), pp. 273-287.

[GR2] A. GRAY, A generalization of F. Schur’s theorem, J. Math. Soc. Japan, 21
(1969), pp. 454-457.

[GR3] A. GRAY, Some relations between curvature and characteristic classes, Math.
Ann., 184 (1970), pp. 257-267.

[GR4] A. GRAY, Weak holonomy groups, Math. Z., 123 (1971), pp. 290-300.
[GR5] A. GRAY, The volume of a small geodesic ball in a Riemannian manifold,

Michigan Math. J., 20 (1973), pp. 329-344.



492

[GR6] A. GRAY, Comparison theorems for the volumes of tubes as generalizations of
the Weyl tube formula, Topology (to appear).

[GV1] A. GRAY - L. VANHECKE, Riemannian geometry as determined by the volumes
of small geodesic balls, Acta Math., 142 (1979), pp. 157-198.

[GV2] A. GRAY - L. VANHECKE, The volume of tubes about curves in a Riemannian
manifold, Proc. London Math. Soc. (to appear).

[GV3] A. GRAY - L. VANHECKE, The volume of tubes in a Riemannian manifold,
(to appear).

[GV4] A. GRAY - L. VANHECKE, Oppervlakten van geodetische cirkels op oppervlakken,
Med. Konink. Acad. Wetensch. Lett. Schone Kunst. België Kl. Wetensch., 42,
No. 1 (1980), pp. 1-17.

[GS] P. A. GRIFFITHS, Complex differential geometry and curvature integrals as-
sociated to singularities of complex analytic varieties, Duke Math. J., 45 (1978),
pp. 427-512.

[GN1] N. GROSSMAN, Polynomial estimates for Betti numbers of loop spaces of sym-
metric and close to symmetric Riemannian manifolds, Indiana Math. J., 20
(1971), pp. 717-731.

[GN2] N. GROSSMAN, On characterization of Riemannian manifolds by growth of
tubular neigborhoods, Proc. Amer. Math. Soc., 32 (1972), pp. 556-560.

[GU] H. W. GUGGENHEIMER, Differential geometry, McGraw Hill, 1963.

[HA1] H. HADWIGER, Die erweiterten Steinerschen Formeln für ebene und sphitrische
Bereiche, Comment. Math. Helv., 18 (1945), pp. 59-72.

[HA2] H. HADWIGER, Inhaltsungleichungen für innere und äusere Parallelmengen,
Experientia (Basel), 2 (1946), p. 490.

[HA3] H. HADWIGER, Über das volumen der Parallelmengen, Mitt. Naturforsch.
Ges. Bern., N.F., 3 (1946), pp. 121-125.

[HA4] H. HADWIGER, Über die erweiterten Steinerschen Formeln für Parallelmengen,
Rev. Mat. Hispano-Americana, 4a serie, 6 (1946), pp. 160-163.

[HA5] H. HADWIGER, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Sprin-
ger-Verlag, 1957.

[HS] S. HAAS - H. L. SCHMID, Mathematisches Wörterbuch, Akademie-Verlag,
B. G. Teubner, Berlin, 1967. 

[HZ] G. HERGLOTZ, Über die Steinersche Formel für Parallelflächen, Abh. Math.
Sem. Hansischen Univ., 15 (1943), pp. 59-72.

[HR1] R. A. HOLZSAGER, Riemannian manifolds of finite order, Bull. Amer. Math.
Soc., 78 (1972), pp. 200-201.

[HR2] R. A. HOLZSAGER, A characterization of Riemannian manifolds of constant
curvature, J. Differential Geometry, 8 (1973), pp. 103-106.

[HW] R. A. HOLZSAGER - H. WU, A characterization of two dimensional Riemannian
manifolds of constant curvature, Michigan Math. J., 17 (1970), pp. 297-299.

[HO] H. HOTELLING, Tubes and spheres in n-space and a class of statistical problems,
Amer. J. Math., 61 (1939), pp. 440-460.

[OH] D. OHMANN, Eine verallgemeinerung der Steinerschen Formel, Math. Ann.,
129 (1955), pp. 204-212.

[ON] B. O’NEILL, Elementary differential geometry, Academic Press, 1966.
[OS1] R. OSSERMAN, The isoperimetric inequatity, Bull. Amer. Math. Soc., 84

(1978), pp. 1182-1238.
[OS2] R. OSSERMAN, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly,

86 (1979), pp. 1-29.



493

[SA] L. A. SANTALÓ, Integral geometry and geometric probability, Encyclopedia
of Mathematics and its Applications, Addison Wesley, 1976.

[SP] M. SPIVAK, A comprehensive introduction to differential geometry, vol. 5,
Publish or Perish, Boston, 1975.

[STE] J. STEINER, Über parallele Flächen, Monatsbericht der Akademie der Wis-
senchaften zu Berlin (1840), pp. 114-118, Also Werke, vol. 2 (1882), pp. 171-176.

[SW] R. SULANKE - P. WINTGEN, Differentialgeometrie und Faserbündel, Birkhäuser
Verlag, 1972.

[VA1] E. VIDAL ABASCAL, Sobre un teorema de Liouville y generalización de fór-
mulas de Steiner, Rev. Mat. Hispano-Americana, 4a serie, 6 (1946), pp. 3-8.

[VA2] E. VIDAL ABASCAL, Sobre fórmulas de Steiner para el área de una elipse,
Rev. Geodésica, 6 (1947), pp. 425-431.

[VA3] E. VIDAL ABASCAL, A generalization of Steiner’s formula, Bull. Amer. Math.
Soc., 53 (1947), pp. 841-844.

[VA4] E. VIDAL ABASCAL, Extensión del concepto de curvas paralelas sobre una

superficie. Longitud y área correspondientes a la curvatura así deducida de
otra dada, Rev. Math. Hispano-Americana, 4a serie, 7 (1947), pp. 3-12.

[VA5] E. VIDAL ABASCAL, Area engendrada sobre una superficie por un arco de
geodésica cuando uno de sus extremos recorre una curva fija y longitud de la
curva descrita por el otro extremo, Rev. Mat. Hispano-Americana, 4a serie,
7 (1947), pp. 132-142.

[VA6] E. VIDAL ABASCAL, Curvas paralelas sobre superficies de curvatura constante,
Rev. Union Math. Argentina, 8 (1948), pp. 135-138.

[VA7] E. VIDAL ABASCAL, Introducción a la geometría diferencial, Dossat, Madrid,
1956.

[VA8] E. VIDAL ABASCAL, Nueva deducción de las fórmulas de Steiner en un gene-
ral Sn+1, Collectanea Mathematica, 14 (1962), pp. 47-50.

[WY] H. WEYL, On the volume of tubes, Amer. J. Math., 61 (1939), pp. 461-472.
[WO] R. A. WOLF, The volume of tubes in complex projective space, Trans. Amer.

Math. Soc., 157 (1971), pp. 347-371.
[WU] H. WU, A characteristic property of the Euclidean plane, Michigan Math. J.,

16 (1969), pp. 141-148.

Istituto di Geometria
Universith di Torino
Via Principe Amedeo 8
10123 Torino,

Department of Mathematics
University of Maryland
College Park, Maryland 20742

Departement Wiskunde
Katholieke Universiteit Leuven

Celestijnenlaan 200B
B-3030 Leuven, Belgium


