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Differentiability and Partial Hölder Continuity
of the Solutions of Non-Linear Elliptic Systems

of Order 2m with Quadratic Growth.

S. CAMPANATO - P. CANNARSA

1. - Introduction.

Let Q be a bounded open set of .Rn with points x = (xl, ... , xn) ; here
m and N are integers &#x3E;1, ( )N and 11 IIN are the scalar product and the
norm in RN. We shall drop the subscript N when there is no danger of
confusion.

Let oe = (oti, ..., (Xn) be a multi-index and lLx = ocl -f - ... + (Xn. We de-
note by a the cartesian product fl BN and by p = lp’},,, p" E .RN,
a typical point in it. Ixlm

If PC-awe set

We define, as usual,

and, if u: 9 -*BN then

C4,"(D, BN), h integer &#x3E; 0 and 0  A 1, is the space of those vectors

’U: lJ -+ RN which satisfy a Holder condition of exponent A, together with

Pervenuto alla Redazione il 28 Maggio 1980.
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all their derivatives DtXu, Ix  h ; if U E el,’(fl, .RN), then

where

HS,’D(Q, .RN) and Hl,’(.Q, .RN), s integer &#x3E;0 and p &#x3E; 1, are the usual
Sobolev spaces and, if 1 cp  + oo, then

If p = 2, then we shall simply write HS, Hs, 1 11 IIs,D.
Let atX(x, p), f(X1 c m, be vectors of RN, defined in Q X 3t, measurable in x

and continuous in p ; assume that V(x, p) c-.Q x Jt with IIp’’’’ = K

where

Let us consider the differential system of order 2m

which is assumed to be strongly elliptic, i.e. the vector functions p’-
-* aCX(x, p), loci = m, are differentiable and there exists v(K) &#x3E; 0 such that
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for every set {B(X}I/XI=m of vectors in RN and for every (x, p) c- Q x Jt with
Ifp" II  K.

A solution of system (1.8) is a vector ’U E Hm n Hm-l,OO(Q, RN) such that

In this paper we shall investigate the problem of the local dif-

ferentiability of the solutions of system (1.10): if 0  Â.  1 and u E H1n n

BY) is a solution of system (1.10), then under what conditions
on the vectors aa(x, p) can we show that

We take solutions of class om-l,).(lJ, RN) because it is already known
that, if u c- H’ t-) H’-’,’(Q, BN), problem (1.11) is, in general, answered
negatively even if the vectors aa(x, p) are very smooth.

If m = 1 (second order systems), it is well known that the answer to

problem (1.11) is positive under the following conditions: denoting by p
the vector (U,pl, ..., pn), where u and pi are vectors of .RN, then
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If m = N = 1 see for instance [8]; if m = 1, N&#x3E; 1 see for example [9]
and also [5], chapter V, n. 3.

In order to get the differentiability result (1.11) for second order systems
(m = 1), the following inequality is essential: using the notation B(xO, 0’) =
= {x: Ilx - xOlf  al, if u E H1 n OO,i.(Q, .RN) is a solution of the strongly
elliptic s ystem 

under the hypotheses (1.13) (1.14) with K = suplfu(x) If, then there exists ao &#x3E; 0

where o(c) tends to zero with a.

For strongly elliptic systems of order 2m &#x3E; 2, problem (1.11) remained
unsolved because of the difdculty of proving a proper extension of inequa-
lity (1.19) (see for instance [10]).

In section 3 of this work we deal with problem (1.11) following a dif-
ferent method.

In addition to the strong ellipticity (1.9), we shall assume that the
vectors ax(x,p) satisfy the following hypotheses:

(1.20) if Ice  m, then the vectors aa(x, p) are measurable in x Vp E it, con-
tinuous in p Vx c- Q, and for every (x, p) c- Q x % with Ifp"lf  K

(1.21) i f ix = m, then the vectors aa(x, p) are of class 01 in tl X 9t and for
every (x, p ) E Q X 9t with llp" 11  g

We remark that hypothesis (1.21) is a formal extension of the hypotheses
(1.13) (1.15) (1.16), whereas hypothesis (1.20) is less restrictive than the

assumptions we made on aO if m = 1.

As usual we denote by HO(Q, RN), 0  0  1, the space consisting of
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those vectors u E L2(Q, RN) such that

and by Hm+o(Q, RN) the subspace of HM(DI .RN) consisting of those vectors u
for which

In section 3 we show that, if the conditions (1.9) (1.20) (1.21) are

fulfilled and u E .Hm n om-l,Â(Q, RN) is a solution of system (1.10), then

As u E am-t,;’(tJ, RN), from (1.23) and theorem 2.1 we get

Now, by an induction process (theorem 3.IV) we show that

Then (1.24) implies

Once we have this information we can easily prove the following local
differentiability theorem, where

THEOREM l.I. I f u E Hm n BN) is a solution of system (1.10)
-under the hypotheses (1.9) (1.20) (1.21), then

where

and c depends on a and on the norm
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As we show in section 3, (1.28) can be replaced by the following equi-
valent inequality

Moreover, we may assume that the function fex, which appear in (1.20),
satisfy the more general hypothesis

In this case F2 has to be replaced by II 1I2 in (1.28) and by If Y li’+ -, V8 &#x3E; 0,
in (1.29).

In section 4 we prove that the differentiability result of theorem 1.1
and theorem 3.1 of [5] (chap. IV) allow us to obtain the partial Holders
continuity of the derivatives Dcxu, I(XI = m.

Assume that

are uniformly continuous in Q x Jt and that in condition (1.20) we have

or, in general,

Then

THEOREM 1.11. I f U E Hm n 6 0, RN) is a solution of system (1.10)
under the hypotheses (1.9) (1.20) (1.21), then there exists a set Do c Q, closed
in S2, such that

where JK,n-q is the (rc - q)-dimensional Hausdorff measure.

It is now easy to prove higher regularity results for the solutions.

’U E Hm t1 om-l,Â(tJ, RN) of system (1.10), using the theory of linear systems.
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2. - Preliminary results.

In this section we mention a few results that will be used in the sequel
of the work.

then we define

where {ei}i=l,...,n is the standard base of Rn.

LEMMA 2.1. I f uc-LI(Q(a), RN), I  p  + 00, and there exists M &#x3E; 0

such that

The previous lemmas are well known in the mathematical literature

(see for instance [5], chap. I).

then u E H8(Q(d), RN) and

See for instance [2], lemma II.3.
If Q is a bounded open set and a &#x3E; 0, then D,, denotes the set of those

points whose distance from Q is less than u.
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See for instance [2], lemma 1.3.
We now state a theorem which is interesting in itself and extends

theorem 3.II1 of [3], that deals with the case 0=1. We set

and

The proof of this theorem is given in the appendix and follows the proof
of theorem 3.111 of [3]. With formal modifications the previous theorem
can be proved also for vectors u c- H"O,l n OO’).(Q, BN), p &#x3E; 1.

3. - The local differentiability result.

In this section we prove the differentiability theorem (theorem 1.1).
Here 92 is a bounded open set of Rn,
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is a solution of the following system

.Assume that the hypotheses (1.9) (1.20) (1.21) are fulfilled and let us define

If i is an integer, I  i  n, and hER, then we set

The proof of theorem l.I is based on theorems 3.1, 3.11, 3.111 and 3.IV
that we are now going to demonstrate. 

THEOREM 3.1. I f u E Hm n om-l,Â([J, RN) is a solution of system (3.1).
under the hypotheses (1.9) (1.20) (1.21), then for every Q(z°, (1) cc Q, for every’
ip E C-(92) with V &#x3E; 0 and ip = 0 in QEQ(z°, a), for i = 1, ..., n and Ihl -
 d(xO) - a, the following inequality holds :

PROOF. Let Q(a) = Q(XO, a) cc Q and 1fJ E C-(S2) with V&#x3E;O, V = 0 in-

Q""-Q(a). Having fixed i integer, lin, and h such that Ihl  d(xO) - ur
let us assume in (3.1)

Then we get
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For the sake of simplicity let us set, if b (x, p ) is a vector of .RN,

Then

Now, if lal = m,

with

Therefore, from (3.5) we obtain

By the hypothesis of strong ellipticity (1.9) we get

On the other hand, from hypothesis (1.21) and (3.6) it follows that, if

loci = m.
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Then

and V8 &#x3E; 0

And so by lemma 2.11

Let us now estimate B :

By the fact that

where o(h) depends on II and tends to zero with h. Then V8 &#x3E; 0

Therefore by lemma 2.11 we , conclude that

Similarly

and Vs &#x3E; 0
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From (3.10) (3.11) (3.14) (3.16) (3.17) we obtain inequality (3.3) if we

take s and lhl small enough:

However, if ho Ihl  d(xO) - a, then (3.3) is trivial because

where T = sup II D1p II.

PROOF. By hypothesis (1.20) and Hölder’s inequality we get Vs &#x3E; 0

Then, from lemma 2.1I, (3.8) and the fact that u E C’-’,’(Dy RN) we con-
clude that
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Using theorem 3.1 we can easily prove the following fractional dif-

ferentiability result.

THEOREM 3.1I. If u E .Hm om-l,Â(Q, .RN) is a solution of system (3.1)
under the hypotheses (1.9) (1.20) (1.21), then

PROOF. Choose 1p E C-(Q) with

From inequality (3.3), hypothesis (1.20) and the fact that u E om-l,i.(tJ, RN)
we conclude that Vlhl  (f

Inequality (3.22) is trivial if a Ih I  2a and therefore, if 0  0  A/2,
from (3.22) we easily get

(3.20) and (3.21) follow from (3.23) using lemma 2.111.
A more general result is the following:

is a solution

(3) We note that this theorem is valid even if rXELl(Q), loci me
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of system (3.1) under the hypotheses (1.9) (1.20) (1.21), then

and for every cube

PROOF. Because of theorem 3.II we may assume

by theorem 2.1 we get

and for every cube Q cc 92

Now, choose ip E C-(,Q) with

Let Ihl  al2. From inequality (3.3) and lemma 3.1, in which we assume 8
small enough and p = 2(1 + 0), we conclude that

Having fixed p such that

by Holder’s inequality we get
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Now, by lemma 2.11

and by the fact that

Therefore

From (3.28) and (3.29) we deduce that Vlhl ,Y/2

Furthermore, from (3.27)

Now, by lemma 1 of the appendix

Hence we conclude that Vlhl G a/2
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The last inequality is trivial if ar/2  Ih  2a and so the proof finishes as
in theorem 3.lI.

By theorems 3.11 and 3.III we prove, using an iteration argument, the
following

THEOREM 3.IV. If u E Hm r1 om-l,Â(Q, RN) is a solution of system (3.1)
under the hypotheses (1.9) (1.20) (1.21), then

In particular

PROOF. Let Q(3e) = Q(x°, 3p) cc Q and choose 0o such that 0  0o  Â/2.
From theorem 3.II we conclude that

and

Then, by theorem 3.111

with

and

By induction we obtain that for every integer i
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with

(3.37)

and

(3.38)

Now, from lemma 2.IV it follows that

As {9J is an increasing sequence that converges to 1, (3.32) and (3.33) are
proved. Using theorem 2.1, (3.34) follows from (3.32) if we fix 0 such that

PROOF OF THEOREM 1.I. The previous results enable us to complete the
proof of the differentiability theorem (theorem 1.1).

Let lhl  y/2. From inequality (3.3) and lemma 3.1, in which we assume s
small enough and p = 4, we conclude that

Now, using lemma 2.11

Then, for Ih I a
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Therefore, from lemma 2.1 we get that u E Hm+I(Q(O’), RN) and

The proof of theorem 1.1 is complete.

REMARK 3.1. In order to prove (1.29) we have only to estimate the
term lul,4,Q(2a).

Let us suppose that Q(21) cc Q and 0  ð  l(d(xO) - 20’). Having
chosen 0 such that

we have

Then, by theorem 2.1,

and so

Now, by lemma 1 of the appendix

Thus, recalling (3.33)

Again, by lemma 1 of the appendix and (3.33)

According to (3.45) we have 2/(l + 6)2  1 and then

Inequality (1.29) follows from (3.44) and (3.47).
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REMARK 3.11. The functions /-% that appear in condition (1.20) could be:
assumed to satisfy the following more general hypothesis:

which means (see for instance [5], chap. I, n. 4) that f" e Lf10153(Q) with

In this case, under the same hypotheses of lemma 3.I, we get instead
of (3.18)

To do this we note that, if hypothesis (3.48) holds, then V8 &#x3E; 0

Hence, inequality (3.25) becomes

and inequality (3.33) becomes

No change is required in the proof of theorem 1.I or inequality (3.44),
except from replacing .F’2 by li’TIJ 2. It is known (see for instance [5]) that
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11 Y 11 is equivalent to

Using (3.51) and repeating the argument of remark 3.I, we can estimate

lu 1,4,Q(20’) as follows

4. - Partial Holder continuity of the derivatives DtXu, I ot = m.

Let U E Hm n om-l,Â(Q, RN) be a solution of system

under the hypotheses (1.9) (1.20) (1.21). We have shown that u EH:l(Q, RN)
and then, by a standard calculation (see for instance [5], chap. V, n. 4),
we obtain that for every open set S2o cc Q

is a solution of the quasilinear system of order 2(m + 1)

where BtXr,{Js = {B,fJs} are N X N matrices defined in Do x:It as follows

and GOt,s: Do X :R -&#x3E; .RN are the following vectors
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System (4.2) is strongly elliptic and, according to (1.21),

Assume that

are uniformly continuous in D x Jt and that in condition (1.20) we have

or, more generally (see also remark 3.11)

which means (see for instance [5], chapter I, n. 4) that f" E Lflx(V)(D) where

Then system (4.2) satisfies the hypotheses of theorem 3.1, chap. IV of [5] (5),
and from this theorem we get the partial Holder continuity result contained
in theorem 1.11 of the present work.

Once we obtained the Holder continuity of the D()(u, Joel = m, system
(4.2) reduces to a linear system with smooth coefficients and right hand
side. Therefore, the higher regularity of u is a consequence of the theory
of linear systems.

Appendix.

In this appendix we prove theorem 2.1. The proof is completely ana-
logous to that of theorem 3.111 of [3], which deals with the case 0 = 1.
We can therefore suppose 0  8  1.

(5) This theorem extends the result of [4] to systems of order &#x3E; 4.
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We note that (2.8) (2.9) are a trivial consequence of (2.7). To se:

that, if

then VM &#x3E; 0

Inequality (2.9) follows choosing M = A(meas Q)-l/q.
As in [3], we derive (2.7) from some interpolation formulas. Let

LEMMA 1. For every u EH1+O(Q(a), RN), 0  0  1, the following ine-

quality holds

We give a proof for the reader’s convenience.
Let UEH1+8(Rn, RN) be an extension of u such that (see for instance [1],

chapters IV and VII)

Via Fourier transform we get
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(1) follows from (2) and (3). The way how constants depend on cr may be

easily checked by a homothetical argument.

PROOF. Let T., be the class of all the polynomials in x with degree 1
and let Po = I ai xi + aco be the polynomial such that

.

Let us set, also

According to (1), written for (u - P.),

Now, by Poincare’s inequality

Therefore

Furthermore

Thus, (4) follows from (5) (6) (7).
We recall also the following lemma, due to John-Nirenberg [6]:

into a denumerable number of cubes Qk, no two having a common interior point.
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Let u be integrable in Q and assume that for fixed p, 1  p  + 00,

We can now give the proof of theorem 2.1.
Let Q = U Qk be a subdivision of Q into cubes Qk, no two having a

common interior point.

From inequality (4) we conclude that

As

from (10) we get

Then

The result (2.7) of theorem 2.1 follows from (11) by virtue of the John-
Nirenberg lemma (lemma 3).
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