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Commensurability Classes
and Volumes of Hyperbolic 3-Manifolds.

A. BOREL

The first purpose of this paper is to answer some questions raised by
W. Thurston [24: 6.7.6] about families of commensurable hyperbolic 3-ma-
nifolds. Two hyperbolic 3-manifolds M, M’ are commensurable if they have
two diffeomorphic finite coverings. M is said to be minimal if it does not
properly cover any other hyperbolic 3-manifold. We shall see that if fl

is a full commensurability class of orientable hyperbolic 3-manifolds of

finite volume, then M contains infinitely many non-isomorphic minimal
elements if ni(M) is definable arithmetically, but only one if it is not (and
V-manifolds are allowed). Moreover the volumes of the elements in J6

are all integral multiples of some number (which is not necessarily one of
the volumes, though).

An orientable hyperbolic 3-manifold M is the quotient of the hyperbolic
3-space H3 by a discrete torsion-free subgroup F of the identity component
l(H-3)0 of the group if isometries of H3 (which is isomorphic to PGL,(C)).
We shall also allow 1-’ to have torsion, and then M is a V-manifold or an
« orbifold a&#x3E; in the terminology of [24] (i.e., it looks locally as the quotient
of euclidean space by a finite linear group ) if = H3 /T and M’ = H31F’ are
commensurable if rand r’ are commensurable up to conjugacy, i.e., if T

and a conjugate gl-’’ = g.r’g-1 of F’ by some g E l(H3)° are commensurable
(their intersection has finite index in both). Moreover, if is minimal if

and only if 1’ is maximal in its commensurability class. Given two commen-
surable subgroups T, F’ of a group, let us define the generalized index of
T’in T by

Pervenuto alla Redazione il 24 Maggio 1980.
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Then clearly

where U(T) denotes the volume of H3/T with respect to the hyperbolic
metric. Therefore the above results are equivalent to the following theorem :

THEOREM. Let r be a discrete subgroup of PGL2(C) of finite covolume
and Ar the set of subgroups of PGL2(C) commensurable with r.

(i) If r is arithmetic, then Ar contains infinitely many nonconjugate
elements which are maximal, or maximal among torsion-free elements of Ar.
If r is non-arithmetic, then Ar has a biggest element.

(ii) The indices [r:F’l (r’ EAr) are integral multiples of some number.

In fact, we shall prove this more generally when PGL2(C) is replaced
by a product

and, for convenience, r is assumed to be  irreducible &#x3E;&#x3E; (cf. [17: 5.20, 5.21])
[i.e., it is not possible to write Ga,b as a direct product Ga,b = H - H’ (H, H’

. closed connected, non-trivial) such that (r n H). (r n H’) has finite index
in T. This is equivalent to 1-’ n N = {11 for each proper normal closed sub-
group N, or also to the fact that the projection of 7" on any infinite non-
trivial quotient of Ga,b is non-discrete]. Geometrically, y this means that

we consider irreducible discrete groups of automorphisms of the product
Ha,b of a copies of the upper-half plane H2 by b copies of the hyperbolic
3-space H3. Our initial case of interest is then a = 0, b = 1. Also included

are Fuchsian groups (ac = 1, b = 0) or Hilbert-Blumenthal groups. The

notion of arithmetic groups in the present case will be recalled in § 3. One
commensurability class of such groups is associated to a number field k

with b complex places and a quaternion algebra B over k which is unra-
mified at a set of a real places of k (3.3). We denote it by C(k, B). If

ac + b &#x3E; 2, T is automatically arithmetic (3.4).
In the non-arithmetic case, these results are trivial consequences of a

theorem announced by G. A. Margoulis in [13], as will be seen in § 1, so
that we shall be mainly concerned with the arithmetic case. There we shall

get a hold of maximal elements in Ar by looking at their closures in the
groups of p-adic points of the form of PGL2 underlying the definition of T.
For this we shall need some facts on the Bruhat-Tits building of SL2 and
on the maximal compact subgroups of SL2 and PGL2 over a p-adic field
which are reviewed in § 2. The assertion (i) above is proved in § 4, and (ii)
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in § 5. To a maximal order of B, we associate a maximal element -[-’ of
C(&#x26;, B ) such that the minimum of the volume y(F) (T c C(ky B)) is achieved
on T The g.c.d. of the volumes in the class are multiples of 2-C . ,( I%)
where c is at most equal to the number of primes dividing two in k. If for

instance a = 0, b = 1, k = Q(v’ 3), and H31r is not compact, then c = 1.
§ 7 gives an expression of the value of lz(rl), where Fb is the image of

the group of elements of reduced norm 1 in 3",J’ , in terms of data depending
only on the field k and on the places of k at which the quaternion algebra B
is ramified (7.3). This formula is deduced here from the fact that the Tama-

gawa number of a k-form of SL2 is one [29] and from local computations of
volumes made in § 6. It includes formulae of G. Humbert (see [24 : § 7])
when k is imaginary quadratic and of C. L. Siegel [23] and Shimizu [22]
when k is totally real, (7.5). The volumes in the class C(k, B) are all rational
multiples of a number depending only on k and on the number of real places
at which B is ramified. From this and a result of R. Baer [1], it follows that,
given an arithmetic subgroup 7B of Ga,b, there exists an infinite set F of
arithmetic subgroups of Ga,b, which are not pairwise commensurable up to
conjugacy, such that however g(r) is a rational multiple of p(Ti) for all
rEF (7.6).

If b = 0, it is well-known that all volumes are commensurable. It

is widely expected that this is not so when b # 0, but as far as I know,
this has not been proved. This raises some questions on values of zeta

functions at two (7.7).
If a + b &#x3E; 2, it is known that the set of all volumes is discrete ([28],

cf. 8.3), but this is not so for a + b = 1. However, we shall prove that the
set of covolumes of arithmetic subgroups is discrete (8.2). For this, we
shall use estimates of Odlyzko’s on the discriminant of number fields [15]
and the fact that, given a constant c, there exists an integer n(c) such that
if 03BC(T) c, then r is generated by n(c) elements. (For a = 1, this is standard;
for b = 1, this is proved in [24: Chap. 13], cf. 8.1) For ac = 0, b = ly the
results of [24] imply then that the arithmetic subgroups are comparatively
rare among all discrete subgroups of finite covolume of PGL2(C’). In 8.4

to 8.6, we give an arithmetic expression for the index [r : r]. It involves

the class group of k, which makes it difficult to estimate it. Therefore we

also single out a subgroup .I’R f intermediary between ro and T1,whose
covolume is independent of the class group, and which is equal to To if k
has class number one.

Finally, §§ 9 and 10 contain some remarks on, and examples of, groups
operating on hyperbolic 3-space or products of upper half-planes.

The study of maximal arithmetic subgroups proceeds along rather stan-
dard lines and can be (has been) carried out in much greater generality.
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In fact, part of what we prove here in the non-cocompact case is contained
in [9; 18; 19]. However the case of forms of PGL2 has some peculiar features.
I have therefore preferred to limit myself to it, but give a rather com-

plete treatment.
I thank E. Bombieri for his computations of small volumes in the

arithmetic case, R. P. Langlands for some helpful remarks on the local
measures and volumes and W. Thurston for suggesting 8.2 when a = 0,
b = 1 and for many useful conversations.

1. - The non-arithmetic case.

Given a subgroup H of a group G, we let CH be the commensurability
subgroup of H in G, i.e., the set of elements x E G such that xH = xHx-IL
is commensurable with H. It is obviously a subgroup, which contains all
subgroups of G commensurable with H. A result announced by G. Mar-
goulis [13: Theorem 9] implies that if G = Ga,b and r (always assumed to
be irreducible) has finite covolume in G, then either Cr is dense and 1-’ is

arithmetically definable (see § 3 for this notion), or Cr is discrete and I’

is not arithmetically definable. [In deducing this from Margoulis’ theorem,
we also use the fact that if Cr is not discrete, then it is dense, as follows
from [17: 5.13].] Therefore, in the latter case Cr is the biggest element in
the commensurability class of T’. The assertion (ii) is then clear in that case.
Also, the commensurability class of T has only one maximal element, at
any rate if we allow torsion. However, it is conceivable that Ar may con-
tain infinitely many conjugacy classes of subgroups of finite index which
are maximal among torsion-free subgroups, in which case there would again
be infinitely many non-isomorphic minimal manifolds (in the strict sense,
i.e., without V-singularities) in the commensurability class of HIF. It was

pointed out to me by R. Griess and J-P. Serre, independently, that .L =
- SL,Zl{± 11 indeed contains infinitely many non-conjugate subgroups of
finite index which are maximal among torsion-free subgroups of L. How-
ever I do not know whether this is the rule or the exception in the case
under consideration.

2. - Maximal compact subgroups and buildings for SL2 and PGL2 over a
local field.

2.1. In this section .h’ denotes a non-archimedean local field with finite

residue field and 0 p its ring of integers. In fact, only the case where F is
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a finite extension of the field Qp of p-adic numbers (p prime) will be needed,
but the facts recalled here are also valid in the equal characteristic case.
Let p be the characteristic and q the order of the residue field. Let [ ] be
the normalized valuation of F and v ( ) the order of an element. Thus

2.2. For the contents of the section, see e.g. [21: Chap. II] and [10.
Prop. 2.30, 2.31]. Let 13 be the Bruhat-Tits building of SL,(F). It is a

tree. ,5’L2(.F) is transitive on the edges, and the vertices form two orbits
01, O2 under SL,(F). The stability groups of the vertices are the maximal
compact subgroups of SL2(F’) and form two conjugacy classes, represented
by Ki = SL2(OF)’ and the group K, of matrices of determinant 1 of the form

There are q + 1 edges with a given vertex P E bv, and the stability
group of P operates transitively on them. In fact, by reduction mod v,
the group Kl identifies to SL2(Fa) and the set of edges incident to the fixed
point of .K1 identifies to the projective line Pl(Fa) over Fa. The stability
groups of the edges are the Iwahori subgroups of SL2(F). They form one
conjugacy class under SL,(F), represented by K1 r1 X2.

An automorphism of b either leaves 01, 02 stable or permutes them.
We shall say that it is even in the former case, odd otherwise. Any (con-
tinuous) automorphism of SL2(F) induces an automorphism of ’6. In par-
ticular GL2(.F) operates on b. The elements which induce even (resp. odd)
automorphisms are those x E GL2(.F’) such that v(det x) is even (resp. odd),
whence the terminology. The center Z of GL2(F) acts trivially on b so that
PGL2(.F), which is the quotient GL2(F)/Z can (and will) be viewed as a
group of automorphisms of ’6. An element of GL2(I’) or PGL2(F) will be
said to be even (resp. odd) if it defines an even (resp. odd) automorphism
of ’6. The even elements in PGL2(F) form a subgroup PGL2(.F’)o of index
two. Thus PGL2(F) is transitive on the vertices and on the edges of 13.

It has two conjugacy classes of maximal compact subgroups, the stability
groups of the vertices and the stability groups of the edges (or, equivalently,
of the middle points of the edges). A maximal compact subgroup is of the
latter kind if and only it contains an odd element.

2.3. LEMMA. Let DD C, D’ D C’ be compact subgroups of PGL2(F).
Assume that C fixes a vertex of ’G, has no other fixed point in 1J, and that C’
contains an odd element. Then D and D’ are not conjugate.
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In fact, since C fixes a vertex Po it consists of even elements. Moreover,
any compact subgroup of PGL2(.F’) must fix some point of 1), therefore D
also fixes Pa . Then D consists of even elements, hence is not conjugate to D’.

3. - Arithmetic subgroups of Ga,b.

In this section we describe the discrete subgroups of Ga,b which are
definable arithmetically, to be called arithmetic for short.

3.0. Before doing so, however, we would like to relate Ga,b to the full
group of isometries of Ha,b .

The group PGL2(C) is connected, and is also the quotient SL,(C)1{4- l}.
It is the group of orientation preserving isometries of H3. On the other
hand, PGLz(R) has two connected components. Its component of the

identity is SL,(R)I{± 1}. The group PGL2(R) may be identified to the
group of isometries of H2, I the elements of SLz(R)/(+ 1} are holomorphic,
orientation preserving, while the others are antiholomorphic, orientation
reversing. Therefore Ga,b is the group of all isometries of Ha,b which
preserve each factor and the orientation of the three-dimensional ones.

It has 2a connected components and is of index 2 b-o,!-b! t in the full group
of isometries of Ha,b . We have singled it out since it turns out to be the
most convenient to use for the discussion of arithmetic subgroups.

3.1. In the sequel, k is a number field, Ok or simply o the ring of integers
of k, d the degree of 1c/Q, V (resp. Va&#x3E;, resp. Vf) the set of places (resp. infinite
places, resp. finite places) of k and r1 (resp. r2) the number of real (resp.
complex) places of k. For v E V, k, denotes the completion of k at v and,
if v E V f, o, is the ring of integers of kv, pv the prime ideal at v and Nv the
order of the residue field o,/pv.

A k-form of PGL2 (or SL2) is a linear algebraic group over k which its

isomorphic to PGL2 (or SL2) over some extension of k. If G is a k-form

of PGL2, then its universal covering G is a k-form of SLz.
The group 4 is the group of elements of reduced norm one in a qua-

ternion algebra B over k. Either B = M,(k) is the 2 X 2 matrix algebra
over k and G = SL, or B is a division quaternion algebra.

We let a: G -+ G be the canonical projection. The group G can also

be viewed as the quotient of a reductive k-group .HH with one-dimensional

center, derived group G, by its center, namely the group defined by the
invertible elements of B. We shall also denote by a the canonical projection
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H ----&#x3E; G. We let ow be the homomorphism 0., - Gv or Hv - G,, defined by
a (v EY), where, as usual, if M is a k-group, we denote by Mv the group
M(kv) of points of M rational over kve
We recall that for any field k’ D k, the map a: H(k’) -7 G(k’) is surjec-

tive, because the kernel of or is the center Z of H, which is isomorphic over k
to the one-dimensional split algebraic torus GL1.

3.2. If .g is an algebraic group over k, then a subgroup h of H(k) is
arithmetic if, given an embedding (2: G -&#x3E; GLn over k, the group o(T) is

commensurable with e(G) n GLn(o) (where, as usual, for any commuta-

tive algebra A, GLn(A) is the group of n X n matrices with coefficients in

A and determinant invertible in A).

3.3. Let T be a discrete subgroup of G,,,,. It is said to be definable
arithmetically if the following conditions are met: there exists a number
field k with b complex places, at least a real places, , a k-form G of PGL2,
a set A of a real places such that

and an isomorphism

(where 81 C V CD is the union of A and of the complex places of k) which
maps F onto an arithmetic subgroup of G(k). Here, G(k) is diagonally embed-
ded in GS1 by means of the natural inclusions G(k) c Gw - We note that, since
Gw is compact for w real not in A, the arithmetic subgroups of G, viewed
as subgroups of GS1 via the diagonal embedding, are indeed discrete. There
are two main cases:

(A) h is not cocompact in Ga,b . Then d = a + 2b, and S1 = Voo
The group G is just PGL2, viewed as a k-group.

(B) r is cocompact in Ga,b . Then k may have any number &#x3E; a of
real places. The group 0 is the group defined by the elements of reduced
norm one in a division quaternion algebra B over k which is ramified (at
least) at all real places not contained in S1, and H is the group defined by
the invertible elements in B.

To simplify notation, identify G with e(G), with e as in 3.2. For almost
all (i.e., all but finitely many) v E TTf, the group G(o,) = G n GLn(ov) is
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maximal compact in Gv . If h is arithmetic then its closure Ctv(F) in G,
is compact open, contained in G(ov) for almost all v’s. Conversely, given a
compact open subgroup Lv of Gv for each v E v;. which is equal to G(ov) for
almost all v’s, the group

is an arithmetic subgroup of G, and every arithmetic subgroup is contained
in one of this type. The maximal ones are among the groups JTL where E,
is maximal compact for all v E v;,.

3.4. We recall that if a -]- b &#x3E; 2, then every irreducible discrete sub-

group of finite covolume of Ga,b is arithmetic. This follows from results

of G. A. Margoulis [7] (see also [25]).

4. - Maximal arithmetic subgroups of Ga,b .

4.1. We let R(B) or JS be the set of places at which B is ramified,
R (resp. Rf) be the set of infinite (resp. finite) places in R, and rf = Rf .
Thus B&#x26;,k, is a division algebra if vc-B and is isomorphic to M2(kv)
otherwise (and IRI is even). Let 0 be a maximal order in B. Then D_ =

== D@k kv is a maximal order of Bv. For v E R f it is the unique maximal order
of integral elements in Bv . If D’ is another maximal order, then Dv = Z’ v
for almost all v’s, D’ is the intersection of the Dv and the Z’ v can be pre-
scribed arbitrarily at finitely many places. s",J and D’ are said to have the

same type if there exists x E B* such that x - 0 = D’ . x. The number of types
of maximal orders is finite (and divides the class number of B). (For all
this, see [4: §§8, 11].)

For v e Vf - Rf, the group 0 is isomorphic to SL2 over kv. We let 13v
be its Bruhat-Tits building and P, the fixed point of [{IV = Dv f1 Ov. Further-
more, let e,, be an edge of 13v incident to P,; let Qv be the middle point of ev
and P( the second end point of ev. Let K1 be the isotropy group of Pv
in 4_ and

We denote by KIV, K2v and K§_ the isotropy groups of Pv, Qv and P,,’
in G,. The groups .Klv and g1v are conjugate in Gv, the groups ki_ and .91 lv
(resp. KIV and K2,) represent the two conjugacy classes of maximal compact
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subgroups in Gv (resp. Gv) (v c- Vf - Rf) (cf. §2). For convenience, we agree
that for v e Rf, the building bv is reduced to a point and Gv = Klv = K2v =

=== XIv, Gv == K1v = ff t.

4.2. The group (7 is simple, simply connected, not compact at infinity,
hence has the strong approzionation property: the group G(k), embedded
diagonally in the restricted product G(Af) of the Gv (v E Vf) is dense. Without
using the notion of restricted product, we can, in our case, express this as
follows: let S be a finite subset of Vf - -Rf. For v c- Vf - S7 let L, be a

compact open subgroup of Gv which is equal to 15(ov) for almost all v, and put

Then, for any set of elements gv E Gv (v E S), there exists g E G(k)L which
is arbitrarily close to gv, for every v E S.

This can also be formulated in the following way: let S be a finite subset
of V,,; for v E-= S, let Dv be a finite subset of ’Gv and Ev = gv. Dv for some
gv E Gv- Then there exists g E 0(k) such that g - Dv = Ev for v E Sand g. Pv = Pv
for v E Vf - S.

4.3. The group G has center reduced to the identity. Therefore the

commensurability subgroup C. (see§l) of an arithmetic subgroup T is equal
to G(k) [2: Thm. 3]. It follows that if two arithmetic subgroups F, F’ of G
are conjugate in Gsl = Ga,b , then they are conjugate under an element of
G(k), hence Ctv(]-") is conjugate to Ctv(F) in Gv for all v E V.. Also, if r c Ga,b
is mapped onto an arithmetic subgroup of G(k) under the isomorphism c,
then every subgroup of Ga,b commensurable with T is mapped by t onto

an (arithmetic) subgroup of G(k). This then allows one to transfer the

discussion of the commensurability class of h in Ga,b to that of i(T) in G(k).

4.4. PROPOSITION. For two finite disjoint sitbsets 8, S’ of -v;, - Rf set

(i) h’or v E S’ (resp. v E Vf, v 0 S u S’), K’,(resp. KlV) is the unique
maximal compact 8ubgro1tp of G, containing Fs,s,.

(ii) Let T be an arithmetic subgroup of G containing an element which
-is odd at some v 0 S. Then T is not conjugate to a subgroup of Fs,s,.
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(iii) Given an arithmetic subgroup r o f G, let S(I’) be the set of v’s suck
that I’ contains an element odd at v. Then there exists S’ such that r is conjugate
to a subgroup o f rS(r),s’, or to rs(r),s, itself if T is maximal.

Given S, S’ let for v E V,

(i) Amounts to asserting that Pv or P,, as the case may be, is the
unique fixed point of Ts,s’ in Z;, . For any u E Yf - {v}, we may find a com-
pact open subgroup M. of i1-u, equal to K1U for almost all uls, such that
a(Mu) c Lu. for u G g - fvl. Set Mv = Kl11 (resp. 111’l) = R’,) if v 0 S u S’
(resp. v c- 8’) and let

By strong approximation, 1B1 is dense in Mv, hence P, , or Pu, is the unique.
fixed point of I’M in 13_ (w eI3- S). Since a(f’M) c I’ s ’s, by construction,
(i) follows.

(ii) Is a consequence of (i) and 2.3.

(iii) By the generalities recalled in 3.3, there exists for every v c- V,
a maximal compact subgroup Jv of Gv, equal to K1,v for almost all v’s, consist-
ing of even elements if v 0 F(S), such that T c 1’, where J is the product
of the Jv’s. Let T c 13 be the union of R, and of the set of v’s for which

Jv =}:; Kl,V. It contains S(r). Using 4.1 and 4.2, we see that there exists

g E d( G(k») with the following properties:

Then OF c rS(r),s’. There is then obviously equality if r is maximal. This

proves (iii).

REMARK. A group rs,s’ may be non-maximal. The point is that we cannot
assert that for v E S the group ](2,V is the unique maximal compact subgroup
of Gv containing .ITs,s, . It could happen that for some v E S no element of

hs,s, is odd at v, and then hs,s, would fix pointwise the edge e, containing
P,, Q, (notation 4.1) and be a proper subgroup of -psl,sl where S" = S -lv} -
In order to show that there are indeed infinitely many non-conjugate ma-
ximal subgroups among the groups Ts,s’ we need therefore an existence . ..
statement. This is provided by the folloiving lemma:

4.5. LEMMA. Let v c- V, - R,. Then there exists a torsion-free arithmetic
subgroup of G containing an element which is odd at v.
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Let n be such that G is embedded in GLn . If g E G(k) is of finite order,
then its eigenvalues are roots of one, of degree  d - n, hence there are only
finitely many possibilities for the order of g. Therefore, for almost all

v E V - R, there exists a congruence subgroup K,’ of K1,v such that if g E K; n
r1 G(k), then g has infinite order or g = 1. Choose one such place v’ =1= v.
Then any arithmetic subgroup contained in K§, is torsion-free. Now we claim

(*) There exists g E G(k) which is odd at v and contained in ac compact
-open subgroup .Lu of Gu for U E Yf, where Lu = K,’ ,, i f u = v’.

Assume this for the moment. We may take Lu = G(ou) for almost

all u’s. Then the arithmetic group TL is torsion-free, since it is contained
in K;, and has an element odd at v, namely g. We are reduced therefore to
proving (*).

By the Chinese remainder theorem, we can find an element c E k which
is the square of a unit in Dv , has order one at v, and is positive at all v E RCD.
In case (A), let

In case (B), let x be an element of reduced norm c in the quaternion algebra B
which underlies the definition of G. Such an element exists by the norm
theorem of Hasse-Schilling (see e.g. Prop. 3 in [28: XI, § 3]). The first
condition implies the existence of an element y,, E 0.1 such that or,,,(x) =
= O’v’(Yv’). Let T be the set of v E Vf, v 0 R, U {v} such that or(x) 0 G(o,).
It is finite. Using strong approximation, we can find h E Ox(k) such that

Then O’v,(h.x) = O’v,(h.yv’) E gv, and u_(h .z) belongs to the stability group L,
of ev for v E T, to G (o,,) for the other v E Yf - R,. Thus O’(h x) satisfies the
requirements imposed on g in (*).

4.6. THEOREM. Let T be an arithmetically defined subgroup o f Ga,b . Then
the commensurability class of r contains infinitely many non-conjugate elements
which are maximal among discrete subgroups of Ga,b or maximal among torsion-
free discrete subgroups of Gab .

Let k and G be as in 3.3. Then, as pointed out in 4.3, it is equivalent
to prove the same statement for the commensurability class of arithmetic
subgroups of G(k) and conjugacy by elements of G(k). Let r1, ..., .hm be



12

non-conjugate maximal (resp. maximal among torsion-free) arithmetic sub-
groups of G(k). By 4.4, each one is conjugate to some subgroup of a group
-PS’S, and, by 4.2, 4.4, for almost all v’s in V,, - Rf, the point Pv is the
unique fixed point of Fi in ’G, (i = 1, ..., m). Fix one, say vo . By 4.5, there
exists a torsion-free arithmetic subgroup T’ of G having an element which
is odd at vo . By 2.3, any arithmetic subgroup containing r’ is not conju-
gate to any of the -Vils. Among those there is a maximal one and one which
is maximal among torsion-free arithmetic subgroups, whence the theorem.

4.7. REMARK. The first assertion of 4.4 is contained in more general
statements of [18; 19]. For PGL2 over a number field, the existence of in-
finitely many non-conjugate maximal arithmetic subgroups is already
proved in [9].

4.8. In 4.7, we proved the existence of an element which is odd at a given
place, but it may be odd at other places as well. The proof shows that, in
order to produce a group for which r(s) consists of just one given finite
place v, it is enough to find c E k which has odd order at v, even order at

all u 0 R f u {vl, and is positive at all u E Roo. This last condition is of course
vacuous if Roo = 0, in particular in case (A). The other two will be fulfil-

led if the prime ideal o n -"v of o has an odd power which is principal, in
particular if o is a principal ideal domain.

4.9. We shall write F£) for Ts,s’ when S and S’ are empty. Since

(1: H(k) - G(k) is surjective (3.3) we have

where

Given S’ finite in Yf consider the set of points (Rv) where Rv = Pv for v 0 S’
and Rv = Pv otherwise. There is a unique maxiinal order D’ = D(S’) such
that Gv n Dv fixes Rv for all v’s. Thus we have

By strong approximation, the systems (R,), for varying S, form a system
of representatives for the conjugacy classes of maximal orders with respect
to G,(k).
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4.10. PROPOSITION..I’ix S c 17;.. Then the groups rs,s’ form finitely many
conjugacy classes in G(k), as S’ varies through the finite subsets of TTf - S,

Let D’ be as above and D"= D(S") be similarly associated to 8". We

claim that rry and rD" are conjugate if and only if there exists g E B* which
is odd at exactly S’ u S" - (S’ n S"). Moreover, if there exists such an

element, then there exists also x E B* such that

The necessity of the condition is clear. If there exists such an element,
say y, then by strong approximation (see end statement in 4.2), we can find
z c 0(k) such that x = a(zy) satisfies (1), (2), (3). But then TS’S, and Fs,s"
are conjugate under x. The proposition now follows from this and the
finiteness of the type number of B (4.1).

5. - Comparison of the volumes in a commensurability class.

5.1. We consider the commensurability class C(k, B) of arithmetically
defined subgroups of Ga,b defined by a k-form G of PGL2. We keep the
notation of 3.3, 4.1, 4.4 and identify Ga,b with Gsl . For v E Yf, let Nv be
the order of the residue field at v.

5.2. LEMMA. Let S, S’ be finite disjoint subsets of Vf - Rf and S’ be
a finite subset of Vf - (Rf US). For v E S" let Ev be the set of edges of ’G,
having P, (resp. Pv) as a vertex if v E S’ (resp. v 0 S’). Then, given f v , f, E Ev-
(v E S"), there exists y E FS, S, such that y. f’V = f,’ , for v E S’.

This is again a consequence of strong approximation: Let M, be the
isotropy group in Gv of P,, (resp. Pv) if v E S’, v 0 S’ (resp. v E S’ r’1 S"). As
recalled in 2.2, it is transitive on &#x26;v. Let then gv E Xv be such that gv.f’f) =

= f,’ (v E S"). By strong approximation, we can find g c- 0(k) which is ar-

bitrarily close to gv for v E S", fixes the point Pv for v 0 S’ u S’, the point Pv,
for v E S’ and P,, P; for v E S. Then a(g) E rs,s’ and a(g) - fv = fv for v E S".

5.3. THEOREM. Let To be as in 4.9. Let S, S’ be finite disjoint subset&#x26;

of Yf - R f . Then there exists an integer m ( 0  m  IS 1) such that
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In particular [Tn : .1-’s,s,] &#x3E; 1 and [r.o: rs,s’] =1 i f and only if S is empty.
Given c &#x3E; 0, the groups .hs,s, for which [rD: hs,s, ]  cafre contained in finitely
many conjugacy classes. 

In this proof, it is understood that v E Yf . We have

and (1) is equivalent to the following equalities

Let r1= rD r1 rØ,8’. This is the subgroup of G(k) which fixes the edges
Cv (v E S’ ) pointwise and the points Pv for v 0 8’. Lemma 5.2 implies :

which proves (3).
Let now F2 = F,6,s, n rs,s’. This is the subgroup of G(k) which fixes

Pv , P( for v E S, the vertex Pv for v E S’ and P, otherwise. By 5.2 we have

On the other hand, if g c- G,, stabilizes ev , then g,,2 fixes P,, and P;. As a
consequence

(4) now follows from (7) and (8).
The right-hand side of (1) can be written as a product of factors indexed

by v E S, each of which is &#x3E; (Nv + 1)/2, hence tends to infinity as v

varies. Therefore, given c &#x3E; 0, there exist only finitely many S such that

for some S’ .

Since for fixed S, the groups Ts,s, are contained in finitely many conjugacy
classes (4.10) the last assertion is proved.
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5.4. COROLLARY. Let e be the numbe1" of places of k dividing 2 and not
contained in Rf. Let h be a subgroup of Ga,b commensurable with Td . Then
the volume p(T) is an integral multiple of 2-6 . p(TD). It is equal to ,u(.1) if r
is conjugate to a subgroup T+,s, , and&#x3E; ft(F£» otherwise.

The group r is arithmetic in G(k) (3.3). It is enough to consider the case
where it is maximal. r is then conjugate to a group rS(r),s’ (see 4.4). By 5.3,
[F £): rS(r),s’] is an integral multiple of the number

If v divides the rational prime p, then Nv is a power of p, hence Nv + 1
is even except when v divides 2, Therefore all the factors in ms(.r) are integers, ,
except for those v which divide 2. All of them are &#x3E; 1. Since 03BC(T) =
- [To : -Ply(F o), the corollary follows. 

,

5.5. Let 82 be the set of primes of k dividing 2 and not contained in .R.
Let us denote by qG the g.c.d of the numbers ,u(.,T’), where F runs through the
arithmetic subgroups of G. We have just seen that

for some integer C E [0, S2] .

If 82 is empty, then c = 0. Assume now 82 to be not empty. If there exists .T’
such that r(8) is not empty, contained in S,, then c &#x3E; 1. By 4.5, we know
there exists T such that r(8) contains any prescribed element of S, but this
is not enough to insure that c &#x3E; 1, because if T(S) contains some v dividing
an odd prime, , then the factor (Nv + 1)/2 might still contribute a power
of two which might compensate for the one stemming from a place dividing
two at which T has an odd element. The remarks in 4.8 show that, in order
to prove that c = e, it suffices to show that, given u E 82, there exists c E k
which has an odd valuation at u, an even valuation at all other places in
Yf - R, and is &#x3E; 0 at the real places at which B is ramified. But such

existence theorems do not seem easy to prove in general.

5.6. Assume we are in case (A ) and that = 0, b = 1. There exists

then a square free negative rational integer m such that k = Q(vm). We
have c = 1, 2 and more precisely c = 2 if and only if m + 1 mod 8 (see
e.g. (3]). For - m = 1, 2, 3, 7, 19 for instance, v is a principal ideal domain.
Therefore the exponent c in 5.4 (1) is given by:



16

6. - Some local computations of volumes.

6.1. Let g be the Lie algebra of SL2(R). Then (DR C is the Lie

algebra of SL2(C). We view it as a 6-dimensional real Lie algebra. Then

8 : x H - tx is an automorphism of 0c whose fixed point set is the Lie algebra
øU2 of SU2, i.e., the set of skew hermitian matrices. The orthogonal com-
plement p of øU2 with respect to the Killing form is the space of hermitian
symmetric 2 X 2 matrices of trace zero. 0 is the Cartan involution of g as-
sociated to SU2. We have H3 = SL2(C)/SU2 and the canonical projection
identifies )) to the tangent space T(H3)o to H3 at the origin. On Qc consider
the hermitian form go ( x, y ) == - 2 Tr(x - 0 (y)), where T r refers to the trace

in the standard representation. It is hermitian positive non-degenerate,
invariant under inner automorphisms of ,SU2. Then the hyperbolic metric
is the left invariant Riemannian metric whose value at T(H3)0 is the
inner product defined by the restriction of go to p.

[To check this, note first that 2Tr = 4 B, where B is the Killing form
B(x, y) = tr ( ad x o ad y ), of g, , viewed as real Lie algebra, and that, for the
metric defined by the Killing form on p, the sectional curvature on the plane
spanned by x, y is B([x, y], [x, y]). A(x, y)-2, where A(x, y) is the area of

that plane. Then compute this expression for some choice of x and y, for
instance h and u below.] Let

Then h/2, u/2 and v/2 form an orthonormal base of p with respect to go.
In particular, if du denotes the volume element of the hyperbolic metric,
then

In the real case, we have H2 = SL2(R)/S02. We identify p = T (H2)o
with the subspace of g spanned by h and u. The computation sketched above
also shows that the restriction of - 2 Tr(x -,0 (y)) to p defines the hyperbolic
metric, and that hl2, u/2 is an orthonormal basis of p.

. 6.2. Let ccy, co 2 co’ be the left invariant 1-forms on SL, whose values
at the identity form a basis dual to the basis (h, e, f ) of Sl2 given by 6.1(1), r
and coo = col AC02 Ato". Let 17 be a k-form of SL2. The group 0 is then iso-
morphic to ,SL2 over some algebraic extension of k. Fix such an isomor-
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phism cp and let W = cp*wo. Then m is defined over k (see pp. 475-476

in [11]). It is then a «gauge form », which can be used to define first a

local measure cw on Gv for every v and then a Tamagawa measure dz =
=== lDk I -I fl mv on the adelic group GA. In this section, we are concerned

v

with the local measures cco for v E V 00. We have

if v is real y

if v is complex .

As usual, let Woo be the product measure of the cvv on - Let again Si be
the set of real v’s such that 1i is isomorphic to SL, over kv. Set

Then H’I) = G,IK, is H2 (resp, a point, resp. H3) if v is real, v E 81 (resp.
Vft81’ real resp. v complex). Let dlz,, be the hyperbolic volume elemnet
on Hv in the first and last cases, the point measure in the second case.

LEMMA. Let dk’l) be the measure on Xv such that cco = dy, - dk, (v E T10)).
Then the volume v(.gv) of K, with respect to dkv is equal to a (resp. 4n2, I-esp. Sn2)
if v is real in 81 (resp. real not in 81, resp. complex).

Assume first v to be complex. Let

Then wI, or2 u3 is the basis of g* dual to h, it/2, - iv/2. For a C-Iinear

I-forln T on g, let Rr and Ir be its real and imaginary part. We have

The elements ih, iu, iv form a basis of SU2, and h, u, v a basis of p. We have
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which, in view of 6.1(2), shows that the second factor in the right-hand
side of (4) is d,uv, up to sign.

Identify SU2 to the standard unit sphere in R4 by using the real and
imaginary parts of the matrix entries in the first row. The volume for the
standard metric is then 2n2. It is readily seen that ih, iu, iv is an ortho-
normal basis for the standard metric. If dvo is the corresponding volume
element on 5U2, we have then

and our first assertion for v complex follows. This also shows that volume

of K, for the positive measure defined by the restriction of a) is 4n2 if

v is real, not in S,.
In the first case, we hav e d/-lv = 2a)’A or2, since h/2 and u/2 then form

an orthonormal basis of p in that case, as remarked above : therefore

dkv = a3/4, whence our assertion in that case.

6.3. LEMMA. For v E .R f, let v(G) be the volume of Gv with respect to Wv.
T hen

For comparison, let us recall that if v E TTf - .R f, and Kv is a maximal

compact subgroup of Gu, then Wv is the standard measure on ,SL2{lcv) and Kv
is conjugate, by an element of GL2(kv), to SL2(ov). We have then

’ 

where F, is the residue field at v, hence

(cf. e.g. [16; 29]). In particular, the volumes given by (1) and (3) are ra-
tional numbers, but this follows from a general fact (see e.g. [16: 4.2.5]).

6.4. PROOF OF 6.3. This is a local statement, also valid in the equal
characteristic case. We change notation and shift to a purely local situation.
Let then E be a p-field [28: ly § 3]y F its unique unramified quadratic ex-
tension 7,-,, and k, the residue fields of E and F, and q the order of kE . Then
kp is the quadratic extension of kE and has order q2. Let n be a imiformizing
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variable in E. It is then also one in F and P. = n * JOB I pp = n - op are the
maximal ideals of oB and OF respectively. We take as multiplicative rep-
resentative system S’ of kF in F, the set S = 0 u w&#x3E; where w is a primitive
(q2 - l)-st root of one in F. Let x H x’ be the non-trivial automorphism
of F over B. We have w’ = W.

Let B be the division quaternion algebra over E. It splits over .F and
contains .F’ as a maximal subfield. We can write B as a cyclic algebra

and may assume a to be equal to U2 . The map x H x’ extends to an invo-
lution of B which sends u to - u. We have

The reduced norm will just be denoted by N. We have

Let oB be the maximal order of B and PB its maximal ideal. We have

We let Br (resp. K) be the subgroup of elements in B* whose reduced
norm is one (resp. a unit). The group .K is the biggest compact subgroup
of B*. The reduced norm yields a surjective homomorphism of .K onto De*
with kernel B1. It follows from the definitions that the measure v, multiplied
by the standard measure on .E (which gives volume 1 to OE) is the meas-

ure on B* introduced in [11: p. 475]. Denote also by v( ) the corresponding
volumes. We have then

The natural projection of oB onto kF, with kernel VB’ maps .K onto k;, hence

We write F = B(p), where P is integral, and the reduction mod n of fl
generates kF over kE. Then
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VV’e represent B as the set of matrices

Then Nb = det b. Write

On GL2(F) we take as usual as coordinates the matrix entries a, b, c, d.
On B*, we use r, s, u, v. On GLz(F) we have the standard invariant 4-form

On B*7

Therefore

((3 - {3’)2 is the discriminant of .F over E, hence is a unit. This form is de-

fined over E, and the measure v is the one associated to it. On K, the norm
is one in absolute value, therefore our measure v is given by

But now, by (5) and (8), the element b belongs to i1B if and only if

Therefore

Together with (6) and (7), this yields

as was to be proved.

6.5. REMARK. A different proof of 6.4 (17), or rather of an obviously
equivalent equality, has been given by W. Casselman (Proc. Symp. Pur.
Math. 33, A.M.S. 1978, part 2, p. 155, lemma 5.2.1).
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7. - Volumes and values of zeta functions at 2.

7.1. If 7" is a group, we let r(2) denote the subgroup generated by the
squares of the elements of T. It is normal, and FIF(2) is a group of expo-
nent 2. If T is finitely generated, then FIF(2) is a (finite) elementary abelian
group of type (2, 2,..., 2). Its F2-rank is at moist equal to smallest integer m
such that T is generated by m elements. The group ]12) is the smallest

normal subgroup of T such that F/F(2) has exponent 2.

7.2. We return to the commensurability class C(k, B). We let N Blk or
simply N denote the reduced norm from B to k. Fix a maximal order D
of B, and let D* (resp. (1) be the set of elements of C whose reduced norm
is a unit (resp. one). It is a group, and an arithmetic subgroup of H (resp.
G). It is known that

Not knowing of a good reference, we sketch the proof: For v E Rf,
we have C’ v = (7(k,); for v c Vf - Rf, we have C’ v = SL2(Dv) ; hence in any
case C’ is equal to its normalizer in G(kv). The group Z)" v is the v-adic clo-
sure of û1 in 0(k,). Consequently, if x E Norm C has reduced norm one,
it belongs to Dv1 for all v E V , hence to D1. This proves the second equality
of (1). By a theorem of Eichler [5], the map x H Nx maps D* onto the
group o* of units which are positive at Roo. Let now x E Norm Ð be such

that Nx E 0*. Since Nx has to be positive at Roo, there exists then y E Ð*
such that N(y - x) = 1. We have then Y’XEÛ1 and x c- C*, whence the
first equality of (1). Set

Both are arithmetic subgroups of G, normal in r£). Let x e Norm D. Then

N(z)-i z2 has reduced norm 1, hence x2 E k*.ÐI by (1) and therefore

T he group Fr:;/I1 has exponent two.

If G is isomorphic to SL2 over k, we may choose a k-isomorphism which
maps Z onto M2(o). We have then
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7.3. THEOREM. Let Dk denote the discriminant of k over Q and ’k the
Dedeking zeta function of k. Let G be the k-form of PGL2 associated to a qua-
ternion algebra B over k. Then

In particular the volumes fl1(I), where T is arithmetic in G, are all rational
multiples of n-d-rl +a ID7.- 11 - Ck(2).

(Of. 3.1, 4.1 for the notation.) Let

with v(K,) as in 6.2. We want to prove:

where v( ) on the left-hand side refers to the volume computed with Woo
and ()1 is diagonally embedded in Goo.

Let h be a torsion-free subgroup of finite index of 21. Then 6(h) @ T
and or(C 1) = 0’/{di 1}, hence

We have clearly

Since T is torsion-free, 0 ... /T is fibered over Hoo/r, with fiber Koo, therefore

and (3) follows from (4) to (7). By 6.2 we have

whence
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The Tamagawa number of G is one [29]. This translates to

Together with 6.3 and (4), this yields (1).

7.4. The case of matrix algebras. 7.3 applies in particular to the case
where .R is empty, i.e., where .13 is the matrix algebra M2(k) and 0 is k-iso-
morphic to SL2. The proof of 7.4(1) is then slightly simpler, since 6.3 is.

not needed. 7.3(1) specializes to

7.5. REMARKS. (1) The formula 7.4(1) is due to G. Humbert for k

imaginary quadratic (d = 2, b = 1) (see [24: § 7]), and to C. L. Siegel [231
when k is totally real. The equality 7.3(1) for totally real fields in general
follows from results of Shimizu [22: p. 193].

(2) To get the smallest covolume in e(k, B), we have to divide the
right-hand side of 7.3(1) by the index of rb in TD. At this point, all we know
is that this index is  2-, where m is the smallest cardinality of a generat-
ing set for rD ( 7.1, 7.2 (3 ) ) . In § 8, we shall give an expression for it in terms
of data depending only on k and R.

7.6. PROPOSITION. Let 7"i be an arithmetically defined subgroup of Ga,,..
Then there exist infinitely many commensurabitity classes of arithmetically
defined subgroups of Ga,b such that the volumes p(T) are all rational multiples-
of ,u(1-’1) when F runs through these classes.

From 7.3, we see that, given a and b, the volumes ¡t(T) for the arithmetic
subgroups defined by a k-form G of PGL, (satisfying A) or B) of 3.3, of
course) are all rational multiples of a number which depends only on k and a.
Therefore, given with b complex places and at least a real places, we need
only to show that there are infinitely many k-forms of PGL2 associated to
quaternion algebras over k which, at infinity, are ramified at exactly a pla-
ces, such that two arithmetic subgroups of Ga,b associated to any two of
them are not commensurable up to conjugacy.

Let A be the set of automorphisms of k. It is finite, of order  d. ive

can choose an infinite sequence of quaternion algebras Bi over k (i = 1, 2, ... 0
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such that Bi is not isomorphic to any conjugate GBj (03C3’ E A) of Bj for i # j
and, at infinity, B, is ramified at exactly places of k. [This follows im-
mediately from the fact that a quaternion algebra is determined by its
local invariants and that the only conditions imposed on those are to be
zero almost everywhere and to have a sum- 0 mod 1 (cf. [4: VII, § 5 ])].
Changing the notation slightly, y we are then reduced to showing that if G
and G’ are k-forms of PGL2 associated to two such quaternion algebras
B, B’, where B’ is not isomorphic to a conjugate of B, then an arithmetic
subgroup h of G is not commensurable up to conjugacy to any arithmetic
subgroup of Ga,b (3.3). Let g E Ga,b be such that gFis commensurable with -TB
Then gCr = C., (where Or, Cr, denote the commensurability groups, cf. § 1).
But C. = G(k), Cr, = G(7.;’). Therefore G(k) would be isomorphic to G’(?c)
as an abstract group. By a theorem of R. Baer [1: Thm. 2, p. 272] (see
also [30: Thm. 4.1]), this would imply that G is isomorphic, as an algebraic
k-group, to IG’ for some E A, hence that B is isomorphic to aB’, a

contradiction.

7.7. Commensurability questions. Let b = 0. In this case, all volumes

.are commensurable. In fact, if z(T) is the Euler-characteristic of 7’, in
the sense of C. T. C. wall if T has torsion (cf. [20: p. 99]), then

in agreement with the fact that IDkl!’ Ck(2)n-2d is rational for k totally real.
Let now b # 0. Then X(r) is always zero. Although it is not expected that
all volumes are commensurable, this has not been checked to .far. In view

of 7.3, to produce an example, it would be enough to exhibit two number
fields k, k’ of the same degree and the same non-zero number of complex
places such that

Apparently, nothing is known about this question. Of course, the truth

of Milnor’s conjectures about the Lobatshevski function [24: § 7] would

-provide many examples of quadratic imaginary fields k, k’ satisfying (2).

8. - Discreteness of the set of arithmetic volumes.

In this section, we want to prove that the set of volumes p(T), when
F runs through the arithmetically defined subgroups of Ga,b , is discrete
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(with finite multiplicities, see 8.2 for the precise statement). If a + b &#x3E; 2,
these subgroups are all the irreducible discrete subgroups of finite covolume,
as already pointed out (3.4), and the discreteness has been proved by H. C.
Wang ([27], see 8.3]). For the sake of uniformity we shall also include this
case, although this is not really a new proof, since the idea of the proof
of 8.1 in that case is taken from [26, 27].

8.1. LEMMA. Let a, b E N be given. Let c &#x3E; 0. There exists an integer
m(c) such that if r is an irreducible discrete subgroup of Ga,, and p(T)  c
then r is generated by m(e) elements.

Let first a = 1, b = 0. Since F contains a subgroup r’ of index two which
preserves the orientation, we may assume 1-’ c SRz(R)f(+ 1}. In this case

our assertion follows from the standard formula for ,u(h’) : let m be the number
of cusps of H2/r, {Yt, ..., I Vl a set of representatives of the classes of elliptic
elements of F, e, the order of 1’i (1  j c s) and g the genus of the standard
compactification of H2/r. Then r is generated by 2g + m + r - 1 elements
and we have

Since e, &#x3E; 2, we see that 2g + m + r - 1  203BC(T) + 2.
If a = 0 and b = 1, 8.1 follows from the construction of all H3/1’ with

volume  c by means of Dehn surgery applied to finitely many orbifolds,
given in Chap. 13 of [24]; it will be proved explicitly in the final version of
these Notes. For torsion-free T, all we shall need to know is that H1(T; Z/2Z)
has dimension bounded by some constant n,(C), and this follows directly
from [24 : Chap. 5]; in fact, it is shown there that the hyperbolic 3-manifolds
of volume  c are obtained by gluing some solid tori or cusps to finitely
many compact manifolds with boundary a union of 2-dimensional tori.

Let now a + b &#x3E; 2. Assume there is a sequence of irreducible subgroups
hn of Ga,b such that ,u(1-’n)  c and that the smallest cardinality gn of a gen-
erating system of F. tends to infinity. By the argument of [26: p. 137],
recalled in [27 : p. 480], there exists a subgroup 1-’, which is a limit of the rn,
in the topology of the space of closed subgroups, such that lt(r)  c, and
moreover a homomorphism r,,: r ---&#x3E; r.,,, f or n big enough, defining a de-
formation of T which tends to the identity as n --&#x3E; oo. The grOllp T is

also irreducible, since rn has to be trivial on any subgroup of h which is
contained in a proper factor of Ga,b. But then r is rigid (since a + b &#x3E; 2),
hence Tn is conjugate to T for n big enough, a contradiction with the as-
sumption gn -&#x3E; oo.
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8.2. THEORE31. £’iz a and b. Let c &#x3E; 0. Then there exist finitely many
arithmetic subgroups r1, ..., rq(c) of Ga,b such that any arithmetic subgroup -P
of Ga,b with covolume lt(F)  c is conjugate to one of the 1-’i’s (1  i  q(c)).
.In particular the set of volumes p(T), where T runs through the arithmetically
defined subgroups of Ga,b, is a discrete subset of the real line.

In view of 5.3, 5.4, it suffices to prove this theorem for the set of arithmetic
subgroups of the form Td defined in 4.9. We first show it for the groups Fl.
Consider 7.3(l). Since Ck(2) &#x3E; 1, we have

Since there are only finitely many number fields with a given discriminant,
it suffices to show that the right-hand side of (2) tends to infinity with the
degree of k. But this follows from known estimates on the discriminant,
e.g., from

for d large enough

which implies

for d large enough ,

and follows from 1.8 in [15].
Let now c &#x3E; 0. By 8.1, there exists a constant m(c) such that if 03BC(Td)  c,

then -P. has a generating set of cardinality  m(c). Since T ,O/T’ has expo-
nent two (7.2(3)), we have then

( 7.1 ), hence

The possible rb form then finitely many conjugacy classes by the first
part of the proof. In view of 5.3, the same is then true for the groups rD.

8.3. REMARK. Let .L be a connected semi-simple Lie group with center
reduced to the identity and no compact factor. Theorem 8.1 in [27] asserts
that the covolumes 03BC(L/T) (T discrete in L) form a discrete set (with finite
multiplicities) if .L has no three-dimensional factor. This should in parti-
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cular apply to .L = PGL2(C), but there it is contradicted by the results
of Thurston-Jorgensen [24: Chap. 5]. The mistake in [27] comes from a

misunderstanding of rigidity in that group: the author uses a result he at-
tributes to H. Garland and M. S. Raghunathan, but he misquotes it. How-
ever, the proof, as it stands, is valid for the irreducible subgroups of .L,
provided L is not locally isomorphic to SL2(R) or SL2(C), since in all those
cases the rigidity theorem used by Wang is indeed available. In particular,
this covers the case of our groups Ga,b for ac + b &#x3E; 2.

8.4. In this proof we have used discriminant estimates to handle the
groups 11, and then a geometric argument to go over to TD. One can of course
ask whether it would not be possible also to give an arithmetic proof for

,u(Td), using a good estimate of [F £) :Tb]. We shall see that this is unlikely
since this index depends in part on the class group of k. First we want to

give an arithmetic description of it.

We denote by DR f the group of R,-units of k (elements which are integral
at all finite places outside jRy) and by O*R ’b R 00 the group of elements of o* Rf
which are positive at Roo. 

oo

yve have

where the last inequality follows from the unit theorem. Let now

We have Nb E O*R R for b e BRf. Moreover, the results of [5] imply that

bR f eNorm D. We have then the inclusions

8.5. LEMMA. The group FB f jTh is isomorphic to  R 00 jOB*2. I h2 particulcxr

’[FBI :11,]::;;; 2r!+r2+r.
Eichler’s theorem implies that b h-&#x3E; Nb maps BRf onto OR* R . If now

Nb = C2, with ce DRf then N(c-ib)= I, hence b e k*.£Ji, and the first

assertion is proved. The second follows from 8.4(1).

8.6. Let Doo = Doo(B) (resp. D f = D f(B) ) be the product of the primes
in Roo (resp. Rf). Thus the ideal D f is the square root of the discriminant
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of B. Let I(k) (resp. P(lc)) be the group of fractional (resp. principal) ideals
of k and P(k, Doo) the group of principal ideals generated by elements which
are == 1 mod* Doo, i.e, which are positive at Roo.

LEMMA. Let M1 (resp. Jfz) be the subgroup of I(k) generated by P(k, Doo}
(resp. P(k)) and the v n pv (v E Rf). Let J1 ---- I(k)/ll{1 and let J2 be the image
of M2 in J1. Then [Fz,:FBf] = [,J,:J,], where 2J1 is the kernel of the map
y H y2 in J1. If k has class number one, then Fí) == r R,.

Let Li be the subgroup of I (k) generated by the o n p, (v E Rf) and the
squares of all ideals. It follows from the description of an ideal as an in-
tersection of local ideals that the elements of L1 are the norms of the two-
sided C-ideals. By a theorem of Eichler [5], an element of Ll is the norm
of a principal 0-ideal if and only it belongs to P(k, Doo).

Let now x E Norm 0. There exists then a unique ideal m(x) prime to Df
such that the ideal (Nx) is the product of M(X)2 by a power product of the
divisors of D f . Let r: Norm C H J2 be the map which assigns to x the
class of m(x) in J 2. By the above, its image belongs to 2J1 and every element,
of 2J1 occurs in this way. For c E k*, we have N(cx) - c2’N(x), hence r
is constant on k* .x. Assume now that r(c) E J2 . This means that we can

write (Nx) as the product of a principal ideal (a2) (a E k) by a power produce
of the x) (-) p, (vERI). But then N(a-1 - x) c o* , , hence x c k* - B* . Thus
defines an isomorphism of r í)/I’R, onto 2J1/J2 and the first assertion is proved.
I f 1a, has class number one, then J, = J1, whence the second assertion.

8.7. The first part of the proof of 8.2 also shows that the p(rnf) form
a discrete set, but I do not see how to go from there in the same way to

,u(ro). An upper bound of 2J1/J2 is the « narrow» class number h+(k).
It may grow about as fast as ID, 11, which is too strong to be absorbed by
8.2(3), or even by the stronger estimates of [15]. Of course, for fields of a.

given degree, , it is easy to show that the u(F ,) form a discrete set.

8.8. Another question raised by W. Thurston is whether the g.c.d.
of the volumes in a commensurability class have a strictly positive lower
bound. Since the volumes do by a well-known theorem of D. Kazdhan
and G. A. Margoulis (see [17: XI, 11.9]), this is clear for non-arithmetically
defined classes (cf. § 1). The first part of the proof of 8.2 also shows that
the numbers 2-d . p(I£,) have a strictly positive lower bound. In view of 5.4,
this shows that the g.c.d. of the volumes in the commensurability classes
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attached to fields of class number one do have a strictly positive lower
bound. I do not know whether this is true in general.

9. - Hyperbolic 3-folds.

9.1. In this and the next section, we consider the case of hyperbolic
3-space. We have then a = 0, b =1, r2 = 1, d = r, + 2, and 7.3(1) becomes

Since a = 0, the set Roo is the set of all real places of k, hence o* Rf .R. is

the group o;,+ all of totally positive .R f-units. Therefore, in view of 8.4,
we get for the smallest volume in the given commensurability class

i f k has class number one.

Assume now k to be imaginary quadratic. Then Roo is empty, DR f is just
the group of all R f-units. It is the product of a cyclic group of even order
by a free abelian group on rf generators, hence

if k is imaginary quadratic.

k is necessarily quadratic imaginary in the non-cocompact case, and

then .R f is also empty. We get

which is G. Humbert’s formula. If k has class number one, P(r .0) is one-
half of the right-hand side of (4).

9.2. It is not surprising from the general formula that small volumes
should be tied up to fields of small discriminants and, in the compact case,
to quaternion algebras which are as unramified as possible at the finite
places. However, because of the factor [2J1: J2] we can confirm this only for
group rBI’ hence for Tn if k has class number one. Remarks (a), (b), (c)
below are due to E. Bombieri.

Then the class number is one and
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Simple estimates show that this is the smallest value of fl(rB/), when k runs
through all the imaginary quadratic fields. It may also be the minimum of

p( GL2(o )/{:f: 1}) for those cases. We now consider cocompact groups.

(b) Let d = 2. Then Rf has at least two elements. In this case the
minimum of lt(FRf) is realized when Dk=-3, fl (Nv - 1) = 6, and then

’VER,

(c) Let = Q(O), where 0 is a root of x3 - x -1. Then Dk = - 23,
[0: :0*2] = 4. The prime v = 2 + 0 divides 5 and Nv = 5. Take then

R f = fvl. The field k has also class number one. Then

and this rjJ seems a good candidate for the smallest volume when k has
signature (1, 1). At any rate 23 is the minimum of lDk I for these fields.

(d) Let k = Q(O) where 0 = (3 + 2V5)t. This is a quartic field of
signature (2, 1). Its discriminant is - 275 and k is known to have the smal-
lest discriminant in absolute value for fields of signature (2, 1) [8; 14]. Take
for B the quaternion algebra over k which is ramified at exactly the two
real places of k. Then the group -P. is the subgroup of orientation preserv-
ing transformations in the Coxeter group:

as was pointed out by W. Thurston. This appears so far to be the smallest

volume known and it seems rather likely to be the smallest obtained from
fields of signature (2, 1). Eventually, y for fields of high enough degree, the
volumes have to become bigger, but it seems well possible that quaternion
algebras over fields of relatively small degree with small discriminants might
lead to smaller volumes. The next candidate would be the field of signature
(3, 2) with discriminant 4511, with R f consisting of one place dividing a
prime with small norm.

10. - Totally real fields. Fuchsian groups.

10.1. Assume now k to be totally real, i.e., b = 0. Then the functional

equation yields
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and 7.3(1) can be written

The Buler-Poinear6 characteristic x(Tb) of rb is given by

The group T’ is a quotient of E) 1 by a group of order 2, hence

Note that if a = d, this is equal to

10.2. Consider now the case of Fuchsian groups, y where a = 1. Using
10.1(1) we can also write 7.3(1) as

This can be used in particular for the triangle groups which can be
defined arithmetically. Some were already investigated by R. Fricke [6 ; 7]
and a complete determination of those groups and of the associated qua-
ternion algebras has been carried out by K. Takeuchi [12]. Moreover, it is
shown there that the underlying groundfields have all class number one,
so that p(Fnf) realizes the minimum of the volume, and is the triangle
group (recall that we have included orientation reversing isometries at the
real places (3.0)).

As an example consider the group of the triangle (2,3,7). Here

k = Q (cos 2n/7) is the maximal totally real subfield of the cyclotomic field
of the seventh roots of 1. It is cubic, and we take for B a quaternion algebra
ramified at exactly two infinite primes. Thus R, is empty. It can be checked
that [0* ;D*2] = 2. Moreover, it is known that Ck(-I) = -1/21 [20: p. 163].
We get indeed p,(FD) = n/42.

This group is denoted T(63) in [6]. There Fricke also considers commen-

surable groups rc.7), T(I,)l r. The group r(,) is the group of the triangle
(2, 4, 7), r(71 = Tu&#x3E; n r(,-) has index 2 in F(,,) and 9 in F(.). These groups
can be described as follows in the set-up of §§ 4, 5.

Note first that 2 remains prime in k, and if vo is the corresponding place
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of k;, , then Nvo = 8. We may write F63 = FO , where Tn is defined by the
vertices (P.,,) of the various Bruhat-Tits buildings. Then Fe14) is the group
which fixes the P." for ’V =F v, and stabilizes the edge e for v = vo . It indeed

contains an element which is odd at exactly 2, namely z H (z -f-1)/(1- z)
[6: p. 456]. The reduction mod ro maps F6a onto the projective group of the
projective line Pl(Fs), and Fe?) on the stability group of a point, i.e., on
the affine group of Fs. The inverse image of the group of translations has
then index 7 in r(,), and is the group F.
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