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On the Absence of Poincaré Lemma
in Tangential Cauchy-Riemann Complexes.

ALDO ANDREOTTI (~)
GREGORY FREDRICKS - MAURO NACINOVICH

This study originated from the example of H. Lewy of a differential
equation with variable coefficients without solutions [9]. The equation of
H. Lewy is the following one

wherexl, X2, x3 are cartesian coordinates in R3 and where f is a given C°°
function.

One realizes that the operator L of H. Lewy has the following geometric
meaning. On C2 we consider the hypersurface S : Im Z2 = Zl Zl’ where Zl =

Xl + iX2, z2= x,, + ix, are holomorphic coordinates in C2. A necessary
condition for a C°° function u on S (where zi , x2, 01533 are taken as coordinates)
to be the restriction of a holomorphic function in C2 is given by Lu = 0,
(cf. [0], [3]).

Here we consider the following general situation. We consider on a
complex manifold X the Dolbeault complex of the i-operator (exterior
differentiation with respect to local antiholomorphic coordinates). We con-
sider a real smooth submanifold S c X. One can then define an associated

complex on S by a general procedure that is explained in section 1 and 2.
Let

(t) Scomparso il 21 Febbraio 1980.

Pervenuto alla Redazione il 4 Febbraio 1980 ed in forma definitiva il 14 Giu-

gno 1980.
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be the complex obtained on S considered as a complex of sheaves. In sec-

tion 3 we prove that if S is « generic », then the above complex is a complex
of differential operators whose cohomology is isomorphic to the cohomology
of the Dolbeault complex of Whitney functions on S (proposition 3).

For instance for S c C2 given by Imz2 == ZlZl we deduce Q(O) = Q1&#x3E; =

= 6(S) = the sheaf of Coo functions on 8, and Qcj&#x3E; = 0 for j &#x3E; 2. The

complex (*) reduces to g(S) # 6(8) -&#x3E; 0 (L = 8s) and the meaning of H.
Lewy example is that the C- Poinear6 lemma is not valid for this complex
in dimension one.

In the case S is a hypersurface and its Levi form is nondegenerate
wcith p positive and q negative (p + q = dimo .X -1 ) eigenvalues at a point
X,,G S, then the following result was established in [3]: the Poincaré lemma
for the complex (*) fails in dimensions p and q (and zero) at the point xo .
This case showed that the H. Lewy phenomenon of equations without solu-
tion is present also for overdetermined and underdetermined systems (even
if the data satisfy all possible integrability conditions).

In this paper we continue the investigation also for the case S is no
longer a hypersurface.

We first define at each point 0153oE 8 the u Levi form » of S. This ap-

pears to be the following object. Let H(S).,. be the maximal complex space
contained in the real tangent space to S at xo . Let Naeo(8) be the fiber of
the real normal bundle to 8 at xo and let herm (H(S)..) be the linear space
of hermitian quadratic forms on H(S)xo . The Levi form is a linear map

- 
0

For each A E N.,,,(S) - {0} let e.,.(A) = (p, g) be the signature of C(Â) (i.e.
p = number of positive eigenvalues, q = number of negative eigenvalues).

Here we prove the following theorem (theorem 3): let 8 be generic at xo
with eaeJÄ) = (p, g) for some A E Naeo(S) - {01 and with p + g = dime H(S)x..
Then in the complex (*) the Poinear6 lemma is not valid at the point xo
in dimensions p, q (and zero).

The proof of this theorem is obtained with an adaptation of the argu-
ment used by H6rInander in obtaining a necessary condition for solvability
in the case of a single operator. ([7], ch. VI).

Heuristically stated for a single operator P(x, D) the condition of H6r-
mander could be formulated by saying that the adjoint homogeneous equa-
tion tPw = 0 has no short wave solutions whose amplitude decreases ex-

ponentially with the reciprocal of the wave length. This condition is very
reminiscent of Sommerf eld’s radiation condition (cf. [12] and [16]).
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Returning to the above stated theorem we show that under the spe-
cified assumptions the local cohomology groups

(and of course Je2o) are infinite dimensional.
At the end of the paper we establish a spectral sequence connecting

the cohomology of S with values in 0,,= Ker fQ(O) Q(1)1 with the
cohomology of the tangential complex (*), and we treat some special cases
by means of a Mayer-Vietoris sequence proved at the beginning of this
paper.

In relation with this type of results one should also refer to global
results contained in the papers of Kohn [8], to the microfunction coho-
mology of Sato-Kaway-Kashiwara [15], to a paper of Boutet de Monvel [5]
for cohomology « modulo the C°° functions » and to results of Treves [17]
for a pseudodifferential approach.

A last remark. If S c X is real analytic and one considers for S generic
the analogue of the complex (*) in the real analytic category (i.e. for real
analytic « forms ») then the Poincaré lemma is always valid (Proposition 7 ).

1. - Rough Mayer-vietoris sequence.

a) Let X be a C°° differentiable manifold, let E’ be a C°° differentiable
vector bundle on .X and let A be a closed subset of X. We set

6(X) = 6(X, .E) = space of C°° sections of the bundle E’ on X;

is flat at each point of A}.

A section s of .E’ is « flat » at a point a if with respect to a system of
local coordinates at a on .g the components of s have all their partial deriva-
tives zero at a. This notion is independent of the choice of local coordinates
at a on X and of the trivialization of E near a.

We then define the space W(A) _ ’W (A, E) of Whitney sections of .E
on A by the exact sequence
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b) Given two closed sets A, B in X we will say that they are regularly
situated if they satisfy the following condition of Lojasiewicz.

For any point a E A r1 B we can find a relatively compact coordinate
patch U 3 a in .X and constants ?&#x3E;0y(x&#x3E;0 such that, for any point
x E A n Zr we have

where « dist» means the euclidean distance in the patch P.
Note that if A n B == 0 the condition is empty, thus verified.
Let us fix a complete Riemannian metric on .X and let d(x, y) denote

the geodesic distance. The condition of Lojasiewicz can also be stated in
the following global form

either .d r1 B = 0;

or given K c A. compact we can find constants c &#x3E; 0, a &#x3E; 0 such that

for any x c- K we have

The verification of this fact is omitted.

We consider now the following sequence of linear maps

where

Clearly oc is injective, {3 is surjective and floce = 0.
The following is a theorem of Lojasiewicz

THEOREM 1. The necessary and sufficient condition that the sequence (1)
be an exact sequence is that A and B be regularly situated.

c) A subset C closed in X will be called locally semianalytic if for

any point c E C we can find a coordinate patch U a c and a finite nrmber
of real analytic functions u;;: U - R, 1 c i c p, liq, such that
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Given two closed sets A and B in X we will say that they are (simul-
taneously) locally semianalytic if for any point c E .A r1 B we can find a co-
ordinate patch U 3 C and real analytic functions Ui;: U ---* R, v,,: U - R,
Iip, 1jq; 1ra, 1sfl such that

The following is a useful criterion also due to Lojasiewicz.

THEOREM 2. If the closed sets A and B are simultaneously locally semi-
analytic then A and B are regularly situated.

d) We give now on X a sequence Ei, j = 0, 1, 2, ... of vector bundles

and for each one we define the spaces

We assume that we have given differential operators

so that the sequence

is a complex.
For any closed set A c .X we have

the sequence

and therefore

is a subcomplex of the complex (2). The quotient complex will be the
complex

where A, here means the differential operator A, applied to the Whitney
functions.
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We will denote by

the cohomology groups of the complex (3).

PROPOSITION 1. -Let A and B be closed sets regularly situated in X. We
have an exact eohomology sequence (rough lVlayer-Yietoris sequence)

PROOF. Since A and B are regularly situated we do have exact sequences

for any j &#x3E; 0. These give an exact sequence of complexes and therefore
an exact cohomology sequence, the one in the statement of the proposition.

REMARK. Let 0 be any paracompactifying family of supports on X.
We can then define the spaces

and

If A and B are regularly situated we have exact sequences

therefore setting for any A closed H’(A) to be the cohomology of the
complex

we deduce the rough Mayer-Vietoris sequence with supports in 0
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2. - Mayer-Vietoris sequence (proper).

a) Let S be a smooth submanifold of X on which we make the fol-

lowing restrictive hypothesis: S is intersection of smooth hypersurf aces FIX
of Xt S = n F (X.

F"Ds

Given a complex (2) of differential operators on X (and a family 0 of
supports) we can define for every smooth hyperal-irface F of .X the sub-
spaces (cf. [1]) 

’

and we know that A’IA,(F, X) c IAj+l(F, X) so that

is a subcomplex of (2). Similarly if we use the family 0 of supports.
Let {Ft¥}t¥EA be the family of all smooth hypersurfaces in X contain-

ing S. We define 
- -

In other words the space Ø’Aj(S, X) is the subspace of &#x26;(j)(X) generated
by the subspaces OI-4,(F-I X)’

By the previous remarks we have that A,OIA,(S, X) c ø IAJ+l(S, X) so

that we have a subcomplex of the complex

in the complex

We set

and we have another subcomplex of (2),, in the complex

This is also a subcomplex of (4)0,s.
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We define

These are the spaces of the quotient complex of (2)0 by (4)0,s i.e.

where Ais are the induced linear maps by the differential operators Ai.
Its cohomology will be denoted by HI(S AS).

As in the case of a hypersurface we introduce the following definition:
the submanifold 8 is called formally noncharacteristic (with respect to the
family of supports rp) if the sequence

is an exact sequence.

b) Let us consider now the following situation.

We give a finite set of orientable hypersurfaces Fi, ..., I’k in X by their
equations

We assume moreover that df!l/B.../Bdek* 0 at each point of S so that 8
is a smooth manifold of codimension k in X.

Then D+ and Q- are regularly situated and S = Q+ n Q-. We set

PROPOSITION 2. Let S be as above and assume that S is formally non-
characteristic with respect to the f amily of supports 0. Then z,ve have a Mayer-
Vietoris sequence
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PROOF. We have an exact sequence

Because (7)0,s is exact we have

The Mayer-Vietoris sequence follows from the remark to proposition 1.

3. - The case of the Dolbeault complex.

a) We assume now that X is a, complex manifold of pure complex
dimension n.

Let F,= fz c- X I e j (z) = 0} be smooth hypersurfaces in X as explained
above (1  j  k) and let S = I’1 n ... nJF&#x26; be their intersection. We assume
as before that dLo .,,A ... Ade,IS =A 0.

We consider on X the Dolbeault complex 
’

where

&#x26;(j)(X) = space of C°° forms of type o, j with values in a holomorphic
vector bundle .E‘ (E independent of j)

and where 0 is the exterior differentiation with respect to antiholo-

morphic coordinates.
Replacing X by an open set U c X we define the spaces (;(1)( U) and

thus the fine sheaves --* &#x26;(j)(U), j = 0, 1, ....
Given a hypersurface F = {p = 01 on X we can consider for j = 0, 1, ...

the space l(i)(F r1 ZT, U), and the sheaf U ---&#x3E;. I(i)(F n U, U).
We have

(cf. [3], part I). Therefore 1I -+ I(i)(F n U, U) is a fine sheaf.

Let S be as above; we can now consider the sheaf (for j = 0, 1, ...)
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From the above remark we deduce that

so that the above sheaf is a fine sheaf for every j &#x3E; 0.
Note that 1(-)(S n U, tT) is just the space of C°° sections of E over ZT

vanishing on

b) We recall the following definition. The submanifold S is called a

generic submanifold of X if at each point of S

If 8 is a generic submanifold then the spaces (for j = 0, 1, ...)

are free &#x26;(S n U) modules where &#x26;(S n TJ) denotes the space of C°° func-

tions on S n U. It follows then that the linear operators

are differential operators.
For every j &#x3E; 0 let us consider the sheaf

that we denote briefely by I(l)(S)IF(s). These sheaves are fine sheaves. We

have a complex of sheaves

PROPOSITION 3. Let S be a generic submanifold of X. Then the complex
of sheaves (9) is acyclic (i.e. the sequence (9) is exact).

PROOF. Let zoe 8 be fixed. We have to prove the following: given
u E 1(;)(8) such that äu E F(i+1) we can find v E 1(;-1)(8) so thatSZO 

Here we have set lC-l)(8) = 0.
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Given a form u e &#x26;(’) by u[8 we denote the same form with the coef-
ficients evaluated on /S.

and assume that

Then for all a with jocj = m we can find functions 1,,.c- &#x26;(’) such that

Let (ii, ... , im ) with 1  i,  i,  - - -  i.  7c be the sequence of m integers in
which the first al are equal to 1, the successive a2 are equal to 2,..., the
last ak are equal to k. We can write

The assumption gives

which we can write as

From this, since the e can be taken as local coordinates, we derive that

for any ce’ with let’f = m -1. But this implies that UiX’ilS = 0 i.e. uiXlS = 0,
da with )xj = m. Therefore

with some Za? E &#x26;(’). This proves our statement.
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Now let u E I(O)(S)zo. Then Assume that Ju E Fs;zo . By the
above statement we must have and therefore

.I.

is 0 (let2) . Again by the assumption we must have Uih= 2,lihses and there-
fore U = I Ujh.eieh(.O. is O(lel3). In this way we prove that u is 0(jel-)
for every m &#x3E; 0 and therefore that u E F(so) ,,, as we wanted.

We can write

Since I Bsf!sE I;-l)(S)zo we realize that, for our purpose, it is not restric-

tive to assume that u has the form

Assume now that Then

and therefore

LEMMA 1. Let j &#x3E; 1- and assume that for

Then we can find and

PROOF OF THE LEMMA. For k = 1 the statement is easy to establish

as the symmetry condition on the Z’s is void. By induction on k. We do
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have

This gives (for j n - k and trivially for j &#x3E; n - k).

Hence

By the inductive hypothesis we deduce that

with lkS= I.,h. Relations (*) and (* *) prove the statement of the lemma.
We deduce then, using lemma 1 that

and therefore, with ’Vsh and 2vsh in z. 7

To proceed in the proof we now need the following

Then for P E N’, 1#1 = m -I- 1 we can f ind E c- &#x26;(!-" symmetric in the indices,
such that
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When we say that C. is symmetric in the indices we mean the following;
given fl E N, f1 = (fJ1’ ..., fJk) we identify this multi-index with the sequence
of IfJl = m + 1 indices i,,, ..., im+1 with 1 c 21 c ... c 2m +1 c k in which the

first f11 indices equal 1, ... , the last fJk indices equal k.

Then L,8 = Lil...im+l and its definition is extended to all sequences of

m -f- 1 indices postulating symmetry in the indices.
We proceed to the proof of the lemma. We first note that the lemma

reduces to lemma 1 if m = 1 or k = 1. We can thus proceed by induc-
tion on m and k assuming the lemma proved up to m - I and k - 1 respec-
tively. With uh...im E &#x26;(!) we can write

As in the case j = 0 the assumption yields

and therefore for any et’ E Nk with a’ = m -1 we get

We may assume m &#x3E; 2. For every a"E laTk with let"I = m - 2 we must have

From the first set of equations we derive by the inductive assumption

with C. , lfll = m + 1 defined for all sets of indices containing a 1 and
symmetric in the indices.
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Substituting in the second set of equations we obtain

By the induction on k we obtain

with the new c.p introduced (with a set of indices containing a 2) symmetric
in the indices. From (*) and these last relations we get

with symmetric in their indices.
- Substituting (*) and (**) in the third set of relations we obtain after a

simplification

Arguing as before we derive relations

with the new Cp introduced (with a set of indices containing a 3) symmetric
in the indices.

The general argument is now clear and after k steps we conclude witb
the statement of lemma 2.

Now for u E I(;)(S)zo we can write successively, with obvious notations
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The £’s being symmetric in their indices. We construct in this way a formal
power series in (!

and therefore an element of IU-l)(S)/F;-l) such that u - iv represents the
zero element of I(l)(S)IF(sj). This achieves the proof of proposition 3.

COROLLARY. If ø is acny paracompactifying family of supports we do
have an exact sequence, for S generic,

(i.e. S is formally noncharacteristic).

This follows from the fact that the sequence (9) is an exact sequence
of fine sheaves and thus on them the functor F,, is exact.

c) We set, as usual,

and we assume that on S = S2+ n SW we have ä(!lÅ." Aiek=A 0 (thus 1 c k c n
and S is a generic submanifold of X). Because of theorem 2 the sets 9+
and Q- are regularly situated.

Let 0 be a paracompactifying family of supports. We denote by
Q = Sz+ U SW and by

the cohomology groups of the complexes of Whitney forms

where W§&#x3E;Q*&#x3E; = 6)&#x3E;x&#x3E;/.F21 x&#x3E;, ; = 0, 1, ..., and where * denotes the

void symbol or « + » or « - &#x3E;&#x3E;. 
-

Similarly we can consider the group H§(S, a.) introduced above.
From the previous corollary we deduce then the following
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PROPOSITION 4. Under the above specified assumptions we have an exact
sequence (.111ayer-Yietoris sequence)

4. - Failure of the Poincare lemma on generic submanifolds for ds.

a) We want to establish a criterium to ensure that Poinear6 lemma
is not valid for the ds-complex on a generic submanifold S at a given point
Z,,C- S.

First of all we need to introduce for a submanifold of X at a point
zoe S the Levi form of S ; the submanifold S need not be generic for this
definition. The question being of local nature we may assume that .X is
an open neighborhood U of the origin 0 E Cn, and that S is defined by the
equations e (z) = 0, 1  j  k;

with ej(O) = 0, Ijk, so that 0 E S, and (d!!l/B.../Bd(!k)o=l= o.
The analytic tangent space to S at 0 is then defined by the equations

where u, = dz,, are taken as holomorphic coordinates. These define a complex
linear space of dimension I &#x3E; n - k, and exactly of dimension I = n - k

if S is generic at 0.
We denote this analytic tangent space to S at 0 by H(S)o .
Now let (À1, ..., Âk) = A E Rk where Rk is identified with N(S)o the real

normal space to S at 0. (S has real dimension 2n - k and real codimen-
sion k in C".)

For every A we consider the hermitian form on H(S)o

We obtain in this way a linear map
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where herm denotes the linear space of hermitian forms on the complex
space in parenthesis. This linear map will be called the Levi f orm of S
at 0. It is defined up to a real linear automorphism of the normal space
N(S)o of S at 0, up to a complex linear automorphism of the analytic tan-
gent space .g(S)o of S at 0..A direct verification shows that the Levi form
of S at 0 is independent of the choice of holomorphic coordinates zl , ..., zn

of II at 0 and of the choice of the equations el= 0, ..., (!k = 0 for S near 0
in U.

In particular we can consider the unit sphere Z C N(S)o

and for each vector I e Z the integers p(Â) and g(A) denoting the number
of eigenvalues of C(Â) that are strictly &#x3E; 0 or, respectively, y strictly  0.

This gives a map

where

This finite valued function eo on E is therefore an invariant of S at 0

with respect to all complex germs of automorphisms of U at 0. We will
call eo the partition f unction associated to the Levi form.

b) Let us consider now on S near 0 E S the tangential Cauchy-Rie-
mann complex that we write at the sheaf level

If we assume that S is generic at 0 (and thus near by) then the sheaves
Q(i)(S) are locally free sheaves as sheaves of 8(8)-modules, 8(8) denoting
the sheaf of rings of C°° functions on S, and the linear operators J. are dif-
ferential operators.

We will say that the Poincaré lemma is valid in dimension 1&#x3E;1 for
the complex (10) at the point 0 E S if the sequence

is an exact sequence.
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We want to prove the following

THEOREM 3. Let S be a germ of generic submanifold of Cn near the origin 0
of real codimension k  n.

.Ass2cme that for some Â E E

and let q &#x3E; 0. Then in complex (10 ) the Poincaré lemma fails in dimension
j = q at the origin.

REMARK. Since Ker {Q(O), Q(’)} contains the traces on S near 0 of

germs of holomorphic functions, that kernel is nonzero (and infinite dimen-
sional). We may agree to say that the Poinear6 lemma does not hold for

j = 0. The previous statement can then be formulated by saying that,
under the specified conditions, Poinear6 lemma fails in dimensions 0, p
and q.

The above theorem will be proved in the next two sections.

5. - Some a priori estimates.

a) Let SZ be open in R" and let 8(Q) denote the space of C°° functions
on Q. We set for p &#x3E; 0, 6?(Q) = 6(Q) x... X 8(Q), p times. With 8 we will
denote the sheaf of germs of C°° functions on Rn.

We assume that we have given a short complex of differential opera-
tors on Q:

LEMMA 3. We assume that at a given point XoE Q the complex (11 ) ad-
mits the Poineari lemma, i. e. we assume that the sequence

is an exact sequence.

(1) As S is generic the analytic tangent space H(S)o has complex dimension n - k.
The assumption means that one can find a 000 hypersurface {e(z) = 0) containing S
near the origin and such that the hermitian form (L {Ô2 e/ôz", ôZp}ou", up) IH(S)o
is nondegenerate with signature (p, q) .
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Then for every open neighborhood W of x,, in Q we can f ind an open neigh-
borhood WI of xo in Q (0153oE co:, cc w) such that

there exists an 2c E gp(a),,) with

PROOF. For every open neighborhood (o of zo we set

the space f;1J(ro) with its natural Schwartz topology is a Fr6chet space.
Therefore Zero) as a closed subspace of &#x26;P(a)) is also a Fréchet space.

Now let {o)(’)I.cN denote a fundamental sequences of open (relatively
compact) neighborhoods of xo in w. We define for each m E N

This, as a closed subspace of 6?(mm» xZ(w), is also a Fréchet space. Let

nm: G,,, -* Z(m) be the natural projection. It is linear and continuous. Also

by the assumption of the validity of Poincaré lemma we must have

By Baire’s cathegory theorem one, say nmJGm), of the spaces 1tm(Gm)
must be of second category. Then by the Banach open mapping theorem
the linear continuous map

must be surjective. This proves the lemma with col = W(mO) .

COROLLARY. With the same assumptions and notations of the previous
l emma we have that

given a compact set Kl C WI and an integer m,, &#x3E; 0 we can f ind a com-
pact set K = .K(gl, ml) c (o, an integer m = m(K1, m,) &#x3E; 0 and a constant
c &#x3E; 0 such that :

for any f E &#x26;,z(co) with B(x, D)f = 0 on a)

one can choose u E &#x26;P(a),,) with
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and with

PROOF. With the notations of the previous proof, the map

is not only surjective but also open (Banach open mapping theorem). Now

is an open neighborhood of the origin in G.0 . Therefore n..(U) contains
an open neighborhood W of the origin in Z(co)" Restricting W, if necessary,
we may assume that

for 8 &#x3E; 0, m integer &#x3E;0 and g compact and conveniently chosen. We
may as well assume that mic K c m, since we have chosen (a)iCCD).

Let f E Z(co) be given, and assume first that

Then (8/2)(f/lIflIx,m) EW so that we can find w E 8%&#x3E;(wl) with
e lI. Setting u = (218)11111K,.W we must have

and

We can therefore choose c = 2/8 and the corollary is proved in this case.
If 11 f 11 x,. = 0 since cv1 c .K we can take u = 0. The corollary is there-

fore also verified in this case and therefore in general.

b) We consider the space 9)(S?) of C°° compactly supported func-
tions on D and we denote by dx the Lebesgue measure. For u E g8(Q) and

(2) For « e N,4 we have set Da= (ôtX1+’" +tXn)/(ôxi1... azon) , a = (ai, ..., «n). Also

)’ j I denotes a norm on the spaces C2, or Cll, for instance the euclidean norm.
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v E 08(.Q) we consider the scalar product

Given the differential operator A (x, D ) : &#x26;p(p) __* &#x26;q(g) the formal ad-
joint of it is defined as the differential operator

characterized by the property
.

for every u E 6?(Q) and every v E Dq(.Q).
Explicitly if A(x, D) = I C,,(x)D’ with Ca(x) matrices of type (q xp)

of C°° functions on Q, then we have

PROPOSITION 5. We assume that the complex (11 ) admits the Poincaré
lemma at a point xo E Q.

Then for any given open neighborhood co of xo in Q we can find

an open neighborhood o-)’ of xo in co with 0153oE co’ee co ;

a compact subset K in cv ;

an integer m&#x3E;O;
a constant c &#x3E; 0 ;

such that

we have

PROOF. Given 60 we select mi, with xoE micc W as in lemma 3. We

then choose w’ open with 0153oE co’cc mi and set Ki = 00’ and m1= 0. By the

corollary to lemma 3, we can then choose a compact set K c m an integer
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m &#x3E; 0 and a constant e’ &#x3E; 0 such that

one can find u E 81’«(01) with

and

Now given any v E Ðq(ro’) we do have

where c = c’ vol (co’). Here vol (co) denotes the volume .of Ct/.

6. - Proof of Theorem 3.

a) We first prepare the equations of the submanifold S near the origin.

By a linear change of holomorphic coordinates at the origin we may
assume that, setting I = n - k, we have

This is because je,A ... A je, =A 0 at the origin. Then Im (zi+;) = 0, 1  j  7c
are the equations of the real tangent space to S at 0 and Ci = {Z I +i =... _
- zn = 0} is the holomorphic tangent space to S at 0.

Using the implicit function theorem we may therefore assume that
in a neighborhood U of the origin the equations of S are in the form



388

where we have set z,,,, = t,, + isa , 1  oc  k and where the ga’s vanish at the
origin of second order and are in a small neighborhood of the origin C°°
functions.

Since s«= (1/2i)(zz+a- Zz+a) we derive from equations (*)

where fl)(S) is the space of one-forms of

be the matrix

and define for f : S - C, Coo,

where -’i ... , z t , tl , ... , tk denote the C°° coordinates on S induced from the
tangent space of ’S at 0. Note that C,j = 0 at the origin.

Extending f to a neighborhood of the origin in Cn by taking it indepen-
dent of the coordinates s« we have

With these notations one realizes that, near the origin on S,

where the a’s are C°° on S and that

We note explicitly that, since as as f = 0 for any f C°° on /S we must

have the commutation rules
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b) Let us now describe the assumption. There exists a C°° function e,
vanishing on S, such that

is nondegenerate with p positive and q negative eigenvalues.
Now H(S)o= Cl= fuz+l= ... 

= Un= 0} and g must have the form
k

.1 A,,(s,,- ga) with Aa, C°° near the origin. Since the ga vanish at the origin
a=1

of second order, the assumption means that there are k real numbers
21, ..., Ak not all zero such that the hermitian form on Ci

is nondegenerate with p positive and q negative eigenvalues (p + g = I).
k ,

We set g = I Âaga. By a linear change of coordinates inside the ana-
3L

lytic tangent space C’ to S at 0 we may assume the above hermitian form
to be in diagonal form i.e.

c) Let M &#x3E; 0 be a positive constant. We define on ,S near the origin
the following functions:

We claim that the hessian of the imaginary part of y and the hessian
of the imaginary part of x, evaluated at the origin, are positive definite
quadratic forms, provided M is chosen sufficiently large.
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Indeed, with obvious notations, y

and, similarly

These expressions establish our claim.

d) Now we remark that Im y(z, t) and Im x(z, t) vanish at the origin
of second order. Therefore, if co is a sufficiently small neighborhood of the
origin in the real tangent space to S at 0 (where zl , ... , z t , t1, ... , tk are taken
as coordinates), we will have, with E &#x3E; 0, in co

Moreover

Therefore, if a) is sufficiently small, we will have in (o

and

This last inequality holds because the left hand side vanishes at the origin
at least of third order.
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e) We claim that the functions and X satisfy the following dif-

ferential equations

and

Now t« + ig« is the restriction to S of the holomorphic function zi+«=
= tcx + iscx, 1  oc  k. It follows that 0 is the restriction to S of a holo-

morphic function defined in a neighborhood U of the origin in Cn. We have
therefore -Lj 49 = 0 for 1  j  1. On the other hand we have LjZ8= 0 if

j o s, I  j, s  1; this by the explicit form of the operators Lj given in a).
I i

Therefore L, I lzjl 2 =’o if 1 j po We obtain therefore the first set of

assertions. 2) + 1 
2)

is the restriction to S of a antiholomorphic function defined in U.
With the same argument as before we obtain the second set of equa-

tions. However this second set of equations will not be explicitly needed.

f ) Let us now assume that the Poinear6 lemma holds for Js in dimen-
sion q at the origin.

Let ro be that small neighborhood of the origin in S in which the ine-
qualities established in d) hold. According to proposition 5 we can then
find another open neighborhood m’ of the origin in S with 0 c m’cc co so
that the conclusion of that proposition holds for every f defined in co with
f E Q(,z)(co) and Jsf = 0 on co, and for every v E Q(q)(w) with v compactly
supported in m’.

We now choose f and v. Let 7: &#x3E; 0 be a real parameter. For every
7: &#x3E; 0 we define
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We have

Indeed

because Lj ip = 0 for 1  j  p as established just above.

g) We now proceed to define a convenient element vaE Q(q)(w’) for
any 7: &#x3E; 0, compactly supported in m’.

First we remark that if we set on Cn

we have that X = y I co. Let us define for r &#x3E; 0 the form of type (n, p) in Cn

Since y(z) is the sum of a holomorphic function and the function
p

- iM! IZil2 which does not depend from zp+1, ... , zn , we do have that
1

We fix on S the eucledian volume element

and let oc, # E Q(r)(a)’) be given explicitly in the form

We define the sesquilinear form on Q(,)((o’):
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If one of the forms a or fl has compact support in w’ we define then
their scalar product

Now given the operator J, Qr&#x3E;(ro’) - Qr+l&#x3E;(ro’) its formal adjoint

is uniquely defined by the property

Yoe c- Q(,*)(co’) compactly supported and Vfl E Qr+l)(ro’).
Now we remark that dimr S = 21 + k = I + n. Therefore the exterior

form in Cn of total degree 21 + k = I + n

when restricted to S can be written as

with or(z, t), Coo on S. We note that

We set, for T &#x3E; 0, ,

For any a E Q(q)(w’) and with compact support we have the following
formula of integration:

Let f1 E Q(q-1)(w) with compact support. We can find a form # in en
with compact support and of type (0, q - 1) whose image in Q(q-l&#x3E;(ro’) is f3
(under the natural map given by the definition of the space Q(q-l&#x3E; as a quo-
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tient of the space of (0, q -1) forms in the surrounding space en). We
have therefore by definition

Now we have for any such fl the following formula:

The first of these equalities is due to the formula established just above
and to the fact that for a compactly supported form n(n,Z-l) of type (n, Z -1 )
(defined in the neighborhood U of the origin where S is given) we have

- 0 by Stokes theorem .

The second equality follows by the fact that 8qz = 0. The third equality
is valid because of reasons of bidegree and the last by Stokes’ theorem.

But this shows that, for any T &#x3E; 0,

Let .R &#x3E; 0 be so chosen that

We select a C°° function v(z, t) compactly supported in w’ with 0  v I
71 z
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We then define for any r &#x3E; 0,

where p(z, t) = v(z, t) a(z, t) has compact support in co’ and equals or(z, t) on

We have v,,c- Q(,7)(o)) and compactly supported. Moreover on the ball
I ,

Therefore

with [1{z, t) c- Q(,7-1)(co) with compact support, independent from 1:, and

vanishing on the ball

If we now apply to this choice of f T and v, the statement of proposi-
tion 5 we realize that we can find a constant c &#x3E; 0, a compact .K c co and
an integer m &#x3E; 0, all independent from -r, such that

for any r &#x3E; 0.

h) We evaluate the left hand side of (*). Replacing z with 0 z and t
with VT t we get if 0  T  1

We remark that, taking into account the expression and inequalities
given in d),

- the integrand on the right hand side is bounded in absolute value
....

and this function is summable over

the whole space C I x Rl:;
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- the same integrand for z - 0 converges pointwise to the function

By Lebesgue’s theorem on dominated convergence we deduce that

where a(s) denotes the eucledian volume of the unit sphere in R’.
In particular for r - 0 the left hand side of (*) tends to a finite limit

different from zero (since lz(O, 0) _ a(O, 0) =A 0).
We now evaluate the right hand side of (*). We first remark that for

0  T  1 we have for any a E N21+k estimates of the form

where c(a) is a constant independent of Ty (here we made use of the first
inequality established in d)).

Also with a constant Cl&#x3E; 0 independent of r we have

because of the second inequality established in point d) and the fact that
.... ,

But then, with a constant e2 &#x3E; 0 independent of r we have

For r - 0 the right hand side of this inequality tends to zero.
This says that the inequality (*) cannot hold for r &#x3E; 0 small. This

achieves the proof.

i ) At the end of this proof the following remark is in order

REMARK. Let S be generic in aCn, 0 E S, and for some Â E E, e(Â) = (p, q)
with p +q=n-k.

Set
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We claim that

PROOF. If q = 0 the remark is obvious as ,w-o contains the traces of
germs of holomorphic functions on S. We can thus assume q &#x3E; 0.

Let co be a small relatively compact neighborhood of 0 in S such that
at any point Y E iiJ, ell(Å) = (p, q) for some 2 c- E,, the unit sphere in the
normal bundle to S at y.

For any point y E ro we can find according to the proof of the previous
theorem an element

such that in no neighborhood co(y) of y we can write

with gc-Q(41-1)(oi(y)). Indeed if this is not the case the argument of lemma 3
applies and therefore we can find a fixed neighborhood col(y) of y in co such
that for any f c- Z(ct)) we can find g c-Q(,9-1)(col(y)) with Jsg = f on (01(y).
Then also the conclusion of the corollary to lemma 3 holds, and then also
the estimate of proposition 5. This is what is contradicted in the proof
of theorem 3 with the choice of elements f z E Z(w) for all ’C &#x3E; 0.

Let us select a countable dense set fYhlh,,,N in co and for each yh a fun-
damental sequence of open neighborhoods f(ok(Yh)}h,-N Of Yh in m. We set

and we denote by nkh: G(k, h) -+ Z(w) the natural projection.
We have that n,,,,(G(k, h)) C Z(w). Therefore U 7c,,,(G(k, h)) is of first

hk

category in Z(w) and hence

It will be enough to prove that

Let f E Z(W) with f 0 93 which is possible by the above considerations.
Assume that dimc Z(w ) / lS  oo.
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We consider the natural map

and for t c- R the image I(exp [tzl] f ). Let V be the space generated by
these elements over C. Let k = dimo V. By the assumption k  oo. Let

A(exp [ti z1] f ) be generators of V for lik. Let to# tl, t2, ..., tk . There

must exist constants c1, I ... I Ck not all zero such that

This means that for some h and k we can find

Since the /s are two by two distinct els is not identically zero. Therefore
we can find yr E (Ok (yj) and an s &#x3E; 0 such that ws(Yr) C (Ok (yh) and such that

elco,(y,) is always different from zero. We have therefore

This contradicts the assumption f ø 93. We must therefore have

7. - Local cohomology for 8s .

a) Let S be a smooth real submanifold of the complex manifold X.

We have on X the Dolbeault complex of sheaves

and the subcomplex of sheaves

where IJ&#x3E; denotes the sheaf U - li&#x3E;(8 n U, U) defined in section 3. If

0153 fj 8 then, for every y&#x3E;0y Ix(j)= Ej/.
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Therefore the quotient complex of sheaves

is concentrated on S.

We set

and

We have Q(O) - 6s the sheaf of germs of Coo functions on S. If S 18 generic
the sheaves Q(I) for j &#x3E; 1 are also locally free sheaves of modules over 6s
and the maps Js are given by differential operators.

Let 0 be a paracompactifying family of supports on S and let us denote
by Hi 0 (S, Js) the j-th cohomology group of the complex

for j&#x3E;O.
From a general theorem of Godement ([6], theorem 4.6.1, p. 178) we

derive the following .

PROPOSITION 6. For any paracompactifying family of supports ø on S
we have a spectral sequence

s = p + g. 

Indeed we have only to remark that the sheaves B(;) and 1(;) are soft

(indeed fine) sheaves thus also the sheaves Q(j) are soft sheaves ([6], theo-

rem 3.5.3, p. 154). Hence HI(S, Q(;») = 0 for any q &#x3E; 0 and any j &#x3E; 0. This

enables us to apply the quoted theorem of Godement.

b) As an illustration we consider the following three cases:

CASE 1. dimr S = n, S is generic, i.e. S is  totally real ». Then the

boundary complex reduces to the trivial complex

and thus
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For instance consider on the Riemann sphere Pi(C) an affine holomorphic
coordinate z (we allow z to take the value oo) and set Dl= (z e Pi(C) I I z I  1} I
D2={zEP1(C)llzl&#x3E;1}.

Let X = Pl(C) x... X Pl(C) (n times) and set

Then S is totally real. Moreover Q+ and SW are isomorphic and also
isomorphic to a polycylinder in Cn . For a closed polycylinder P in Cn we
have

Indeed this follows from the expression of the homotopy operator for
the Dolbeault complex as given by H. K. Nickerson [14] and from the
fact that for a function gg($), C°° on the closed disc {$ c- CI [$[ 1}1 the
function

is also C°° in the closed disc {z E CI IZI  1-}.
From the Mayer-Vietoris sequence we deduce then, that

is an exact sequence. Moreover one has Hi(Q, d) = 0 for i &#x3E; 2.
CASE 2. S is a hypersurface with nondegenerate definite Levi form.
In this case we have

moreover Kl 8s = 0 if i 0 0, n - 1 as it follows from the Mayer-Vietoris
sequence and a result of ([3], part II, p. 802).

We derive from this that

(ii) the sheaf JC’- I is a soft sheaf since
is

is an exact sequence and the sheaves Q(I) are soft sheaves;
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(iii) from the spectral sequence of proposition 6 we deduce then an exact
sequence

and also that H;(S, Os) = 0 if j&#x3E;n.

CASE 3. S is a hypersurface with nondegenerate Levi form with
p = q = (n - 1)/2 (hence n is odd) eigenvalues of each sign.

In this case we have

while for the already quoted result we have :Ie!. ôs = 0 if j =1= 0, j =1= p.
From this and the spectral sequence of proposition 6 we deduce that

(ii) We have an exact sequence

REMARK. We do also have in this last case Hn+i(S, 0s) - Hn-21+1+!(S, X" )
for any j &#x3E; 0. But one can expect that these groups vanish.

c) The case of S totally real or the case of an hypersurface are par-
ticularly simple.

In general we may expect the failure of the Poincaré lemma in any
dimension or in some privileged dimensions.

Here are two examples of this situation.

EXAMPLE 1. Let 7c &#x3E; 2, S generic, 0 G 8 with equations
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We assume that

(positive definite)

is such that

has I distinct roots .

Under these conditions the hermitian form B - 1A assumes all possible
signatures (0, 1), ..., (1, 0) as one realizes by a convenient C-linear change
of coordinates on H(S)o which reduces A to the identity matrix and B to
diagonal form.

In this case the Poincaré lemma fails in all dimensions 0, 1, ..., l.

EXAMPLE 2. Let n = 2r + 2 and set Cn = Cr x Cr x C2 where z E Cr,
u E Cr, w = (tl + isl, t2 + is2) E C2 are holomorphic coordinates. Let k = 2

and S be defined by the equations

where If is an r X r matrix with complex elements and det X 0 0 -
The Levi form is given for (Â1, Â2) E R2 at the origin by the hermitian

matrix

One easily recognizes that det H(Âl, Â2) # 0 if (Â1, Â2) # (o, 0 ).
Therefore for all (2,, Â2) E R2- {0} the signature of the hermitian matrix

H(Âl, Â2) is constant and equals (r, r).
In this case we are sure that the Poincaré lemma fails in dimension r

on S at the origin.
One may presume that it holds in all dimensions different from 0 and r.

From a result of Naruki [13] one can deduce that the Poinear6 lemma
holds in dimension r + 1, ..., 2r.

d) Let us assume that X = Cn and 0 E S while S is generic at the
origin.
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We can assume S is given by equations as in point a) of the proof of
theorem 3. From the explicit expression of the operator ds given in ac) we
deduce that :

The symbolic complex at the origin 0 E S for the complex of is on S
is a Hilbert complex (actually a Koszul complex).

We can then apply the results of [4] and we conclude that

PROPOSITION 7. If S is generic at a point xc- S then the tangential com-
plex of ds admits the formal Poincaré lemma in any dimension 1;&#x3E;1.

If moreover S is real analytic then the tangential complex of is admits the
analytic Poineari lemma in any dimension j&#x3E;l.

e) We end up with an easy application of the Mayer-Vietoris sequence.

Let Q, [2+ , 7 f2-, S be defined in the complex manifold X as usual. Assume

is generic at each point. Then Hj(S, Js) = 0 if j &#x3E; I = n - k.

From the exact sequence of proposition 4 we deduce therefore that

for all j&#x3E;1+2.
For I = 1 we have moreover on S the exact sequence (derived from

the spectral sequence of proposition 6)

The last zero is obtained by the fact that X’ is a soft sheaf and thus
is

its first cohomology group is zero. Note that we have Hj(S, Os) = 0 if

j&#x3E;2.
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