
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

W. B. JURKAT

G. SAMPSON
On the a.e. convergence of convolution integrals and related problems
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 8, no 3
(1981), p. 353-364
<http://www.numdam.org/item?id=ASNSP_1981_4_8_3_353_0>

© Scuola Normale Superiore, Pisa, 1981, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1981_4_8_3_353_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On the a.e. Convergence of Convolution Integrals
and Related Problems.

W. B. JURKAT - G. SAMPSON (*)

0. - Introduction.

In this paper we are concerned with kernels K on Bit which satisfy the
following conditions:

and

For example in R the Hilbert kernel H(t) = t-1, t =1= 0 and the fractional

kernel F(t) = t-’+iO, t &#x3E; 0, F(t) = 0 for t c 0 (fJ =1= 0 and is a real number)
both satisfy conditions (1), (2) and (3).

DEFINITION 1. We say that a kernel K is well-behaved if K satisfies (1),
(2) and (3).

For various well-behaved kernels K, pointwise convergence of the cor-
responding convolution is quite dissimilar. For example in jRy compare the
Hilbert kernel H(t) with the fractional kernel F(t), [24] resp. [13]. The main
result of this paper is nevertheless to show that all well-behaved kernels

satisfy a common convergence criterion. The result takes the following form:

(*) The work of the first author was supported in part by the National Science
Foundation.

Pervenuto alla Redazione il 3 Settembre 1979.



354

THEOREM 1. If K is well-behaved and f E L1oc(Rn), then

exists for almost all y.

We use Theorem 1 to define a class of well-behaved convolutions (see
Theorem 3). We also use it to prove convergence of Marcinkiewicz type
integrals as well as their generalizations (see Theorems 4, 5).

For finite positive absolute constants depending at most on n we use
the letter c generically. If dependency on Bl, B2, B3 is permitted we use
B generically. Finally, y when dependency on another variable occurs, , say
like p, we indicate that by c, or BfJ.

1. - Preliminary remarks.

Here, we begin by defining maximal functions which are associated with
well-behaved kernels. We shall further obtain results for these maximal

functions that are needed for us to prove the main result.

DEFINITION 2. Let I p  oo and f c Lp. If K is well-behaved then the
function

where 0  a  a c 1  f1  b, denotes the maximal f unction of a well-behaved
convolution.

For g measurable we set (1 p  oo),

the weak p (norm)) of g.

By T we denote a sublinear operator defined on Lo (bounded functions
with compact support). We set



355

In [16], N. M. Riviere was able to prove the following:

THEOREM 2 (Riviere). I f (i) .g 2s well-behaved and (ii) for each fixed (!l&#x3E; 0,

then

Thus, for well-behaved kernels .K it follows from Riviere’s theorem that

where .Ba,b is that « B &#x3E;&#x3E; constant which is obtained from the kernel (x) _
= .R’(x) for a  lxl  b and K,,,,(x) = 0 elsewhere. But for K well-behaved
it is well-known (and easy to show) that

But from (4) and (5) we get for A &#x3E; 0 and 1 p  oo,

and now letting a , 0 and b fi oo we get the following:

COROLLARY’ 1. The maximal operator for well-behaved convolutions ts

weak (p, p) for all 1 c p C 00, i.e.,

It should be pointed out that even though the corollary is a simple ex-
tension of Riviere’s Theorem (Theorem 2), it is the corollary that is useful
to us. This corollary can be interpreted to mean that for well-behaved kernels
one does not have to restrict their behavior about the origin (as (ii) in Theo-
rem 2) in order to prove a weak mapping property for their associated max-
imal convolutions.
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2. - Proof of Theorem 1.

We begin with the proof.

PROOF. Set

and consider those y’s so that jyj  N. Then IY - xl  N + 1 and hence,

for Iyl  N, where fN(u) = f (u) for Jul  N + 1 and fN(u) = 0 elsewhere. Set

Hence by the Corollary we get,

Set

for y fixed. Since K satisfies (3) we get for q e C§° that
Thus, for 8 &#x3E; 0 we get

the last inequality coming from (6). Now choose
in El, hence

and this holds for each 8 &#x3E; 0, hence
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and now it follows that

Thus, lim jRe(/;2/) exists for almost all y. Hence the proof of Theorem 1e +0

is now complete.

REMARK 1. By a similar argument we could show that for f E EP, I p  o0

exists for almost all y.

Here, we set

3. - Representations of well-behaved convolutions.

In this section, we will give a definition for well-behaved convolutions
i.e. , , (K * f )&#x3E; where .g is well-behaved and f c- IP, I p  00. We need to

be sure that our definition for « K * f (x) &#x3E;&#x3E; reduces to the classical case when
K(x) is the Hilbert kernel .g(x) or the fractional kernel I’(x) or when K
is locally integrable at zero.

Let us begin with .g E L1oc(Rn - {O}) and set

Then for f E Lp, 1 p  oo, we have
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For kernels K that are well-behaved we see by Theorem 1 and Remark 1
that the terms II and III have limits for a.a.x as 8 -* + 0 and w - + oo.
In order that this expression reduces to the usual convolution in the classical
cases, we add a suitable limit for the term I. For example in the case of the
Hilbert kernel one has Ie(H) = 0 for each s &#x3E; 0, so the limit is zero.

One way of defining I(K) (the limit of Ie(K)) is via a summability method.

DEFINITION 3. Let {Åe(t)} be a fixed family of measurable functions that
satisfy the following properties:

(iii) for each 0  h  1, Ae(t) goes uniformly to zero as 8 - + 0 for
htl.

and call this the generalized Oauchy-Lebesgue integral (we write CL) provided
the limit exists, and in such cases we say that f E CL. [This concept depends
on the summability method used.] If the usual Cauchy-Lebesgue integral
exists, it coincides with the generalized one, since A,(t) defines a regular
summability method. For the fractional kernel .F(x) in .R, we could choose
Ae(t) = t6-1 for 0  t c 1.

For K well-behaved and .g E CLY we set

Again in the case of the Hilbert kernel H, I(H) = 0 and for the fractional
kernel F, I(F) = (ifJ)-l.

THEOREM 3. Let f E Lp, 1 p  00. If K is well-behaved and K E CL
and z f ’ we set

then K * f (x) exists for almost all x.
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PROOF. Since K E CL that implies I(K) exists. Since K is well-behaved

hence by Theorem 1 and Remark 1, it follows that K * f (x) exists for almost
all x.

REMARK 2. From (9) it follows for K well-behaved and .K E CL that,

From Corollary 1 and (10) we get that K c- i.e., weak (p, p) for all

1 p  oo.

We note that even for 99 E Co (infinitely differentiable functions with

compact support) there is no simpler definition for K * 99 than (9) except
that terms II and III in (9) now exist as Lebesgue integrals. The only varia-
tion that is possible is in the interpretation of I(.g).

Also, note that by (10),

Hence if {PSI} is a family of Co functions that converge to f in L’P, for some
1 p  00, then K * q converges to K * f in measure.

4. - Applications.

Marcinkiewicz has shown in .R that there is a locally absolutely conti-
x

nuous function F (i.e., an f E L10c whereby .F’(x) = jf + constant) so that
o

see [12]. x

It has since been shown that if f E L1oc, F(x) = ff and b E LOO(O, 1), then
o

exists and is finite for a.a.x.

Plessner in [14] did the case when b(t) = 1 for t E (0,1 ), and Ostrow
and Stein in [15] did the general case. Stein [17], Walsh [20], Zygmund [23]
and others have generalized some similar ideas (eg., the Marcinkiewicz
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function) to .Rn. In this section we will give a new proof of (12) along with
generalizations to Rn. Under the proper conditions on b(t), we will also
prove in .R (along with generalizations to Rn) that

exists for a.a.x (see Theorem 5).

LEMMA 1. Let U be the closed unit ball in Rn. Assume Q E LOO(Rn), b E LOO(R)
and b(t) = 0 for t ft (o,1), and

and the integral is to be interpreted algebraically. Then,

and

PROOF. The result (14) follows immediately from the hypothesis.
To show (15) we note that

and for lxl&#x3E;21yi we get that

Now since the support of K is contained in U, and the difference on the
left is zero if lxl&#x3E;2, then the result (15) follows.
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DEFINITION 4. We say that a function i2(z) in .B" is regular if Q E L°°(.Rn)
and

exists f or almost all x.

REMARK 3. If n = 1 and Q(y) = 1 for y &#x3E; 0, D = 0 otherwise, then Q
satisfies the hypothesis (of Theorem 4) and hence (18) is a generalization in
.Rn of (12).

PROOF OF THEOREM 4. Define

hence K has its support in the unit ball. We note also that .g is odd and

Q(- x) is regular. We begin by showing that K is well-behaved. Since K

is odd, i.e., K(x) _ - K(- x) we get that for each 0  f!l  f!2

From the preceding remarks and (14) and (15) of the Lemma we get that K

(as defined in (19)) is well-behaved.
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But

now by Theorem 1 we are through.

THEOREM 5. Let f E L1oc(Rn). Suppose that b E LOO(R), b(t) = 0 for t 1= (0, l-)
and Q is regular. Also assume that

Then,

exists for a.a.x.

REMARK 4. If n = 1 and Q(y) = 1, then Q is regular and hence (21) is a
1

generalization to Rn of (13), condition (20) reduces to f b(t)ltdt == 0(1) in this
case. 

a

PROOF OF THEOREM 5. Define

hence K is even and has support in the unit ball. Therefore, in order to
show (2) we may assume psl.

Then

and using (20) it follows that .K satisfies (2). Now by (14) and (15) of the
Lemma, since Q is regular, y we get that g in (22) is well-behaved.
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But since K in (22) is even, we get

and now by Theorem 1 we are through, since the last term goes to zero as

.
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