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Some Estimates of Solutions

to Monge-Ampère Type Equations in Dimension Two.

GIORGIO TALENTI

1. - Introduction.

One of the purposes of the present paper is to point out the efficiency of
an approach to elliptic second order p.d.e.’s, in which special aspects of

the geometry of solutions are stressed. The point of view we try to explain
here is that, for an elliptic second order p.d.e., the development of solutions
from boundary data or from another input and under suitable boundary
constraints is, among other things, a process geometric in nature and crucial
information (such as content or perimeter) on level sets of such solutions,
hence basic estimates for these solutions, is conveniently and cheaply infer-
red from steps of this process. This opinion is suggested by earlier

results [64] [65] on Dirichlet problems for linear and quasilinear equations
in divergence form. Indeed it has been shown that a priori estimates of
Luxemburg-Zaanen norms of solutions to such problems-roughly speak-
ing, a Luxemburg-Zaanen norm is any norm which depends on the content
of level sets only-are simply another way of interpreting a special dif-

ferential inequality for the distribution function of the solutions in question.
On the other hand, such a differential inequality can be derived as a straight-
forward consequence of the equations themselves and of a general geo-
metric principle-the isoperimetric inequality. Remarkably, this approach
to second order linear and quasilinear Dirichlet problems also shows in a
natural manner what are the worst problems in the relevant framework,
i.e. those which have the largest solutions. Consequently it allows one to
offer a sharp form of a priori estimates. For further references on this

matter see [41] [42] [45] [57]. 

Pervenuto alla Redazione il 17 Maggio 1980.
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In the present paper an attempt is made to test the above statements
on a class of genuinely nonlinear equations. Specifically, we consider

Monge-Ampere equations of the following type

where x and y are independent real variables, u is the unknown, a(r) is a

(measurable) nonnegative function of a single variable r (having a suitable,
not too singular, behaviour as r --&#x3E; 0), H(x, y, u) depends monotonically
on the last argument and has suitable integrability properties. Special
instances might be the standard Monge-Ampere equation

and

the equation of surfaces with prescribed Gauss curvature.

For the sake of completeness, let us mention some essential references
on Monge-Ampere equations. The interest for second order p.d.e.’s, where
the hessian determinant of the unknown function is linearly combined with
second order derivatives, goes back to Monge [27] and Ampere [2]. An old
fashioned theory of these equations is outlined in Goursat treatises [16, vol. 1,
chap. 2] [17, vol. 3, chap. 24]. A modern approach to Monge-Ampere
equations began with works [24] by H. Lewy, who proved a priori bounds
for solutions to such equations and with their help solved questions on
Minkowski and weyl problems in differential geometry [25] [26]. Indeed

Monge-Ampere equations have been studied in recent years in close con-
nection with the latter problems; see Nirenberg [28] for a penetrating treat-
ment of these. Subsequent contributions were made by Heinz [18] [19] [20],
who greatly extended Lewy’s technique. Bakel’man [3] and Aleksandrov [1]
introduced an appropriate notion of generalized solution for a class of Monge-
Ampere equations and proved existence theorems. Further massive inve-

stigations on the subject have been made by Bakel’man and Pogorelov;
see, for instance, [4] [5] [6] [7] [8] [9] [30] [31] [32] [33] [34]. Very compre-
hensive results on the Dirichlet problem and on a priori bounds for solutions
to Monge-Ampere equations-perhaps the most comprehensive results on
this matter, up to now-are in papers [11] [12] by Cheng and Yau. We do
not mention here complex Monge-Ampere equations, which are nowadays
receiving a great deal of attention but which are out of the scope of the
present paper. Additional references are listed at the end of the paper. ~
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Both results, and proofs we present later, should bring into evidence
a geometric structure of equation (1.1). To prepare the way, it is perhaps
worth considering first: (i) a special representation of the hessian matrix,
that brings out level lines and lines of steepest descent; (ii) a special case
of equation (1.1), namely the equation: uxx u’lJ’lJ - u;’lJ = o.

(i) The formula we have in mind is a close relative to the following
one:

a representation of the laplacian 4u of a smooth function u of n variables
xl , x2 , ... , xn . Here

is the derivative (with respect to the arclength) along the trajectories of Du
i.e. the lines of steepest descent-and a2/a(Du) 2 is the square of a/a(Dn) .
Obviously au/a(Du) = IDul; and

since

+ (a derivative along a tangent field to the level surfaces of u) .

We use the notations:

Formula (1.4) follows from a simple inspection of the right-hand side.
The coefficient

appearing in (1.4), has a remarkable geometric meaning: it is the mean

curvature of the level surfaces of u. Formula (1.4) shows that J acts as
an ordinary differential operator along the lines of steepest descent;
more precisely, the value of 4u at a point only involves derivatives of u
along the line of steepest descent passing through that point and the mean
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curvature of the level surface through the point. Of course, (1.4) is a gene-
ralization of the formula

for the laplacian of spherically symmetric functions.
We claim

where h is the curvature of the lines of steepest descent and k is the curvature
of the level lines of u-the sign of k here is so chosen that the principal normal
to the line u = const (i.e. a normal pointing towards the center of curva-
ture) is exactly kDuIlDttl. Note that (1.6) yields in particular

a formula for the hessian determinant of circularly symmetric functions.
An expression of h and k can be exhaustively obtained with the following

device. Let X be a smooth vector field in the n-dimensional euclidean

space and let alax be the derivative

along the trajectories of X. The principal normal to these trajectories
appears in the expression of the second order derivative a2/aX2 = (alaX)2
according to the rule

By expanding ô2/ôX’J one then sees that the principal normal has the

following components: (ôjoX)(X,JIXI) (k = 1, ..., n). In two dimensions

the result can be put into the form

where i stands for the rotation hence the curvature of the
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trajectories of X is exactly

Thus we conclude this way:

(1.8) h = curvature of the lines of steepest descent

(1.9) k = curvature of the level lines

since the level lines of u are just the trajectories of iDu. It should be remarked
that (1.9) is a special case of the well-known Bonnet’s formula for the geo-
desic curvature, see Bianchi [43, chap. 5, section 99].

Equation (1.6) is a straightforward consequence of (1.8) and (1.9).
A more comprehensive formula for the hessian matrix, which yields both (1.6)
and (the two-dimensional case of) (1.4), is:

since

according to (1.8). Here q is the angle between Du and the x-axis, an angle
which can be defined by

(provided 2-vectors are identified with complex numbers) and which has
the properties: 

(ii) A key role may be played by the level lines of the first order

derivatives, if the following equation
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is to be discussed. Equation (1.12) means that the Gauss curvature of the

graph of u vanishes at every point (equivalently, all points on the graph
of u are parabolic). Hence (1.12) characterizes developable (nonparametric)
surfaces, i.e. surfaces which are locally isometric to an euclidean plane.
The following theorem is proved in textbooks of differential geometry
(see [54], section 6.3; see also [58]): a developable surface is either trivial
(i.e. a plane, or a cone, or a cylinder) or the ruled surface spanned by the
tangent straight lines to some saddle curve. Below a short proof of this

theorem is sketched, which comes from a simple inspection of equation (1.12).
Lot u be a smooth nontrivial solution to (1.12) and look at the level

lines p(x, y) = const and q(x, y) = const of the first order derivatives

p = uz and q = Ull. First claim: the level lines of p coincide with those of q.
In fact equation (1.12) can be rewritten as

hence reads as follows : q is annihilated by the derivative along a vector
field which is orthogonal to the gradient of p. Thus q must be constant
along the lines where p is constant, in other words the level lines of p are
level lines of q too. The converse being also true, the first claim is proved
(clearly, we have here rephrased nothing but the vanishing of the jacobian
of the hodograph map (x, y) --&#x3E;- Du(x, y) = (p(x, y), q(x, y)) associated with
a solution of (1.12)). Second claim: the level lines of p are straight lines.

In fact, as we know from the preceeding paragraph, the curvature of a line
p(x, y) = const is c = - div(DpjIDPI). Hence

so that c = 0 because of (1.12). Third claim: the graph of u is a ruled

surface. More precisely, u is linear along the level lines of p. This fact

follows trivially from claims 1 and 2 and from the chain rule. Thus we

have proved that the graph of any solution to equation (1.12) is a ruled

surface. The most significant part of our proof ends here. To conclude

one should prove that the rulings of a ruled (non-flat, non-conical, non-
cylindrical) surface, whose Gauss curvature vanishes, are all tangent to
the line of striction (the terminology here is as in [46]). This is a routine

exercise and will be omitted.

We are interested in global a priori bounds for solutions to Dirichlet
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problems for equation (1.1). Thus a basic ingredient is

(1.13a) G = an open bounded subset of the euclidean plane

and the solutions we are concerned with are real-valued functions (from
suitable function classes, to be specified later) verifying equation (1.1) in G
and having prescribed values on the boundary aG of G. Although our
method works when the boundary datum is any bounded function, for the
sake of simplicity we shall restrict ourselves to the following boundary
condition:

We assume ellipticity and conditions on the right-hand side that ensure
uniqueness. As is well-known and easy to see, the elliptic solutions to

equation (1.1) are precisely those which are convex or concave, and uni-
queness of smooth convex (or concave) solutions-constrained by Dirichlet
boundary conditions-holds if H(x, y, u) is an increasing (or decreasing)
function of the last argument. Accordingly, we look for solutions u which
fulfil the following requirement:

and we assume the decrease of u - H(x, y, u). The less demanding condition:

will suffice. Clearly, (1.15) and boundary condition (1.14) guarantee that
our solutions are positive and oblige us to assume:

It is of some interest to notice that most of our results continue to

hold even if the ellipticity condition (1.15) is replaced by a weaker one,
namely

(1.17a) u is quasi-concave.

Quasi-concave and quasi-convex functions have been estensively studied
in connection with optimization problems and mathematical programming.
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A real-valued function u is said quasi-concave if its domain is a convex

subset of an euclidean space and if the inequality u(ÂzI + (1- 1) Z2) &#x3E;

&#x3E;min (u(z,,), u(z,)) holds for all , in [0, 1] and for all zx, z2 in the domain
of u. Equivalently, a function u is quasi-concave if its level sets {z: u(z) &#x3E; tj
all are convex. It can be shown that a twice continuously differentiable
function u of two real variables x and y (defined in an open convex region
of the euclidean plane) is quasi-concave if and only if

i.e. the curvature (1.9) of the level lines is positive. See [51] [55] for pre-
sentations of quasi-convex functions. Formula (1.6) may confirm that (1.17)
is an appropriate ellipticity condition for equation (1.1). It will be clear

from the sequel, where the divergence structure of equation (1.1) is deeply
exploited, that (1.17) is just an analogue of that weak ellipticity condition
-an ad hoc ellipticity condition for quasilinear equations of the form:

div a(x1, ..., xn, u, Du) + H(XI’ ... , xn, u, Du) = 0 which only demands the
positivity of a(xl, ..., xn, u, Du) X Du on the solutions u under examination.

Concerning the gradient-dependent term in equation (1.1), we make
the following hypotheses:

as we have already said; and

converges, 

a restriction on the behaviour of a(r) as r --* 0; furthermore we assume
either

increases

or

a convex nonnegative function of r .

Clearly, (1.19) is more stringent than (1.20) since (1.19) is equivalent to
the convexity of the left-hand side of (1.20). For example, equation (1.2)
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satisfies (1.19), while equation (1.3) satisfies (1.20) since

Our main results are summarized below. For the sake of simplicity,
only results on the standard Monge-Ampere equation (1.2) are mentioned
here. Results on the more general equation (1.1) are discussed in subsequent
sections.

Let G be a domain as in (1.13), let H be as in (1.16) and suppose further

converges .

Without loss of generality, we assume

Lot u verify equation (1.2) in G, as well as the boundary condition (1.14)
and either condition (1.15) or condition (1.17). As a precaution, one may
assume that u is twice continuously differentiable; if the full concavity
condition (1.15) is taken for granted, then generalized solutions in the sense
of Bakel’man-Aleksandrov are allowed, see section 3 for details.

Our argument is based on the consideration of

the level sets of the solution u. More specifically, a key role is played by

Note that the level sets (1.22) are convex open subsets of G and have

positive distance from the boundary of G if t &#x3E; 0, by virtue of our hypotheses.
Moreover A(t) is a decreasing function of t, varying from A(O) = perimeter
of G to 0 as t runs from 0 to max u; indeed, if A and B are regions such
that A is convex and A C B, then perimeter of A perimeter of B, see [48]
for example.
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The following differential inequality for the function Â(t) is proved:

and most of our results are derived from it. In formula (1.24) H( , , 0)*
is the decreasing rearrangement in the sense of Hardy-Littlewood of the
function H( , , 0); namely the unique nonnegative nonincreasing function
from [0, oo] into [0, oo], which is equidistributed with H( , 0 ) . We refer
to [52] [59] [60] concerning rearrangements of functions.

Incidentally, (1.24) and (1.21) yield at once

an estimate of the length of level lines of solutions to Monge-Ampere equations.
The simplicity of this result is perhaps due, among other things, to the con-
vexity of the relevant solutions. Available estimates of the length of level
lines of solutions look much more complicated for Laplace’s equation [30]
or other linear elliptic equations [53]; for example, Gerver proved that,
if it is harmonic and bounded in a disc, then the length-function t-+
length of {(x, y) E a smaller disc: u(x, y) = tj is equidistributed with a

function of t which grows not faster than the square of a logarithm.
Inequality (1.24) is derived directly from equation (1.2) via simple

arguments of differential geometry. The classical isoperimetric inequality
-which allows one to relate the perimeter and area of level sets (1.22),
hence Â(t) (1.23) with the standard distribution function of u-helps to
infer from (1.24) the following conclusions. Let )] [] be any Luxemburg-
Zaanen norm [56], and consider as a functional of domain G and

right-hand side H. Here u is the solution under estimation. Let G vary
in the class of all bounded convex domains having a fixed perimeter, and
let H vary in the class of all measurable functions such that (1.6) (1.21)
hold and the distribution function of H( , , 0 ) is fixed. Claim: Ilull attains

its maximum value when G is a disc and H is a circularly symmetric function
independent on u, say g(x, y, u) = f(vx2 + y2) ; the same statement holds if
1B u II is replaced by f ID.u dx dy, the total vacriation of u.

G

A more precise form of this theorem is the following pair of inequalities
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together with the assertion that equality holds under the circumstances
described above. In (1.26) stars stand for decreasing rearrangements and

As an application, let us quote the estimates

which easily come from (1.26) under the normalization (1.21b). We point -
out that these estimates are sharp. In particular

The geometry of the ground domain (1.13) is involved in the theorem

above, and in all consequences of it, through the length (1.27) of the

boundary. The question arises: do sharp estimates of the solution to the
problem in question hold, which involve that geometry through quantities
other than perimeter? For example, Bakel’man [9] proved a sharp estimate
of the maximum of solutions to Monge-Ampere equations-even slightly
more general than (1.1 ) in terms of diameter of the domain. The following
inequality

is a partial answer to the proposed question. In (1.29), u is any solution
to problem (1.2) (1.13) (1.14) (1.16) (1.21); note that we are able to prove
(1.29) only if n is fully concave, as in (1.15). Inequalities (1.28) and (1.29)
can be summarized with the following theorem.

Let G be any bounded open convex domain, and let
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then: (i) j(G) x (perimeter of G):&#x3E;4n3, and equality holds if G is a disc;
(ii) 27/4 c j(G) X (area of G):n2, equality holds on the right-hand side if G
is any ellipse, equality holds at the left if G is any triangle.

2. - On the divergence structure of equation (11).

The following lemma is the starting point of our method.

LEMMA 2.1. Let 0  r -&#x3E; a(r) be a real-valued measurable function suck
that f ra(r) dr converges, and set : 

I

o

The following equality holds:

where u is any smooth real-valued function of two real variables.
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For example, lemma 2.1 enables us to write the standard Monge-
Ampere equation (1.2) in the following form:

while the equation (1.3) for surfaces with prescribed Gauss curvature can
be written this way:

Obviously, a proof of lemma 2.1 may consist of an inspection of the
right-hand side of formula (2.2). A more interesting proof, which perhaps
shows how formula (2.2) could be discovered, goes as follows. Consider

the Gauss map from the graph of u into the (upper half of the) unit sphere
and consider the geographical coordinates ( = longitude, 0  q;  2n) and
1p (= colatitude, 0  ’ljJ  nj2) of the image points. In other words, set:

where p = Ux and q == Uy. Equivalently :

or: 

Thus q stands for the direction of the gradient and ip is the slope, with
respect to a horizontal plane, of the actual lines of steepest descent, i.e. the
(saddle) lines which lie on the graph of u and whose vertical projections
on the x, y plane are the trajectories of D2c.

From (2.3) one infers

hence



196

where A indicates the exterior product of differential forms. Since

because of (2.1) and since dq;/Bdb(tan’ljJ) = - d(b(tan’ljJ) dq;), we have

from (2.5):

As

and since d(p has the expression given in (2.4), (2.6) yields

an equivalent form of (2.2).
We refer to [63] concerning further identities, which represent the inva-

riants (i.e. the elementary symmetric functions of the eigenvalues) of the

hessian matrix (of a function of n variables) in the form of a divergence.

3. - Main results.

In this section we develop a method for obtaining a priori bounds of
solutions to equation (1.1). We first present our method and then state
a theorem.

Let u satisfy equation (1.1) in a region G, and boundary condition (1.14).
Suppose that hypotheses (1.13) on the region, and hypotheses (1.16) (1.18)
(1.20) (1.21) on the equation, hold. Suppose moreover that an ellipticity
condition holds, namely u is concave (1.15). It will be clear from the sequel
that our method works even if (1.15) is replaced by the less demanding quasi-
concavity condition (1.17).
We emphasize that in this paper only a priori bounds are considered

and no existence theorem is discussed. Thus we assume the existence of

a solution with the desired properties and we limit ourselves to prove
estimates of this solution.

The solution in question is automatically continuous, positive and

bounded, because of (1.15) (in imposing the boundary condition (1.14) we
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have tacitly assumed that u is continuous up to the boundary). For sim-

plicity, y we suppose that u is twice continuously differentiable; we explain
later how this restriction could be relaxed. Although it is not really neces-
sary, we assume occasionally that u is strictly concave, i.e. the smallest

eigenvalue of - D2U (= the negative of the hessian matrix) is bounded

from below by a positive constant E. Our final results do not depend on
the constant E : consequently, the last hypothesis is made for convenience.
only and can be eventually dropped by using an approximation argu-
ment.

The basic ingredients and tools of our proof are:

(i) The distribution function of u, i.e.

and the rearrangements u*, u* of u. Formal definitions of these rearrange--
ments are

equivalently:

where 1 stands for characteristic function. In other words, u* is the cir-

cularly symmetric function equidistributed with u, namely the function
whose level sets are concentric disks having the same area as the level
sets of u. An analogous characterization of u* holds. Recall that any

(positive integrable) function is the superimposition of the characteristic-

functions of its level sets, as the following formula

(where the integral is Bochner’s) shows.
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(ii) The perimeter A(t) of the level sets of u, or

"

Note that, thanks to our hypotheses, the set at the right of (3.5) is a smooth
convex curve and actually is the boundary of the level set {(x, y) E G:
u(x, y) &#x3E; t}, provided 0  t max u. In fact u has exactly one maximum
point in G and Du cannot vanish away from this point. The last remark

will be frequently used in the sequel; a quantitive form of it is the following
inequality:

where E is any constant such that

(iii) The curvature k of the level lines of u. An expression of k is

given in (1.9) ; for convenience, we rewrite it as follows:

Obviously

for u is concave (or quasi-concave).

(iv) The isoperimetric inequality

connecting area and perimeter of the level sets of u. We refer to [61] for
an exhaustive survey of isoperimetric theorems.

(v) The following special (and elementary) case of Umlaufsatz of

H. Hopf (or Gauss-Bonnet theorem):
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Formula (3.9), where k is given by (3.7), expresses the geometrically obvious
fact that the winding number of a closed convex curve is exactly 1; see [46],
for example.

(vi) The following formula for the derivative of length-function (3.5):

(vii) Lemma 2.1.

PROOF oF (vi). Let (p be any test function from C’(]O, max u[). Federer’s
coarea formula [49] tells us

hence we have
1

A partial integration transforms the right-hand side into

hence applying again Federer’s formula yields

an equivalent form of (3.10) (compare with (1.9)).
We point out that A(t) is Lipschitz continuous, as the same proof above

shows. Incidentally, from (3.6) and (3.10) we have:

For the sake of completeness, let us quote the following proposition:
distribution function (3.1) is Lipschitz continuous and the estimate:
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Op(t)-,u(t+h)(2nlB)h holds. A proof comes immediately from the
inequality kIDul&#x3E;B, and Federer’s formula together with equation (3.9),
which yield

Having declared the rules of our game, we look now at the equation (1.1)
and we integrate both sides over the level set

Here

As we have already said, the boundary of this set is the smooth convex
curve

and the inner normal to the same boundary is exactly

Then lemma 2.1 and equation (3.7) give at once
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since the critical points give no contribution. Here

Now we estimate both sides of equation (3.11).
(viii) The monotonicity (1.16a) of H and the positivity of u tell us

that the right-hand side of (3.11) does not exceed

A well-known theorem by Hardy and Littlewood on rearrangements of

functions [52] [59] ensures that the latter integral is estimated by

Finally we obtain

via the isoperimetric inequality (3.8).

(ix) In order to estimate from below the left-hand side of (3.11) we
need the coerciveness assumption (1.20), namely

where

C(r) is some convex nonnegative function.

Note that one can take C(r) = rb(r) if (1.19) holds ; for

In any case, C(r) can be defined as the greatest convex nonegative minorant
of rb(r). Obviously (3.12b, c) imply C(0 +) = C’(0 +) - 0 and C’ (r) &#x3E; 0;
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thus

where A(r) is a nonnegative function such that

Jensen’s inequality for convex functions gives

hence

because of (3.12b), (3.10) and (3.9). Here

is a monotone function which increases from B(O +) = 0 to B(+ oo) ==
+cx&#x3E;

= f tA (t) dt, as is easily seen from (3.12 ) .
0

Coupling (3.13) with (3.14) gives

and this inequality can be written as

provided the following compatibility condition holds:
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Condition (3.18a) is merely a repetition of (1.21a) if the right-hand side
is + oo; otherwise, it ensures that the right-hand side of (3.16) is in the

range of B, for

Condition (3.18a) allows us to go ahead; it will be clear from the sequel
that (3.18a) is necessary for the consistency of the results we have in mind.
Note that (3.18a) implies

Integrating both sides of (3.17) between 0 and t gives

after straightforward changes of variables on the right. These changes
of variables are legitimate since A(t) is absolutely continuous. Here

Z=A(0), that is:

(3.20) L = perimeter of G.

Inequality (3.19), isoperimetric inequality (3.8) and the definitions (3.2)
(3.3) of rearrangements imply

where v is defined by

Inequality (3.21) is a basic result. It can be summarized and interpreted
as in the following theorem.

THEOREM 3.1..Let u be a sufficiently smooth solution to the problem

in G

on the boundary of G

is concave in G.
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Assume the following hypotheses :

G is (open, bounded and) convex;

a nonnegative function A (r) exists such that

increases ,

Moreover, set:

(3.24a) G* = the disk having the same perimeter .L as G, 

and call v the solution to the following problem:

on the boundary of G*

is concave and continuous in the closure of G*.

Conclusions :

PROOF OF (3.25). This statement is exactly the inequality (3.21).
In fact problem (3.24) has a circularly symmetric solution; for the domain

is a disk, the differential operator commutes with rotations and the right-
hand side

is a function of only.
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Let v be such a solution. Then the equation for v becomes (compare
with (1.7)) :

provided the concavity of v is taken into account. Thus we have an ordinary
differential equation for determining v, namely:

where B is given by

Note that conditions (3.12) are all satisfied. In fact the function B, defined
by (3.28), satisfies (3.15), i.e.

is convex, 

thanks to our hypothesis (3.23a).
On the other hand, problem (3.24) cannot have more than one solution.

Then the solution v, we are looking for, is obtained just by solving equa-
tion (3.27); and has exactly the expression (3.21b).

The above argument also shows: compatibility condition (3.23c) (compare
with (3.18)) is necessary and sufficient for the (maximizing) problem (3.24)
to have a solution.

PROOF OF (3.26). Formula (3.21b) yields

On the other hand, from Federer’s coarea formula and inequality (3.17)
we have
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The last quantity equals

because of (3.21c) and the definition (3.24a) of GO. 

REMARK. Estimates of the maximum of a function u, which is concave
in a (convex) domain G and vanishes on 8G, are equivalent to estimates
of the total variation f IDu dx dy of u. In fact, the following inequality holds :

G

provided u and G are as above. A proof of (3.29) comes from Federer’s
formula

where A(t) has the meaning (3.5). Indeed, the convexity of the level sets
of u implies:

Â(t)perimeter of G,

namely the left part of (3.29). Note that this part of (3.29) remains valid
even if u is only quasi-concave. On the other hand, u&#x3E; U since u is concave;
here U indicates the Minkowski function defined this way: the graph of U
is the cone which projects aG from the highest point of the graph of u.
An elementary argument shows that (1- t/max u) X (perimeter of G) is the
length of the level line U(x, y) = t ; hence

so that the right part of (3.29) also follows.
Incidentally, let us insert in (3.29) the following function: u(x, y) =

- distance of (x, y) from the complementary set of G. It is easy to see that u
is concave if G is convex. On the other hand, IDu(0153, y) = 1 almost every-
where in G; moreover the maximum of u is the so-called inradius of G,
that is the radius of the largest disk contained in G. Thus we have derived
from (3.24) a new proof of the following well-known [44] proposition: the
inequality

holds for any bounded convex two dimensional region..
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THEOREM 3.2. Let the situation be as in theorem 3.1. Then the estimate

holds. Here k is the curvature (1.9) (3.7) of the level lines of u and P(r) is any
function such that

Equality holds in (3.31) if G is a disk, u is circularly symmetric and a(r) =
= A (r) .

For example, theorem 3.2 (together with formula (3.21c)) enables one-
to obtain the following estimate :

provided the equation for u is (1.2) and 1 C m c 3. In particular, under
the same circumstances we have:

a sharp estimate, as are all in this section.

PROOF OF THEOREM 3.2. The conditions on P(r) at r = 0 guarantee
that P(IDU I) kIlDu is integrable on the whole of G. Then we can use-

Federer’s coarea formula and we get

Define a function 0 with the following rule:

"There B(r) is as in (3.28). As is easy to see, 0(s) is an increasing convex
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function of s, precisely because of our assumptions (3.32). Thus we have

the following chain of inequalities:

Thanks to the definition (3.36) (and the monotonicity) of 0, the obtained
result can be rewritten in the form:

provided (3.10) is used once more. From (3.35) and (3.37) we get

namely the desired inequality (3.31), via formula (3.21c). s
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REMARK. Consider the Dirichlet problem (1.2) (1.13) (1.14) (1.15) (1.16)
for the standard Monge-Ampere equation. Theorem 3.1 enables us to obtain
sharp estimates of the following form:

(3.39) a Luxemburg-Zaanen norm of ua function of these arguments

provided u is a smooth solution. We claim that these estimates continue
to hold even if any smoothness assumption on u is dropped and only the
concavity and the continuity of u on G are retained: in other words, esti-
mates of the type (3.39) are valid for generalized solutions of the Monge-
Ampere equation (1.2). This claim is basically a consequence of a smoothing
procedure and the following monotonicity property of the generalized hes-
sian : if u, v are concave in G, continuous in G and u = v on a G, then u &#x3E; v
implies

total variation of hess u &#x3E; total variation of hess v .

This property comes easily from the definition of generalized hessian.

Recall that hess u, the generalized hessian of a concave (or convex) function u
on an open set G, is the measure (actually a countably additive measure,
as one could prove) whose value on any Borel subset .E of G is

Here Du is a generalized (set-valued) gradient, namely (Du) (x, y) is the

set of all 2-vectors (p, q) such that the plane through the point (x, y, u(x, y)),
and normal to the direction (- p, - q, 1), is supporting (i.e. above) the
graph of u. We refer to [1] [3] [12] concerning properties of the generalized
hessian and existence theorems of generalized solutions to Monge-Ampere
equations.

4. - Surfaces with prescribed Gauss curvature.

Applications of theorem 3.1 to the standard Monge-Ampere equation (1.2)
are sketched in the introduction. In this section we apply theorems 3.1
and 3.2 to equation (1.3), the equation for surfaces with prescribed Gauss
curvature. Our results on this equation can be summarized as follows.
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THEOREM 4.1. Let u be a (smooth) solution to the problem

in G

on the boundary of G

is concave in G , 

and assume the following hypotheses :

is open, bounded and convex;

The following estimates hold:

Here:

G* = the disk having the same perimeter (L, say) as G
A

and v is the solution to the following problem:

on the boundary of G*

is concave and continuous in the closure of G*.

Concerning a proof of theorem 4.1, it is enough to observe that pro-
blem (4.1) satisfies all the hypotheses of theorem 3.1 if (4.2) holds. In par-
ticular, the crucial condition (3.23) is fulfilled with the following choice:
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Note that an explicit representation of v is:

hence explicit a priori estimates can be derived from (4.3) (4.4) (4.5) via
formula (4.8). For example:

-where :

.and L = perimeter of G. We recall that the object k, appearing in for-
mulas (4.5) and (4.12), is the curvature (1.9) of the level lines of u. ~

THEOREM 4.2. Let u be a smooth concave f unction on a convex domain G,
and let u vanish on the bo2cndary of G. Set

,the Gauss curvature of the graph of u. The following inequalities hold:

where L = length of aG (i. e. the length of the boundary of the graph of u) and

-is the total curvature of the graph of u.
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Note that the inequality

is automatically true. For 2ne is the area of the image of the graph of a
under the Gauss map, and this image is a part of the upper half of the
unit sphere.

Inequalities (4.15) and (4.16) are isoperimetric-type theorems, con-

necting the volume of the ipograph, or the total variation of u, with the
perimeter of the graph. Note that (4.16) yields

area of the graph

an isoperimetric inequality for a two-dimensional manifold with positive
Gauss curvature.

PROOF OF THEOREM 4.2. Rewrite formula (4.14) as

and apply theorem 3.1 to equation (4.20). All the hypotheses of theorem 3.1
are satisfied, for

is such that:

increases

and

because of (4.18). Hence (4.15) and (4.16) are straightforward consequences
of (3.25) and (3.26), via the same arguments we have used for the proofs
of theorem 4.1.

REMARK. The a priori bounds we have listed in theorem 4.1, and all
corollaries of these bounds, are obtained by solving problem (4.6). The

differential operator involved in the latter problem is different from (and
in a sense worse than) that which is involved in the original problem. As
the differential operator appearing in (4.1) is invariant under rotations,



213

the question arises: can the solution u to problem (4.1) be estimated in
terms of circularly symmetric solutions to the following equation

where the differential operator is retained unchanged?
In this connection, let us mention the following curious result.

THEOREM 4.3. Let u be a smooth solution to problem (4.1). Assume hypo-
theses (4.2), assume further the following a priori bound:

Then inequalities (4.3) (4.4) hold, if v is the circularly symmetric concave
solution to equ,action (4.21) which vanishes on the boundary of the disk (4.6a).

The proof of this theorem is exactly the same as that of theorem 3.1.
The key fact is the following: the coefficient a(r) = (1 + r2)-2 is such

that r3 a(r) increases for 0 rv3 (and decreases for r&#x3E;V3); in other

words

is convex for

As is easy to see, property (4.23) and assumption (4.22) guarantee that all
the arguments of section 3 still work.

Incidentally, similar phenomena occur when problems, which involve
the mean curvature, are considered. The following theorem can be proved
with the technique of [65].

THEOREM 4.4. Let u be a (sufficiently nice) solution to the problem

in G

on the boundary of G,

where G is any domain (with finite measure) in n-dimensional euclidean space
Rn and the right-hand side H satisfies the conditions
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Assume the following a priori bound:

where v is the (spherically symmetric) solution to the problem

on the boundary of G*,

and G* is the ball having the same measure as G. If condition (4.26) is

dropped, then (4.27) is still true provided (4.28) is replaced by

in G*

on the boundary of G*.

5. - On a theorem by N. V. Efimov.

In [47, section 77] Efimov observed that, if a convex body is given in
3-space, then the diameter of the body and the Gauss curvature of its

boundary cannot be simultaneously large. More precisely, Efimov proved
the following: Suppose that u is a concave function on a convex region G
and u vanishes on aG, call g the Gauss curvature of the graph of u ; then
(minK)(maxu)(diam G) 2n. Below we present a theorem, which genera-
lizes (and improves) this inequality. Such a theorem shows that, if the

coefficient a(r) decays fast enough as r -&#x3E; + oo, then both the maximum
of concave (or convex) solutions to equation (1.1) and the size of the domain
can be estimated in terms of a lower bound of the right-hand side.

THEOREM 5.1. Suppose that

are finite, and suppose
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If u is a (smooth) solution to problem (1.1) (1.13) (1.14) (1.15), then both

and

do not exceed

PROOF. By lemma 1.1, we can rewrite equation (1.1) in the form

where: 

Integrating both sides of (5.6) over G gives

since 2G is exactly the level line u = 0 and the critical points of u give
no contribution. Thus k is the curvature of the boundary, and

because of Umlaufsatz and the convexity of G. From (5.8) (5.9) and (5.7)
(5.2) one infers

The conclusion follows from lemma 5.2 below and the inequality
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LEMMA 5.2. If u is any concave f unction on a convex region G and 11r

vanishes on ôG, then (5.3) and (5.4) do not exceed the areac of the graph of u.

PROOF. Let r be the cone which projects aG from the highest point
of the graph of u. By the concavity of u, T bounds a convex subset of the
ipograph of u. Hence

(5.12) area graph u&#x3E;area 7".

On the other hand, it is easily seen that

where h = max u is the height of rand L is the perimeter of G.
Furthermore, a theorem on Steiner symmetrization tells us

where A is the area of G. In fact the right side of (5.14) is the area of the

right circular cone which has the same height as T and is erected on a disk
with area A ; this cone is an image of r under a Steiner symmetrization.

The lemma is proved.

6. - Perimeter or area?

In this section we prove

a sharp bound for concave solutions to the standard Monge-Ampere equa-
tion (1.2). Inequality (6.1) is a corollary of theorem 6.1 below and holds.

for smooth or generalized solutionc to problem (1.2) (1.13) (1.14) (1.16).
The difference between (6.1) and the estimates, which can be derived from
theorem 3.1, is that (6.1) involves the geometry of the ground domain
through the content only and ignores whims of the boundary.

THEOREM 6.1. Let G be an open bounded convex (2-dimensional) domain.
and let j(G) be defined as in (1.30). Then
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Equality holds at the right if G is an ellipse, equality holds at the left if G
is a triangle.

Note that 27/4 = 6.75 and n2 = 9.8696..., so that j(G) does not differ
very much from a numerical multiple of (area G)-l. Note also that j {G) X
X (area G) is invariant under afhne transformations (i.e. linear changes of
coordinate = translations + rotations + dilatations), a property which shows
little sensitivity of j(G) X (area G) to the shape of G. Incidentally, theo-
rem 6.1 settles the two-dimensional case of a problem by Aleksandrov [40,
section 10].

A proof of theorem 6.1 runs as follows.

STEP 1. Set

u is continuous in G and u = 0 on aG}

for any convex domain G and any point zo in G. Here (hessu)(G) is

f (uxx u’lJ’lJ - u;’lJ) dx dy if u is twice continuously differentiable ; it is the total
G

variation of the generalized hessian of u (see the concluding remark,
section 3) if u is merely concave in G. We have

because of the definition (1.30) of j(G) (the function class and the notion
of hessian, relevant to this definition, are understood to be as in (6.3), of

course)..
Observe that the infimum in (6.3) actually is a minimum. In fact, set:

In convex analysis, 1- U is called a Minkowski function: the graph of U
is just the cone which projects aG from the point (xo, yo, 1) (here xo and yo
are the coordinates of zo). Clearly U is concave, U vanishes on aG and has
the value 1 at zo . Warning : U is the smallest function having these properties.
Hence, if u is any member from the function class indicated in (6.3), we
must have

thanks to the monotonicity property of the generalized hessian (see section3 ).
We conclude that
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By the way, a more careful analysis could lead to the equation

where 6(- - z,,) denotes the Dirac mass concentrated at zo. This equation
is perhaps the most comprehensive way of saying that the graph of U is
a developable surface with a crucial singularity at a point.

STEP 2. Suppose that G has a smooth boundary. Then:

where :

k = curvature of aG ( &#x3E;0)

n(z) = the inner normal to aG at z .

Here Idzl is a shorthand for ddr2 -f- dy 2, and we use brackets to denote
the scalar product between vectors.

Formula (6.6) is a consequence of (6.5). For, if the boundary is smooth,
the function U is continuously differentiable out of zo and the value of

the (conventional) gradient of U at a point z =A za is

w being the point where the half-axis from zo towards z meets the boundary.
Notice that the denominator is the distance between zo and the tangent
straight-line to 8G at w. On the other hand

the value at zo of the generalized gradient of U, is the region (a convex

region, as one may see) bounded by the curve

The area of this region is precisely the total mass of the generalized hessian
of U. Computing this area with a contour integral gives (6.6).
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An alternative argument, which would lead to (6.6), is the following.
Let u be a smooth concave function, which vanishes on the boundary of G.
From lemma 2.1 and formula (1.9) we have

since aG is exactly the level line u = 0. For the same reason

while the concavity of u implies

Putting together the three formulas above we obtain

namely (6.6a) with the equality sign replaced by &#x3E;. 0
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For example, formula (6.6) gives

if G is the ellipse (Xla)2 + (y/b)2  1. Hence we obtain via (6.4) :

STEP 3. Let G be a (convex) polygon with n sides. We number counter-
clockwise the vertices of G and we denote them by Z1, Z2, ..., Zn (z,,+i = -’i 
zn+2 Z2). Then
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where

- area of the triangle with vertices at z,, Ok+l zk+2 ,

- area of the triangle with vertices at zo, zk, -k+l 

xk and Yk being the coordinates of zk .

Formula (6.8) should be considered a discretization of (6.6). It follows

easily from equation (6.5). For, in the present situation, the function U,
defined by (6.5a), is piecewise linear and has the values

inside the triangle with vertices at zo, Zk, zk+1. Hence the image of our

polygon G under the generalized gradient of U fills the polygon whose
vertices have coordinates

The area of this new polygon is what we need to compute, namely the
total mass of the generalized hessian of U. This area is

the right-hand side of ( 6.8a) . o

Two cases of formula (6.8) have a special interest: the first one is that
of a triangle, the second one is that of a regular polygon.

Let us look at the n = 3 case first. If G is a triangle, one infers at
once from (6.8):
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since PI = P2 = P3 = Ai + A2 + Aa = area G. The numbers AI, A2, A3
are known as the baricentric coordinates of zo : they are three arbitrary
(and positive, if zo is inside the triangle) numbers whose sum is the area
of the triangle. Thus the geometric-arithmetic inequality tells us that the
minimum of the right side of (6.9a) occurs when zo is the center of mass of
the triangle, the point where Ai = A2 = A3 = 1/3 (area G). We conclude
that:

Suppose now that G is a regular polygon with n sides. We can place the
vertices of G in the following way:
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where r is some positive number. We then have from (6.8):

for:

and:

The geometric-arithmetic inequality implies:

where equality holds if A,= A2 = ... =A,,,, a circumstance occurring
when zo is the center of the polygon. Thus

and the right-hand side is just the minimum with respect to zo of the left
side. In other words:

A key fact for our argument is the following:

STEP 4. Let G vary in the class of all convex polygons with n sides and
fixed area; then j(G) is maximum if G is affine to a regular polygon, j(G) is
minimum i f G is a triangle (we think here of a triangle as a n-gon with n - 3

superfluous vertices).
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This assertion is basically a consequence of the following property.
Let n &#x3E; 4 and let G be a convex n-gon with vertices at z,, Z2, ..., zn; keep
zl, ... , 9 "n-1 fixed and let Zn vary on a parallel straight-line to the chord from
zn_i to zl; suppose that zo is in the convex hull of Zi, ..., Zn-l. Then J(zo, G)
is minimum i f Zn is on one of its extreme positions, namely on the axis joining
either Z2 with z, or Zn-2 with zn_1. J(zo, G) is maximum if Zn is on the axis
joining zo with the midpoint (z, + zn-1)/2 (provided Zn can meet this axis ; oth-
erwise the maximum occurs when zn reaches its closest position to that axis).

For a proof, we denote J(zo, G) by J(zo, zl, ..., Zn-1 zn). Let eirp =

= (Zn-l - Zl)//Zn-l - zll be the unit vector parallel to the chord from Zn-l
to zl ; form J(zo, Zl, ..., 7 Zn-l zn+reirp), where r is a real variable running
near r = 0, and compute

We omit the calculations, which are long and tedious, and we write
down only the result. The derivative (6.11a) has the following value:
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The first factor is positive; the second factor is the signed area of the
triangle with vertices at zo, (z,+z,,,-,)12, zn. The announced proposition
follows.

STEP 5. All conclusions of theorem 6.1 follow from step 3, step 4, (6.7)
and (6.9). A continuity property of the functional j is involved, of course.

7. - On the Aleksandrov-Pucci maximum principle.

The following theorem is well known.

THEOREM (Aleksandrov-Pucci). Let G be any open bounded subset of
euclidean n-space Rn; then a constant C exists such that

Here

is a linear second order partial differential operator with measurable coef-
ficients, satis f ying the ellipticity condition:

11, is any function having the properties:

Proofs of this theorem are presented in [40] and [62]. In this section

we point out some estimates of the constant C appearing in (7.1). The esti-
mates we present below are closely connected with estimates for solutions
to Monge-Ampere equations and are derived in the two-dimensional case
only.

Suppose it = 2 ; then the smallest constant C, for which (7.1) holds, can be
estimated as follows: 

Here ch stands for convex hull.



226

The arguments of Aleksandrov and Pucci consist essentially of the

following two steps.

(i) Let G as above and let a be any point in G ; suppose that

Then

where U is the Minkowski function defined by

namely U is the smallest function which has the following properties : U is
concave, U is positive in G, U has the value 1 at the point a (we say that
a differentiable function u is concave at a point x if x is interior to the

domain of u and the inequality (Du(x), y - x) + u(x) &#x3E; u(y) holds for every y
from a neighbourhood of x) .

The inclusion (7.6) is geometrically obvious and easy to prove. Note
that the intersection of all sets at the left-hand side of (7.6) is exactly the

right-hand side of (7.6).

(ii) If u E C2(G) and (7.2) holds, then

(7.8) meas (Du)( {x E G: u is concave at

In fact

for any Borel subset B of G, since det D 2u is just the jacobian of the hodo-
graph map G D r - (Du) (x) E Rn and

On the other hand, the arithmetic-geometric inequality tells us that the

inequality:
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holds at every point where the eigenvalues of the hessian matrix D2u(x)
have all the same sign. As D22c(xj is negative-definite if u is concave at x,
then (7.10) holds at every point where u is concave. Hence (7.9) and (7.10)
yield (7.8). 

Putting together (i) with (ii) gives the following result. Suppose that (7.2)
and (7.3) hold; then

where

and

From section 6 we know that

q is concave and continuous in (chG)-, qJ=O on a(ch G)i .

Hence (7.4) follows via (7.11) (7.12) and theorems 3.1, 6.1.
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