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Commensurability Classes
and Volumes of Hyperbolic 3-Manifolds.

A. BOREL

The first purpose of this paper is to answer some questions raised by
W. Thurston [24: 6.7.6] about families of commensurable hyperbolic 3-ma-
nifolds. Two hyperbolic 3-manifolds M, M’ are commensurable if they have
two diffeomorphic finite coverings. M is said to be minimal if it does not
properly cover any other hyperbolic 3-manifold. We shall see that if A
is a full commensurability class of orientable hyperbolic 3-manifolds of
finite volume, then M contains infinitely many non-isomorphic minimal
elements if 7z,(M) is definable arithmetically, but only one if it is not (and
V-manifolds are allowed). Moreover the volumes of the elements in JG
are all integral multiples of some number (which is not necessarily one of
the volumes, though).

An orientable hyperbolic 3-manifold M is the quotient of the hyperbolic
3-space H? by a discrete torsion-free subgroup I" of the identity component
I(H?)* of the group if isometries of H3 (which is isomorphic to PGLy(C)).
We shall also allow I" to have torsion, and then M is a V-manifold or an
« orbifold » in the terminology of [24] (i.e., it looks locally as the quotient
of euclidean space by a finite linear group). M = H*/I" and M’ = H3|I" are
commensurable if I" and I are commensurable up to conjugacy, i.e., if I’
and a conjugate I = gI""g=* of I"" by some g € I(H3)° are commensurable
(their intersection has finite index in both). Moreover, M is minimal if
and only if I is maximal in its commensurability class. Given two commen-
surable subgroups I, I'" of a group, let us define the generalized index of
I'" in I" by

(&) ([:I'l=[I.I'nI"|-[I":I'NnI"*.

Pervenuto alla Redazione il 24 Maggio 1980.
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Then clearly
) wl") =" (),

where u(I') denotes the volume of H3/I' with respect to the hyperbolic
metric. Therefore the above results are equivalent to the following theorem:

THEOREM. Let I' be a discrete subgroup of PGL,(C) of finite covolume
and Ar the set of subgroups of PGL,(C) commensurable with I

(i) If I' is arithmetic, then Ar contains infinitely many nonconjugate
elements which are maximal, or maximal among torsion-free elements of #r.
If I" is mon-arithmetic, then Ar has a biggest element.

(ii) The indices [I':I"'] (I'" € Ar) are integral multiples of some number.

In fact, we shall prove this more generally when PGL,(C) is replaced
by a product

(3) G.,= PGL(R)*x PGL,(C)*, (a,beN,a +b=1),

and, for convenience, I" is assumed to be « irreducible » (cf. [17:5.20,5.21])
[i.e., it is not possible to write G,, as a direct product G,, = H-H' (H, H'
closed connected, non-trivial) such that (I" N H)-(I"N H') has finite index
in I'. This is equivalent to I' " N = {1} for each proper normal closed sub-
group N, or also to the fact that the projection of I" on any infinite non-
trivial quotient of G,, is non-discrete]. Geometrically, this means that
we consider irreducible discrete groups of automorphisms of the product
H,, of a copies of the upper-half plane H? by b copies of the hyperbolic
3-space H®. Our initial case of interest is then a = 0, b = 1. Also included
are Fuchsian groups (@ = 1,b = 0) or Hilbert-Blumenthal groups. The
notion of arithmetic groups in the present case will be recalled in § 3. One
commensurability class of such groups is associated to a number field &
with b complex places and a quaternion algebra B over k which is unra-
mified at a set of @ real places of k (3.3). We denote it by C(k, B). If
a +b=2, I' is automatically arithmetic (3.4).

In the non-arithmetic case, these results are trivial consequences of a
theorem announced by G. A. Margoulis in [13], as will be seen in § 1, so
that we shall be mainly concerned with the arithmetic case. There we shall
get a hold of maximal elements in Ar by looking at their closures in the
groups of p-adic points of the form of PGL, underlying the definition of I
For this we shall need some facts on the Bruhat-Tits building of SL, and
on the maximal compact subgroups of SL, and PGL, over a p-adic field
which are reviewed in § 2. The assertion (i) above is proved in § 4, and (ii)
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in §5. To a maximal order O of B, we associate a maximal element I’y of
C(k, B) such that the minimum of the volume u(I") (I" € C(k, B)) is achieved
on I'y. The g.c.d. of the volumes in the class are multiples of 2-¢-u(I'g)
where ¢ is at most equal to the number of primes dividing two in k. If for
instance @ = 0, b = 1, k = Q(v—3), and H?/I" is not compact, then ¢ = 1.

§ 7 gives an expression of the value of u(I'y), where I'y is the image of
the group of elements of reduced norm 1 in £, in terms of data depending
only on the field k¥ and on the places of % at which the quaternion algebra B
is ramified (7.3). This formula is deduced here from the fact that the Tama-
gawa number of a k-form of SL, is one [29] and from local computations of
volumes made in § 6. It includes formulae of G. Humbert (sce [24: § 7])
when % is imaginary quadratic and of C. L. Siegel [23] and Shimizu [22]
when k is totally real, (7.5). The volumes in the class C(k, B) are all rational
multiples of a number depending only on % and on the number of real places
at which B is ramified. From this and a result of R. Baer [1], it follows that,
given an arithmetic subgroup I', of G,,, there exists an infinite set F of
arithmetic subgroups of G,,, which are not pairwise commensurable up to
conjugacy, such that however u(I') is a rational multiple of wu(I}) for all
I'e F (7.6).

If b =0, it is well-known that all volumes are commensurable. It
is widely expected that this is not so when b0, but as far as I know,
this has not been proved. This raises some questions on values of zeta
functions at two (7.7).

If @ + b=2, it is known that the set of all volumes is discrete ([28],
cf. 8.3), but this is not so for @ + b = 1. However, we shall prove that the
set of covolumes of arithmetic subgroups is discrete (8.2). For this, we
shall use estimates of Odlyzko’s on the discriminant of number fields [15]
and the fact that, given a constant ¢, there exists an integer n(c) such that
if u(I") < ¢, then I'is generated by n(c) elements. (For ¢ = 1, this is standard;
for b = 1, this is proved in [24: Chap. 13], cf. 8.1) For a = 0, b = 1, the
results of [24] imply then that the arithmetic subgroups are comparatively
rare among all discrete subgroups of finite covolume of PGL,(C). In 8.4
to 8.6, we give an arithmetic expression for the index [I'g: I'y]. It involves
the class group of %, which makes it difficult to estimate it. Therefore we
also single out a subgroup I'p intermediary between 'y and I'y,whose
covolume is independent of the class group, and which is equal to I'y if I
has class number one.

Finally, §§ 9 and 10 contain some remarks on, and examples of, groups
operating on hyperbolic 3-space or products of upper half-planes.

The study of maximal arithmetic subgroups proceeds along rather stan-
dard lines and can be (has been) carried out in much greater generality.
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In fact, part of what we prove here in the non-cocompact case is contained
in [9; 18;19]. However the case of forms of PGL, has some peculiar features.
I have therefore preferred to limit myself to it, but give a rather com-
plete treatment.

I thank E. Bombieri for his computations of small volumes in the
arithmetic case, R. P. Langlands for some helpful remarks on the local
measures and volumes and W. Thurston for suggesting 8.2 when a = 0,
b =1 and for many useful conversations.

1. — The non-arithmetic case.

Given a subgroup H of a group @, we let U5 be the commensurability
subgroup of H in @, i.e., the set of elements 4 € G such that *H = zHx!
is commensurable with H. It is obviously a subgroup, which contains all
subgroups of G commensurable with H. A result announced by G. Mar-
goulis [13: Theorem 9] implies that if G¢= G,, and I'" (always assumed to
be irreducible) has finite covolume in @, then either Or is dense and I is
arithmetically definable (see §3 for this notion), or Cr is discrete and I’
is not arithmetically definable. [In deducing this from Margoulis’ theorem,
we also use the fact that if Cr is not discrete, then it is dense, as follows
from [17: 5.13].] Therefore, in the latter case Cr is the biggest element in
the commensurability class of I'. The assertion (ii) is then clear in that case.
Also, the commensurability class of I" has only one maximal element, at
any rate if we allow torsion. However, it is conceivable that #r may con-
tain infinitely many conjugacy classes of subgroups of finite index which
are maximal among torsion-free subgroups, in which case there would again
be infinitely many non-isomorphic minimal manifolds (in the strict sense,
i.e., without V-singularities) in the commensurability class of H/I". It was
pointed out to me by R. Griess and J-P. Serre, independently, that L =
= SL,Z/{4- 1} indeed contains infinitely many non-conjugate subgroups of
finite index which are maximal among torsion-frec subgroups of L. How-
ever I do not know whether this is the rule or the exception in the case
under consideration.

2. — Maximal compact subgroups and buildings for SL, and PGL, over a
local field.

2.1. In this section I' denotes a non-archimedean local field with finite
residue field and o, its ring of integers. In fact, only the case where F' is
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a finite extension of the field Q, of p-adic numbers (p prime) will be needed,
but the facts recalled here are also valid in the equal characteristic case.
Let p be the characteristic and ¢ the order of the residue field. Let || be
the normalized valuation of F and v() the order of an element. Thus

1) l¢| = ¢7°@, with v(z)eZ.

2.2. For the contents of the section, see e.g. [21: Chap. II] and [10.
Prop. 2.30, 2.31]. Let G be the Bruhat-Tits building of SL,(F). It is a
tree. SL,(F) is transitive on the edges, and the vertices form two orbits
0,, O, under SL,(F). The stability groups of the vertices are the maximal
compact subgroups of SL,(F) and form two conjugacy classes, represented
by K,= SL,(0;), and the group K, of matrices of determinant 1 of the form

a 7b
(n-lc d)’ (a,b,e,deD) .

There are ¢ + 1 edges with a given vertex Pe G,, and the stability
group of P operates transitively on them. In fact, by reduction mod v,
the group K, identifies to SL,(F,) and the set of edges incident to the fixed
point of K, identifies to the projective line P}(F,) over F,. The stability
groups of the edges are the Iwahori subgroups of SL,(F). They form one
conjugacy class under SL,(F), represented by K, N K,.

An automorphism of G either leaves O,, O, stable or permutes them.
We shall say that it is even in the former case, odd otherwise. Any (con-
tinuous) automorphism of SL,(F) induces an automorphism of G. In par-
ticular GL,(F) operates on BG. The elements which induce even (resp. odd)
automorphisms are those 2 € GL,(F) such that »(det x) is even (resp. odd),
whence the terminology. The center Z of GL,(F) acts trivially on G so that
PGL,(F), which is the quotient GL,(F)/Z can (and will) be viewed as a
group of automorphisms of G. An element of GL,(¥) or PGL,(F) will be
said to be even (resp. odd) if it defines an even (resp. odd) automorphism
of G. The even elements in PGL,(F) form a subgroup PGL,(F), of index
two. Thus PGL,(F) is transitive on the vertices and on the edges of G.
It has two conjugacy classes of maximal compact subgroups, the stability
groups of the vertices and the stability groups of the edges (or, equivalently,
of the middle points of the edges). A maximal compact subgroup is of the
latter kind if and only it contains an odd element.

2.3. LEMMA. Let D>C, D'>C' be compact subgroups of PGLy(F).
Assume that C fizes a vertex of B, has no other fized point in B, and that C'
contains an odd element. Then D and D' are not conjugate.



6 A. BOREL

In fact, since C fixes a vertex P, it consists of even elements. Moreover,
any compact subgroup of PGL,(F) must fix some point of G, therefore D
also fixes P,. Then D consists of even elements, hence is not conjugate to D’.

3. — Arithmetic subgroups of G, ,.

In this section we describe the discrete subgroups of G,, which are
definable arithmetically, to be called arithmetic for short.

3.0. Before doing so, however, we would like to relate G,, to the full
group of isometries of H,,.

The group PGL,(C) is connected, and is also the quotient SL,(C)/{+ 1}.
It is the group of orientation preserving isometries of H®. On the other
hand, PGL.(R) has two connected components. Its component of the
identity is SL,(R)/{4-1}. The group PGL,(R) may be identified to the
group of isometries of H?, the elements of SL,(R)/{+ 1} are holomorphic,
orientation preserving, while the others are antiholomorphic, orientation
reversing. Therefore G,, is the group of all isometries of H,, which
preserve each factor and the orientation of the three-dimensional ones.
It has 2° connected components and is of index 2°-a!-b! in the full group
of isometries of H,,. We have singled it out since it turns out to be the
most convenient to use for the discussion of arithmetic subgroups.

3.1. In the sequel, k is a number field, o, or simply o the ring of integers
of k, d the degree of /Q, V (resp. V., resp. V,) the set of places (resp. infinite
places, resp. finite places) of k¥ and r, (resp. r,) the number of real (resp.
complex) places of k. For ve V, k, denotes the completion of ¥ at v and,
if v eV,, o, is the ring of integers of k,, p, the prime ideal at v and Nv the
order of the residue field o,/p,.

A k-form of PGL, (or SL,) is a linear algebraic group over k which is
isomorphic to PGL, (or SL,) over some extension of k. If G is a k-form
of PGL,, then its universal covering G is a k-form of SL,.

The group @ is the group of elements of reduced norm one in a qua-
ternion algebra B over k. Either B = M,(k) is the 2X2 matrix algebra
over k and G = SL, or B is a division quaternion algebra.

We let o: G —> @G be the canonical projection. The group G can also
be viewed as the quotient of a reductive k-group H with one-dimensional
center, derived group G, by its center, namely the group defined by the
invertible elements of B. We shall also denote by o the canonical projection
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H-—->G. We let o, be the homomorphism G,— @G, or H, > @, defined by
o (veV), where, as usual, if M is a k-group, we denote by M, the group
M(k,) of points of M rational over k,.

We recall that for any field k' > %, the map ¢: H(k') - G(k') is surjec-
tive, because the kernel of ¢ is the center Z of H, which is isomorphic over k
to the one-dimensional split algebraic torus GL,.

3.2. If H is an algebraic group over k, then a subgroup I' of H(k) is
arithmetic if, given an embedding ¢: @ - GL, over k, the group po(I") is
commensurable with o(G) N GL,(0) (where, as usual, for any commuta-
tive algebra A4, GL,(A) is the group of nXn matrices with coefficients in
A and determinant invertible in 4).

3.3. Let I' be a discrete subgroup of G,,. It is said to be definable
arithmetically if the following conditions are met: there exists a number
field ¥ with b complex places, at least a real places, a k-form G of PGL,,
a set A of a real places such that

1) G,= PGL,R), (wed), G,=S0; (wreal, w¢Ad),

and an isomorphism

(2) 1:G,,—=> Gy =[]0,

weS,;

(where 8, c V,, is the union of 4 and of the complex places of k) which
maps I" onto an arithmetic subgroup of G(k). Here, G(k) is diagonally embed-
ded in G¢ by means of the natural inclusions G(k) c G,. We note that, since
G, is compact for w real not in A4, the arithmetic subgroups of @, viewed
as subgroups of G via the diagonal embedding, are indeed discrete. There
are two main cases:

(4) I' is not cocompact in G,,. Then d =a -+ 2b, and 8;,= V..
The group G is just PGL,, viewed as a k-group.

(B) I' is cocompact in G,,. Then k may have any number >a of
real places. The group G is the group defined by the elements of reduced
norm one in a division quaternion algebra B over %k which is ramified (at
least) at all real places not contained in 8,, and H is the group defined by
the invertible elements in B.

To simplify notation, identify G with o(@), with ¢ as in 3.2. For almost
all (i.e., all but finitely many) »€V;, the group G(v,) = G N GL,(0,) is
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maximal compact in G,. If I'" is arithmetic then its closure Of,(I") in G,
is compact open, contained in G(o,) for almost all »’s. Conversely, given a
compact open subgroup L, of G, for each v € V; which is equal to G(o,) for
almost all »’s, the group

(3) I',={ge@k)|geL, for all veV}, L=]]L,

veVy

is an arithmetic subgroup of @, and every arithmetic subgroup is contained
in one of this type. The maximal ones are among the groups Iy, where L,
is maximal compact for all v €V,.

3.4. We recall that if @ 4+ b = 2, then every irreducible discrete sub-
group of finite covolume of G,, is arithmetic. This follows from results
of G. A. Margoulis [7] (see also [25]).

4. — Maximal arithmetic subgroups of G,,.

4.1. We let R(B) or R be the set of places at which B is ramified,
R, (resp. R,) be the set of infinite (resp. finite) places in R, and r, = |R,|.
Thus B, k, is a division algebra if v e R and is isomorphic to M,(k,)
otherwise (and |R| is even). Let © be a maximal order in B. Then O, =
= OX; k, is a maximal order of B,. For v € R, it is the unique maximal order
of integral elements in B,. If ©' is another maximal order, then O, = O,
for almost all v’s, ' is the intersection of the O, and the O, can be pre-
scribed arbitrarily at finitely many places. © and O’ are said to have the
same type if there exists € B* such that -0 = O’ 2. The number of types
of maximal orders is finite (and divides the class number of B). (For all
this, see [4: §§ 8, 11].)

For ve V,—R,, the group G is isomorphic to SL, over k,. We let G,
be its Bruhat-Tits building and P, the fixed point of K,, = ,N @,. Further-
more, let ¢, be an edge of G, incident to P,; let @, be the middle point of e,
and P, the second end point of ¢,. Let K|, be the isotropy group of P,
in @, and

(1) Cv):{PMQv?P;}'
We denote by K,,, K,, and K,  the isotropy groups of P,, @, and P,

in G,. The groups K,, and K,, are conjugate in @,, the groups K,, and K,
(resp. K,, and K,,) represent the two conjugacy classes of maximal compact
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subgroups in G, (resp. G,) (veV,—R,) (cf. § 2). For convenience, we agree
that for v € R, the building G, is reduced to a point and ¢,= K,,= K,,=

~

= K;v? Gq) = Kw = K;v'

4.2. The group @ is simple, simply connected, not compact at infinity,
hence has the strong approximation property: the group G(k), embedded
diagonally in the restricted product G(4,) of the G, (v € V) is dense. Without
using the notion of restricted product, we can, in our case, express this as
follows: let S be a finite subset of V;— R;. For veV,— 8, let L, be a
compact open subgroup of &, which is equal to G(o,) for almost all », and put

(1) G(k), = {geG(k)|lge L, for ve V,— 8} .

Then, for any set of elements g, €@, (ve ), there exists ge@(k)L which
is arbitrarily close to g, for every v e 8.

This can also be formulated in the following way: let S be a finite subset
of V;; for ve 8, let D, be a finite subset of G, and ¥, = g,-D, for some
g, € G, Thea there exists ge @(k) such that ¢-D,=FE,forve S and g-P,=P,
for veV,— 8.

4.3. The group G has center reduced to the identity. Therefore the
commensurability subgroup C, (see §1) of an arithmetic subgroup I" is equal
to G(k) [2: Thm. 3]. It follows that if two arithmetic subgroups I', IV of @
are conjugate in G5 = G,,, then they are conjugate under an element of
G(k), hence Ct,(I") is conjugate to Ci,(I') in @, for allveV,. Also, if I'c G,,
is mapped onto an arithmetic subgroup of G(k) under the isomorphism ¢,
then every subgroup of G,, commensurable with /" is mapped by ¢ onto
an (arithmetic) subgroup of G(k). This then allows one to transfer the
discussion of the commensurability class of I" in G, , to that of «(I") in G(k).

4.4. PROPOSITION. For two finite disjoint subsets S, 8’ of V, — R, set

(1) I'gg = {geG(k)|ge Ky (resp. K,,, resp. Ky,) for veV,— (S U 8');
(vesp. S, resp. 8')}.
(i) For vel' (resp. veV,, v¢S UK, K, (resp. K,,) is the unique
maximal compact subgroup of G, containing I'; ..

(ii) Let I" be an arithmetic subgroup of G containing an element which
is odd at some v¢ S. Then I' is not conjugate to a subgroup of I'y ..
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(iii) Given an arithmetic subgroup I' of @, let S(I") be the set of v’s such
that I" contains an element odd at v. Then there exists 8' such that I' is conjugate
to a subgroup of I'ypy g, or to I'yyy o itself if I' is maximal.

Given S, 8’ let for veV;

(1) IL,= K,, (vesp. K,,, resp. K, ) if v¢ 8 U8’ (resp. ve S, resp. vel’).

(i) Amounts to asserting that P, or P,, as the case may be, is the
unique fixed point of I'y ¢, in G,. For any u €V, — {v}, we may find a com-
pact open subgroup M, of G,, equal to K, for almost all u’s, such that
o(M,)cL, for ueV,—{v}. Set M,=K,, (resp. M,=K,) if v¢SU S
(resp. ve 8') and let

Iy = {geGk)ge M, for ueV,—R} .

By strong approximation, Iy, is dense in M,, hence P,, or P,, is the unique
fixed point of I, in B, (veV,— 8). Since (%) c I’y s by construction,
(i) follows.

(ii) Is a consequence of (i) and 2.3.

(ili) By the generalities recalled in 3.3, there exists for every veV,
a maximal compact subgroup J, of G,, equal to K, , for almost all v’s, consist-
ing of even elements if v ¢ I'(S), such that I'c I';, where J is the product
of the J,’s. Let T cV, be the union of R, and of the set of »’s for which
J,#K,,. It contains S(I'). Using 4.1 and 4.2, we see that there exists
ge a(G~(k)) with the following properties:

gekK,, if v¢T; °J, = K,, or K, if veT—8(I"), °L, = K,, if ve 8(I').

Then °I"c I’y - There is then obviously equality if /" is maximal. This
proves (iii).

REMARK. A group I’y ¢ may be non-maximal. The point is that we cannot
assert that for » € § the group K, , is the unique maximal compact subgroup
of @, containing I'y ;. It could happen that for some ve S no element of
I's o is 0odd at v, and then Iy would fix pointwise the edge e, containing
P,, Q. (notation 4.1) and be a proper subgroup of I'y s where 8" = S—{v}.
In order to show that there are indeed infinitely many non-conjugate ma-
ximal subgroups among the groups I'g, we need therefore an existence
statement. This is provided by the following lemma:

4.5. LEMMA. Let veV,— R;. Then there exists a torsion-free arithmetic
subgroup of G containing an element which is odd at v.
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Let n be such that G is embedded in GL,. If g € G(k) is of finite order,
then its eigenvalues are roots of one, of degree < d-n, hence there are only
finitely many possibilities for the order of g. Therefore, for almost all
v € V— R, there exists a congruence subgroup K, of K, , such that if g e K, N
N G(k), then g has infinite order or ¢ = 1. Choose one such place v’ 5= 9.
Then any arithmetic subgroup contained in K,, is torsion-free. Now we claim

(*) There exists g € G(k) which is odd at v and contained in a compact
open subgroup L, of @, for weV;, where L, = K,,, if u = v'.

Assume this for the moment. We may take L,= G(o,) for almost
all 4’s. Then the arithmetic group I'; is torsion-free, since it is contained
in K, and has an element odd at v, namely g. We are reduced therefore to
proving (*).

By the Chinese remainder theorem, we can find an element ¢ € k¥ which
is the square of a unit in o,,, has order one at v, and is positive at all v € R,,.
In case (4), let

0 ¢
r= (___1 O) eGL,(k) .

In case (B), let 2 be an element of reduced norm ¢ in the quaternion algebra B
which underlies the definition of @. Such an element exists by the norm
theorem of Hasse-Schilling (see e.g. Prop. 3 in [28: XI, § 3]). The first
condition implies the existence of an element y, € &, such that o,(z) =
= 0,(y,). Let T be the set of veV;, v¢ R, U {v'} such that o(x)¢ G(0,).
It is finite. Using strong approximation, we can find A € G(k) such that

oy(h-y,)eK,, hae)=e (veTl), he@Go,) for veV,—T.

Then o, (h-2) = o,(h-y,) € K,, and o,(h-x) belongs to the stability group L,
of e, for v € T, to G(v,) for the other v €V, — R,. Thus o(h-x) satisfies the
requirements imposed on ¢ in (*).

4.6. THEOREM. Let I' be an arithmetically defined subgroup of G.,. Then
the commensurability class of I" contains infinitely many non-conjugate elements
which are maximal among discrete subgroups of G,, or maximal among torsion-
free discrete subgroups of Gg,.

Let ¥ and G be as in 3.3. Then, as pointed out in 4.3, it is equivalent
to prove the same statement for the commensurability class of arithmetic
subgroups of G(k) and conjugacy by elements of G(k). Let I3y, ..., I, be
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non-conjugate maximal (resp. maximal among torsion-free) arithmetic sub-
groups of G(k). By 4.4, each one is conjugate to some subgroup of a group
I'y ¢ and, by 4.2, 4.4, for almost all ¢’s in V, — R,, the point P, is the
unique fixed point of I'; in G, (¢ =1, ..., m). Fix one, say v,. By 4.5, there
exists a torsion-free arithmetic subgroup I of G having an element which
is odd at v,. By 2.3, any arithmetic subgroup containing I is not conju-
gate to any of the I';’s. Among those there is a maximal one and one which
is maximal among torsion-free arithmetic subgroups, whence the theorem.

4.7. REMARK. The first assertion of 4.4 is contained in more general
statements of [18; 19]. For PGL, over a number field, the existence of in-
finitely many non-conjugate maximal arithmetic subgroups is already
proved in [9].

4.8. In 4.7, we proved the existence of an element which is odd at a given
place, but it may be odd at other places as well. The proof shows that, in
order to produce a group for which I'(S) consists of just one given finite
place v, it is enough to find ¢ € k¥ which has odd order at v, even order at
all u ¢ R, U {v}, and is positive at all u € R,,. This last condition is of course
vacuous if R, = 0, in particular in case (4). The other two will be fulfil-
led if the prime ideal o N p, of o has an odd power which is principal, in
particular if o is a principal ideal domain.

4.9. We shall write I'y for Iy, when S and S’ are empty. Since
o: H(k) — G(k) is surjective (3.3) we have

(2) I'o =Ty 4= ¢(NormD),
where
(3) Norm O = {wxeB*jz-O = O-a}.

Given 8’ finite in V, consider the set of points (R,) where R,= P, for v¢ S’
and R, = P,', otherwise. There is a unique maximal order £’ = O(8’) such
that G, N O, fixes R, for all »’s. Thus we have

(4) Iyo=1Ty.
By étrong approximation, the systems (R,), for varying §’, form a system

of representatives for the conjugacy classes of maximal orders with respect

to G(k).
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4.10. PrOPOSITION. Fiw S cV,. Then the groups Iy o form finitely many
conjugacy classes in G(k), as 8' wvaries through the finite subsets of V, — 8.

Let £’ be as above and £"= 0(8") be similarly associated to §’. We
claim that I'y. and I'y. are conjugate if and only if there exists g € B* which
is odd at exactly 8'U 8”"— (8’ N 8”). Moreover, if there exists such an
element, then there exists also # € B* such that

(1) ze,=ewel), vP,=P,, 2:P,=P, (welSNAY",
(2) zP,=P,, (veV,—(8URS UL,
3) - P,=P, (vel8'—(8'N48")), xP,=P, (vel8 —(8'NAI").

The necessity of the condition is clear. 1f there exists such an element,
say y, then by strong approximation (see end statement in 4.2), we can find
z € G(k) such that @ = o(ey) satisfies (1), (2), (3). But then Iy and I'gg
are conjugate under x. The proposition now follows from this and the
finiteness of the type number of B (4.1).

5. — Comparison of the volumes in a commensurability class.

5.1. We consider the commensurability class C(k, B) of arithmetically
defined subgroups of G,, defined by a k-form G of PGL,. We keep the
notation of 3.3, 4.1, 4.4 and identify G,, with G;. For veV;, let Nv be
the order of the residue field at v.

5.2. LemMA. Let S, 8’ be finite disjoint subsets of V,— R, and 8" be
a finite subset of V,— (R, U 8). For ve 8" let &, be the set of edges of T,
having P, (resp. P,) as a vertex if ve 8' (vesp. v¢S'). Then, given f,, f, € &,
(veS"), there ewists y € I'y g such that y-f, = f, forve 8",

This is again a consequence of strong approximation: Let M, be the
isotropy group in @v of P, (resp. P,) if ve 8", v¢ 8’ (resp. ve 8 N S"). As
recalled in 2.2, it is transitive on §,. Let then g, € M, be such that g,-f, =
=f, (vel’). By strong approximation, we can find g € G(k) which is ar-
bitrarily close to g, for v € 8, fixes the point P, for v ¢ 8’ U §8”, the point P,
for ve 8’ and P,, P, for ve 8. Then o(g) € I'sx and a(g)-f,=f, for ves".

5.3. THEOREM. Let I'y be as in 4.9. Let 8, 8' be finite disjoint subsets
of V,— R,. Then there exists an integer m (0= m = |S|) such that

1) To: I'ggl=2"[](Nv+1).

veS
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In particular [I'y: I'sg1=1 and [I'g: I'y o] =1 if and only if 8 is empty.

Given ¢ > 0, the groups I's o for which [I'y: I's o]< ¢ are contained in finitely
many conjugacy classes.

In this proof, it is understood that v € V,. We have
(2) lo: I'ygl =[Ig: F¢,s']‘[r¢,s': I'S,S']

and (1) is equivalent to the following equalities

(3) Fo: Iyl =1
4) (g Igg] =2 11 (No +1), (0=m<|8)).

Let I'y=I'g NI, . This is the subgroup of G(k) which fixes the edges
¢, (ve 8’') pointwise and the points P, for v ¢ §’. Lemma 5.2 implies:

(6) Ug: N =[Lysg: N =[](Nv+1),

ves'’
which proves (3).
Let now I'y=1I, o N Igs. This is the subgroup of G(k) which fixes
P,, P, for ve 8, the vertex P, for ve 8’ and P, otherwise. By 5.2 we have

() [Fys: Tal =1 (Vo +1).

vES
On the other hand, if g € G, stabilizes ¢,, then ¢ fixes P, and P,. As a
consequence
(8) [Lss: ] =2 for some me[0, |8|].
(4) now follows from (7) and (8).
The right-hand side of (1) can be written as a product of factors indexed

by ve 8, each of which is = (Nv + 1)/2, hence tends to infinity as v
varies. Therefore, given ¢ > 0, there exist only finitely many 8 such that

lo:I'sgl<c, for some §'.

Since for fixed 8, the groups I'y 5 are contained in finitely many conjugacy
classes (4.10) the last assertion is proved.
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5.4. COROLLARY. Let e be the number of places of k dividing 2 and not
contained in R;. Let I' be a subgroup of G,, commensurable with I'y. Then
the volume u(I') is an integral multiple of 2-¢-u(I'y). It is equal to u(I'y) if I'
is conjugate to a subgroup I'y o, and > u(l'y) otherwise.

The group I is arithmetic in @(k) (3.3). It is enough to consider the case
where it is maximal. I"is then conjugate to a group FS(,.),S, (see 4.4). By 5.3,
[I's: I'yry,¢] is an integral multiple of the number

Mgy =[] (No +1)/2.

veS(I")

If v divides the rational prime p, then Nv is a power of p, hence Nv 4+ 1
is even except when v divides 2, Therefore all the factors in mg -, are integers,
except for those v which divide 2. All of them are > 1. Since u(l') =
= [I'g: I'u(I'y), the corollary follows.

5.5. Let 8, be the set of primes of & dividing 2 and not contained in E.
Let us denote by g, the g.c.d of the numbers u(I"), where I" runs through the
arithmetic subgroups of G. We have just seen that

(1) . qe = 2-u(ly), for some integer ce[0, |S,|].

If 8, is empty, then ¢ = 0. Assume now S, to be not empty. If there exists I
such that I'(8) is not empty, contained in §,, then ¢= 1. By 4.5, we know
there exists I" such that I'(S) contains any prescribed element of 8, but this
is not enough to insure that ¢ =1, because if I'(S) contains some v dividing
an odd prime, then the factor (Nv -+ 1)/2 might still contribute a power
of two which might compensate for the one stemming from a place dividing
two at which " has an odd element. The remarks in 4.8 show that, in order
to prove that ¢ = e, it suffices to show that, given u € 8,, there exists cek
which has an odd valuation at u, an even valuation at all other places in
V;— R, and is >0 at the real places at which B is ramified. But such
existence theorems do not seem easy to prove in general.

5.6. Assume we are in case (4) and that @ = 0, b = 1. There exists
then a square free negative rational integer m such that k = Q(vm). We
have ¢ = 1,2 and more precisely ¢ = 2 if and only if m =1mod8 (see
e.g.[3]). For —m = 1,2, 3,17, 19 for instance, o is a principal ideal domain.
Therefore the exponent ¢ in 5.4 (1) is given by:

1) e=1 if —m =1,2,3,19; c=2 if—m="7.
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6. — Some local computations of volumes.

6.1. Let g be the Lie algebra of SL,(R). Then g,=g®g C is the Lie
algebra of SL,(C). We view it as a 6-dimensional real Lie algebra. Then
0: 2 — — % is an automorphism of g, whose fixed point set is the Lie algebra
3u, of SU,, i.e., the set of skew hermitian matrices. The orthogonal com-
plement p of 3u, with respect to the Killing form is the space of hermitian
symmetric 2 X 2 matrices of trace zero. 6 is the Cartan involution of g, as-
sociated to su,. We have H® = SL,(C)/SU, and the canonical projection
identifies p to the tangent space T(H3), to H® at the origin. On g, consider
the hermitian form gy(x, y) = —2Tr(x-6(y)), where Tr refers to the trace
in the standard representation. It is hermitian positive non-degenerate,
invariant under inner automorphisms of SU,. Then the hyperbolic metric
is the left invariant Riemannian metric whose value at p = T(H?), is the
inner product defined by the restriction of g, to p.

[To check this, note first that 27» = B, where B is the Killing form
B(x,y) = tr (ad zoad y), of g,, viewed as real Lie algebra, and that, for the
metric defined by the Killing form on p, the sectional curvature on the plane
spanned by z,y is B([z,y], [»,y]): A(x,y)? where A(x,y) is the area of
that plane. Then compute this expression for some choice of # and y, for
instance h and « below.] Let

1) h=((1) _(1)), e=(g (1)), f:(g g),u=e+]‘, v=1i(e—T7).

Then h/2, #/2 and v/2 form an orthonormal base of p with respect to g,.
In particular, if du denotes the volume element of the hyperbolic metric,
then

(2) du(hANupv) = 8.

In the real case, we have H?= SL,(R)/SO,. We identify p = T(H?),
with the subspace of g spanned by » and 4. The computation sketched above
also shows that the restriction of — 27r(x-8(y)) to p defines the hyperbolic
metrie, and that h/2, »/2 is an orthonormal basis of j.

-6.2. Let wg, w?, w3 be the left invariant 1-forms on SL, whose values
at the identity form a basis dual to the basis (%, ¢, f) of 3L, given by 6.1(1),
and w, = w}\wiA\wd. Let G be a k-form of SL,. The group G is then iso-
morphic to SL, over some algebraic extension of k. Fix such an isomor-
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phism ¢ and let w = ¢*w,. Then  is defined over k (see pp. 475-476
in [11]). It is then a « gauge form », which can be used to define first a
local measure w, on G, for every v and then a Tamagawa meagure dr =
= |D;|"*[] @, on the adelic group G,. In this section, we are concerned

with the local measures w, for ve V,. We have
(1) w,=w, if v is real,
(2) w,= +B¥-wAd, if v is complex.

As usual, let w,, be the product measure of the w, on G, . Let again S, be
the set of real v’s such that G is isomorphic to SL, over k,. Set

K,= S0, if v is real, vef$,,
K,=G,=8SU, if vis real, v¢89,,
K,= SU, if v is complex .
Then H,= G,/K, is H? (resp, a point, resp. H3) if v is real, v € 8, (resp.

v¢ 8, real resp. v complex). Let du, be the hyperbolic volume elemnet
on H, in the first and last cases, the point measure in the second case.

LeMMA. Let dk, be the measure on K, such that w,= du,-dk, (veV,).
Then the volume v(K,) of K, with respect to dk, is equal to 7 (resp. 4n2, resp. 8n2)
if v is real in 8, (resp. real not in S,, resp. complex).

Assume first v to be complex. Let
(1) o=+ w, o0°®=owi—od.

Then w!, 6%, ¢® is the basis of g* dual to k, «/2, —iv/2. For a C-linear
1-form 7 on g, let Rt and It be its real and imaginary part. We have

(2) wlc?e® = 2w ,

(8) 4wA®=w'AAPADINGAC = + 88 R NIw' ARo*A\Io*\Ro*AIo®
(4) w,= + (Iw*AIe* A\ Re®) A (2Rw* \ Ra* A\ Ia?) .

The elements ¢h, iu, 7o form a basis of 3u,, and k, u, v a basis of p. We have

(5) (2Rw!ARo*NIo®)(hAuAv) = 8,
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which, in view of 6.1(2), shows that the second factor in the right-hand
side of (4) is du,, up to sign.

Identify SU, to the standard unit sphere in R* by using the real and
imaginary parts of the matrix entries in the first row. The volume for the
standard metric is then 2z2. It is readily seen that ih, iu, v is an ortho-
normal basis for the standard metric. If dv, is the corresponding volume
element on 3u,, we have then

20| = [Io*ANIe®*A\Ro?| = 4dv, ,

and our first assertion for » complex follows. This also shows that volume
of K, for the positive measure defined by the restriction of w is 4m? if
v is real, not in S;.

In the first case, we have du, = 2w!Ac? since h/2 and u/2 then form
an orthonormal basis of p in that case, as remarked above: therefore
dk, = 0%/4, whence our asserfion in that case.

6.3. LEMMA. For ve Ry, let »(G) be the volume of G, with respect to w,.
Then

(1) »(G) = (Nv+1)-Nv2, (veR,).
For comparison, let us recall that if v eV, — R,, and K, is a maximal

compact subgroup of (;,,, then w, is the standard measure on SL,(k,) and K,
is conjugate, by an element of GL,(%,), to SLy(0,). We have then

(2) w,(K,) = Nv=3-Card SL,(F,) ,
where 17, is the residue field at v, hence
(3) wy(K,) = Nv=2(Nv*—1), (veV;—R,).

(cf. e.g. [16; 29]). In particular, the volumes given by (1) and (3) are ra-
tional numbers, but this follows from a general fact (see e.g. [16: 4.2.5]).

6.4. Proor oF 6.3. This is a local statement, also valid in the equal
characteristic case. We change notation and shift to a purely local situation.
Let then F be a p-field [28: I, § 3], F' its unique unramified quadratic ex-
tension Iz and kr the residue fields of F and ¥, and ¢q the order of kz. Then
kp is the quadratic extension of &z and has order ¢2. Let z be a uniformizing
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variable in E. It is then also one in F and pz = 7 0z, P» = 70, are the
maximal ideals of pg and oy respectively. We take as multiplicative rep-
resentative system 8’ of kr in F, the set § = 0 U (w) where w is a primitive
(g2 — 1)-st root of one in F. Let x — z' be the non-trivial automorphism
of F over E. We have w' = w

Let B be the division quaternion algebra over F. It splits over F and
contains F as a maximal subfield. We can write B as a cyeclic .é,]gebra

1) B=FQF-u

and may assume z to be equal to %2. The map & — z' extends to an invo-
lution of B which sends # to —u. We have

I

(2) (zy) =y -z (z,y€B), zu=u2z (reF)
(3) (@ +yu) =o' —yu (r,yeF).
The reduced norm will just be denoted by N. We have
(4) Nb =o' —myy', (b=a+yu,z,yeF).
Let oy be the maximal order of B and p; its maximal ideal. We have
(5) Ps=Pr-+0su, P=m05, 0p/Ps=0s/Pr=Fks.

We let B! (resp. K) be the subgroup of elements in B* whose reduced
norm is one (resp. a unit). The group K is the biggest compact subgroup
of B*. The reduced norm yields a surjective homomorphism of K onto 0%,
with kernel B. It follows from the definitions that the measure v, multiplied
by the standard measure on E (which gives volume 1 to pz) is the meas-
ure on B* introduced in [11: p. 4758]. Denote also by »( ) the corresponding
volumes. We have then

(6) »(BY) = »(K)»(0F) = »(K) ¢ (¢—1)*.
The natural projection of o onto kr, with kernel p,, maps K onto %%, hence
(7) v(K) = (¢*—1)"¥(ps) .

We write F = E(f), where § is integral, and the reduction mod 7 of j
generates kr over k. Then

(8) Op=0g+0z'f, Pr=pe+h=p.
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We represent B as the set of matrices

Y Yy
(9) b‘—(nyl wl)? (x7yEF) .
Then Nb = detd. Write
(10) . x=r+fs, y=u-4pv.

On GL,(F) we take as usual as coordinates the matrix entries a, b, ¢, d.
On B*, we use 7, s, 4, v. On GL,(F) we have the standard invariant 4-form

(11) w = (det)"1-dapdbAdeNdd .
On B%,

(12) a=r+ps, b=u-+pv, c=anu-+pv), d=r-4pfs.

Therefore

(13) O|pge =+ (f—p' )7 N-tdrNdsAdupdv .

(f — p')? is the discriminant of F' over E, hence is a unit. This form is de-
fined over E, and the measure » is the one associated to it. On K, the norm
is one in absolute value, therefore our measure » is given by

(14) vy = |r|drAdsA\dupdv = g~ -drAdsAduNdv .

But now, by (5) and (8), the element b belongs to p, if and only if

(15) rySEPr, U,VEDg.
Therefore
(16) v(ps) = q7°.

Together with (6) and (7), this yields

(17) v(B') = (¢ +1)-¢%,
as was to be proved.
6.5. REMARK. A different proof of 6.4 (17), or rather of an obviously

equivalent equality, has been given by W. Casselman (Proc. Symp. Pur.
Math. 33, A M.S. 1978, part 2, p. 155, lemma 5.2.1).
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7. — Volumes and values of zeta functions at 2.

7.1. If I' is a group, we let I'® denote the subgroup generated by the
squares of the elements of I'. It is normal, and I'/I® is a group of expo-
nent 2. If I'is finitely generated, then I'/I® ig a (finite) elementary abelian
group of type (2, 2, ..., 2). Its F,-rank is at most equal to smallest integer m
such that I' is generated by m elements. The group I'® is the smallest
normal subgroup of I" such that I'/T'® has exponent 2.

7.2. We return to the commensurability class C(k, B). We let Ny, or
simply N denote the reduced norm from B to k. Fix a maximal order £
of B, and let O* (resp. O) be the set of elements of O whose reduced norm
is a unit (resp. one). It is a group, and an arithmetic subgroup of H (resp.
@). Tt is known that

1) O* = {reNormO|Nzeo¥}, O'=NormONG.

Not knowing of a good reference, we sketch the proof: For ve Ry,
we have O! = G(k,); for v € V,— R,, we have O} = SL,(0,); hence in any
case O is equal to its normalizer in G(k,). The group O} is the v-adic clo-
sure of O in G(k,). Consequently, if 2 € Norm © has reduced norm one,
it belongs to O} for all v € V;, hence to O. This proves the second equality
of (1). By a theorem of Eichler [5], the map x> Nz maps ©O* onto the
group D;aw of units which are positive at R,. Let now # € Norm © be such
that Nz € o*. Since Nz has to be positive at R, there exists then y € O*
such that N(y-@) =1. We have then y-zeO' and xeO*, whence the
first equality of (1). Set

2) I'y. = g(D*) = g(k*-0%), Ig=0(DY) =0c(k*-O).

Both are arithmetic subgroups of @, normal in I'y. Let # € Norm ©. Then
N(z)-1-x2 has reduced norm 1, hence z2¢e k*-O! by (1) and therefore

(3) I'Lcr. The group I'y/I'y has exponent two .
If G is isomorphic to SL, over k, we may choose a k-isomorphism which

maps O onto M,(v). We have then

Ot = SLa(o) ’ D* = GLy(v),
(4)

Iy = SL){+1}, T'o.=GCLy0)/{£1}.
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7.3. THEOREM. Let D, denote the discriminant of k over Q and ¢, the
Dedeking zeta function of k. Let G be the k-form of PGL, associated to a qua-
ternion algebra B over k. Then

2| D[t Lu(2)
(1) tu(F-lD) = ].-[ ('N-,U_— 1) '22r1+lr.—kzla .n,;rﬁzr,—a *

vERy

In particular the volumes u(I'), where I' is arithmetic in G, are all rational
multiples of w414 | Dyt £4(2).

(Cf. 3.1, 4.1 for the notation.) Let

(2) Ko= H K,, v(Kw) = H“’(Kv)

VEV €V
with »(K,) as in 6.2. We want to prove:
(3) WGofD?) = p(I'p) »(Ke) 2,

where »() on the left-hand side refers to the volume computed with we
and O1 is diagonally embedded in G..

Let I' be a torsion-free subgroup of finite index of O!. Then o(I) = I
and o(9') = O'/{4- 1}, hence

(4) (O] =2[c(DY):a(l)].
We have clearly

(5) WGl T) = [T :T1-9(Geo/TH) .
(6) W) = [T :o(0)]u(T).

Since I is torsion-free, G/I" is fibered over H/I', with fiber Ko, therefore
(7) ¥ G| I') = »(Ea)- u(T)
and (3) follows from (4) to (7). By 6.2 we have

(8) P(Kw) = (872) (472)— 2,
whence

(9) v(@mlgl) — Qsryten—sa—igartar—ay (L),
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The Tamagawa number of G is one [29]. This translates to

(10) #Gof©Y) = (TT (1 — No-2) (@) - Dt Lul2).

vERs

Together with 6.3 and (4), this yields (1).

7.4. The case of matriz algebras. 7.3 applies in particular to the case
where R is empty, i.e., where B is the matrix algebra M,(k) and G is k-iso-
morphic to SL,. The proof of 7.4(1) is then slightly simpler, since 6.3 is
not needed. 7.3(1) specializes to

) u(SLyo/{+ 1}) = 2190 74-|D, - £,(2) .

7.5. REMARKs. (1) The formula 7.4(1) is due to G. Humbert for k
imaginary quadratic (d = 2,b =1) (see [24:§7]), and to C. L. Siegel [23]
when k is totally real. The equality 7.3(1) for totally real fields in general
follows from results of Shimizu [22: p. 193].

(2) To get the smallest covolume in C(k, B), we have to divide the
right-hand side of 7.3(1) by the index of I'y in I'y. At this point, all weknow
is that this index is = 2=, where m is the smallest cardinality of a generat-
ing set for I'y (7.1, 7.2(3)). In § 8, we shall give an expression for it in terms
of data depending only on k and R.

7.6. PRrOPOSITION. Let Iy be an arithmetically defined subgroup of G,,.
Then there exist infinitely many commensurability classes of arithmetically
defined subgroups of G,, such that the volumes u(I") are all rational multiples
of u(I'y) when I' runs through these classes.

From 7.3, we see that, given a and b, the volumes u(I") for the arithmetic
subgroups defined by a k-form G of PGL, (satisfying 4) or B) of 3.3, of
course) are all rational multiples of a number which depends only on & and a.
Therefore, given k& with b complex places and at least a real places, we need
only to show that there are infinitely many k-forms of PGL, associated to
quaternion algebras over k which, at infinity, are ramified at exactly a pla-
ces, such that two arithmetic subgroups of G,, associated to any two of
them are not commensurable up to conjugacy.

Let A be the set of automorphisms of k. It is finite, of order =< d. We
can choose an infinite sequence of quaternion algebras B; over k (¢ = 1, 2, ...}
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such that B; is not isomorphic to any conjugate °B; (o € A) of B, for 7 +#j
and, at infinity, B, is ramified at exactly a places of k. [This follows im-
mediately from the fact that a quaternion algebra is determined by its
local invariants and that the only conditions imposed on those are to be
zero almost everywhere and to have a sum=0mod1 (cf. [4: VII, § 5])].
Changing the notation slightly, we are then reduced to showing that if ¢
and @' are k-forms of PGL, associated to two such quaternion algebras
B, B’y where B’ is not isomorphic to a conjugate of B, then an arithmetic
subgroup I" of @ is not commensurable up to conjugacy to any arithmetic
subgroup of G, , (3.3). Let g € G,, be such that °I"is commensurable with I".
Then ?C,= C, (where C,, C, denote the commensurability groups, cf. § 1).
But O, = G(k), Cp, = Q(L'). Therefore G(k) would be isomorphic to G'(k)
as an abstract group. By a theorem of R. Baer [1: Thm. 2, p. 272] (see
also [30: Thm. 4.1]), this would imply that @ is isomorphic, as an algebraic
k-group, to °G’ for some o€ A, hence that B is isomorphic to °B’, a
contradiction.

7.7. Commensurability questions. Let b = 0. In this case, all volumes
are commensurable. In fact, if y(I') is the Euler-characteristic of I, in
the sense of C. T. C. Wall if I" has torsion (cf. [20: p. 99]), then

1) 2 = pw()[(—2n)",

in agreement with the fact that |D;[t-(,(2)n—24is rational for % totally real.
Let now b5£0. Then y([") is always zero. Although it is not expected that
all volumes are commensurable, this has not been checked to .far. In view
of 7.3, to produce an example, it would be enough to exhibit two number
fields %, k' of the same degree and the same non-zero number of complex
places such that

(2) |Di[C(2) ¢ Q- | Dic [+ 83 (2)

Apparently, nothing is known about this question. Of course, the truth
of Milnor’s conjectures about the Lobatshevski function [24: § 7] would
provide many examples of quadratic imaginary fields k, k' satisfying (2).

8. — Discreteness of the set of arithmetic volumes.

In this section, we want to prove that the set of volumes u(I'), when
[" runs through the arithmetically defined subgroups of G,,, is discrete
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(with finite multiplicities, see 8.2 for the precise statement). If o + b= 2,
these subgroups are all the irreducible discrete subgroups of finite covolume,
as already pointed out (3.4), and the discreteness has been proved by H. C.
Wang ([27], see 8.3]). For the sake of uniformity we shall also include this
case, although this is not really a new proof, since the idea of the proof
of 8.1 in that case is taken from (26, 27].

8.1. LEMMA. Let a,be N be given. Let ¢> 0. There exists an integer
m(c) such that if I' is an irreducible discrete subgroup of G,, and ()< ¢
then I' is generated by m(c) elements.

Let first @ = 1, b = 0. Since I contains a subgroup I of index two which
preserves the orientation, we may assume I'c SR,(R)/{+1}. In this case
our assertion follows from the standard formula for u(I): let m be the number
of cusps of H2[I', {y,, ..., 7,} & set of representatives of the classes of elliptic
elements of I', ¢; the order of y; (1= j =< s) and g the genus of the standard
compactification of H2/I". Then [ is generated by 2¢g + m -+ r — 1 elements
and we have

) W) =20—2 +m+3(1—e).
i=1

Since ¢; = 2, we see that 2g +m 4 r—1= 2u(l) + 2.

If a =0 and b =1, 8.1 follows from the construction of all H3/I" with
volume = ¢ by means of Dehn surgery applied to finitely many orbifolds,
given in Chap. 13 of [24]; it will be proved explicitly in the final version of
these Notes. For torsion-free I, all we shall need to know is that H,(I"; Z/2Z)
has dimension bounded by some constant n(c), and this follows directly
from [24: Chap. 5]; in fact, it is shown there that the hyperbolic 3-manifolds
of volume = ¢ are obtained by gluing some solid tori or cusps to finitely
many compact manifolds with boundary a union of 2-dimensional tori.

Let now a + b= 2. Assume there is a sequence of irreducible subgroups
I', of G,; such that u(I';) < ¢ and that the smallest cardinality g, of a gen-
erating system of I', tends to infinity. By the argument of [26: p. 137],
recalled in [27: p. 480], there exists a subgroup I, which is a limit of the I,
in the topology of the space of closed subgroups, such that u(I') < e, and
moreover a homomorphism 7,: I'—1I",, for » big enough, defining a de-
formation of I" which tends to the identity as »—co. The group I is
also irreducible, since 7, has to be trivial on any subgroup of I" which is
contained in a proper factor of G,,. But then I'is rigid (since a + b= 2),
hence I, is conjugate to I" for n big enough, a contradiction with the as-
sumption g,— oo.
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8.2. THEOREM. Fix a and b. Let ¢> 0. Then there exist finitely many
arithmetic subgroups I'y, ..., Iy of G, such that any arithmetic subgroup I’
of G, with covolume u(I') < ¢ is conjugate to one of the I'’s (1< 1= q(c)).
In particular the set of volumes u(I'), where I' runs through the arithmetically
defined subgroups of G,,, is a discrete subset of the real line.

In view of 5.3, 5.4, it suffices to prove this theorem for the set of arithmetic
subgroups of the form I’y defined in 4.9. We first show it for the groups I'y.
Consider 7.3(1). Since (,(2) =1, we have

1) u'L) = 2+ | Dyt 2m)2men 27

(2) w(y) = 2|D; |t (4m2)"- (242 - 7)o,

Since there are only finitely many number fields with a given diseriminant,
it suffices to show that the right-hand side of (2) tends to infinity with the

degree of k. But this follows from known estimates on the discriminant,
e.g., from

(3) | D] = 50m:-1927.,  for d large enough
which implies

(4) |Dy|* = 353.-8227.,  for d large enough ,
and follows from 1.8 in [15].

Let now ¢ > 0. By 8.1, there exists a constant m(c) such that if u(I'g) < e,
then I'y has a generating set of cardinality < m(c). Since I'g/I'g has expo-
nent two (7.2(3)), we have then
(5) [o:Th]< 2m0,

(7.1), hence
(6) w(Iy) < e-27mo),

The possible I'y form then finitely many conjugacy classes by the first
part of the proof. In view of 5.3, the same is then true for the groups I'y.

8.3. REMARK. Let L be a connected semi-simple Lie group with center
reduced to the identity and no compact factor. Theorem 8.1 in [27] asserts
that the covolumes u(L/I") (I' discrete in L) form a discrete set (with finite
multiplicities) if L has no three-dimensional factor. This should in parti-
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cular apply to L = PGL,(C), but there it is contradicted by the results
of Thurston-Jorgensen [24: Chap. 5]. The mistake in [27] comes from a
misunderstanding of rigidity in that group: the author uses a result he at-
tributes to H. Garland and M. S. Raghunathan, but he misquotes it. How-
ever, the proof, as it stands, is valid for the irreducible subgroups of L,
provided L is not locally isomorphic to SL,(R) or SL,(C), since in all those
cases the rigidity theorem used by Wang is indeed available. In particular,
this covers the case of our groups G,, for a + b= 2.

8.4. In this proof we have used discriminant estimates to handle the
groups I'y and then a geometric argument to go over to I'y. One can of course
ask whether it would not be possible also to give an arithmetic proof for
u(ly), using a good estimate of [I'y:I'y]. We shall see that this is unlikely
since this index depends in part on the class group of k. First we want to
give an arithmetic description of it.

We denote by o}! the group of R,units of k (elements which are integral
at all finite places outside R;) and by o}hRm the group of elements of o};,
which are positive at Ry.

We have

(1) [0%,.z,, :OR1S [0F, 0FI= 277, (= R/,
where the last inequality follows from the unit theorem. Let now
@) B, = {peB*N@p)eo}, I'p=o(* By).

We have Nbeoy p for be By . Moreover, the results of [5] imply that
B%, € Norm ©. We have then the inclusions

3) I'golg 2 I'gud 1.

8.5. LmmmMA. The group I'y Iy is isomorphic to 0% »_[0%. In particular
g, T3] < 2t

Eichler’s theorem implies that b+ Nb maps B} onto oy p_. If now
Nb = ¢2, with ceo};f, then N(c'-b)=1, hence be k*-O1, and the first
assertion is proved. The second follows from 8.4(1).

8.6. Let Do, = Du(B) (resp. D; = D,(B)) be the product of the primes
in R (resp. R;). Thus the ideal D; is the square root of the discriminant
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of B. Let I(k) (resp. P(k)) be the group of fractional (resp. principal) ideals
of & and P(k, Dy) the group of principal ideals generated by elements which
are =1mod* Dy, i.e, which are positive at Re.

LeMmMA. Let M, (resp. M,) be the subgroup of I(k) generated by P(k, D)
(resp. P(k)) and the o N p, (veR;). Let J, = I(k)/M, and let J, be the image
of M, in J,. Then [FD:FR,] = [,J,:J,], where ,J, is the kernel of the map
y—y*in Iy If k has class number one, then I'y = I'y .

Let L, be the subgroup of I(k) generated by the o N p, (v € ;) and the
squares of all ideals. It follows from the description of an ideal as an in-
tersection of local ideals that the elements of L, are the norms of the two-
sided ©-ideals. By a theorem of Eichler [5], an element of L, is the norm
of a principal ©-ideal if and only it belongs to P(k, Dy).

Let now 2 € Norm £. There exists then a unique ideal m(x) prime to D,
such that the ideal (Nx) is the product of m(x)?2 by a power product of the
divisors of D,;. Let 7: Norm © —J, be the map which assigns to x the
class of m(z) in J,. By the above, its image belongs to ,J, and every element
of ,J, occurs in this way. For ¢ek*, we have N(cx) = ¢?- N(x), hence 7
is constant on A*-x. Assume now that t(x) € J,. This means that we can
write (Nz) as the product of a principal ideal (a?) (a € k) by a power product:
of the o N p, (ve R,). But then N(a~'-z) € 0%, hence z € k*-By . Thus v
defines an isomorphism of I'y/I'y, onto .J,/J, and the first assertion is proved.
If I has class number one, then J, = J,, whence the second assertion.

8.7. The first part of the proof of 8.2 also shows that the ,u(I’Rf) form
a discrete set, but I do not see how to go from there in the same way to
#(l'g). An upper bound of ,J,/J, is the «narrow» class number &, (k).
It may grow about as fast as |D,|}, which is too strong to be absorbed by
8.2(3), or even by the stronger estimates of [15]. Of course, for fields of a
given degree, it is easy to show that the u(l'y) form a discrete set.

8.8. Another question raised by W. Thurston is whether the g.c.d.
of the volumes in a commensurability class have a strictly positive lower
bound. Since the volumes do by a well-known theorem of D. Kazdhan
and G. A. Margoulis (see [17: XI, 11.9]), this is clear for non-arithmetically
defined classes (cf. § 1). The first part of the proof of 8.2 also shows that
the numbers 274+ u(I'y ) have a strictly positive lower bound. In view of 5.4,
this shows that the g.c.d. of the volumes in the commensurability classes
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attached to fields of class number one do have a strictly positive lower
bound. I do not know whether this is true in general.

9. — Hyperbolic 3-folds.

9.1. In this and the next section, we consider the case of hyperbolic
3-space. We have thena =0,b=1,7,=1,d =1, + 2, and 7.3(1) becomes

(1) w(I'5) = [T (No—1): [ Dy} u(2)(2) 204 .

VERy

Since a = 0, the set R, is the set of all real places of k, hence 0% p_ is
the group 0’1';,, + all of totally positive R,units. Therefore, in view of 8.4,
we get for the smallest volume in the given commensurability class

(2) wlp) = [0%, 4 05 ul'y), if k has class number one.

Assume now k to be imaginary quadratic. Then R is empty, o};, is just
the group of all R,units. It is the product of a cyclic group of even order
by a free abelian group on r, generators, hence

(3) [0%,,+ -0k, 1= [0%, 0% 1= 2r, + 1, if k is imaginary quadratic .

I is necessarily quadratic imaginary in the non-cocompact case, and
then R, is also empty. We get

(4) u(SLy(0)[{£ 1}) = |Du|'0u(2)/4n2,

which is G. Humbert’s formula. If k has class number one, u(l'y) is one-
half of the right-hand side of (4).

9.2, It is not surprising from the general formula that small volumes
should be tied up to fields of small discriminants and, in the compact case,
to quaternion algebras which are as unramified as possible at the finite
places. However, because of the factor [,J,:J,] we can confirm this only for
group I’R’, hence for I'y if k has class number one. Remarks (a), (b), (¢)
below are due to E. Bombieri.

(a) Let k& = Q(v—3). Then the class number is one and

U(GLy(0)/{1}) = 3-£,(2)/8n2 = 0.08458 ... .
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Simple estimates show that this is the smallest value of u(I'y ), when k runs
through all the imaginary quadratic fields. It may also be the minimum of
#(GL,y(0)/{4-1}) for those cases. We now consider cocompact groups.

(b) Let d = 2. Then R, has at least two elements. In this case the
minimum of u(I'y) is realized when D, =—3, [](Nv—1) =6, and then

VERy
() pu(I'y) = w(Ig) = 0.126 -+ 0.0001 .

(¢) Let k = Q(0), where 0 is a root of 23 — 2 —1. Then D, = —23,
[0* :0**] =4. The prime » =2 + 0 divides 5 and Nv = 5. Take then
R, = {v}. The field ¥ has also class number one. Then

(8) () = 0.3536 ... X £(2) < 0.47474 ...

and this I'y seems a good candidate for the smallest volume when % has
signature (1,1). At any rate 23 is the minimum of |D| for these fields.

(d) Let k = Q(0) where 6 = (3 + 24/5)%. This is a quartic field of
signature (2,1). Its discriminant is — 275 and % is known to have the smal-
lest diseriminant in absolute value for fields of signature (2, 1) [8; 14]. Take
for B the quaternion algebra over k which is ramified at exactly the two
real places of k. Then the group Iy is the subgroup of orientation preserv-
ing transformations in the Coxeter group:

(6) O O0=—=0 O

as was pointed out by W. Thurston. This appears so far to be the smallest
volume known and it seems rather likely to be the smallest obtained from
fields of signature (2,1). Eventually, for fields of high enough degree, the
volumes have to become bigger, but it seems well possible that quaternion
algebras over fields of relatively small degree with small discriminants might
lead to smaller volumes. The next candidate would be the field of signature
(3,2) with discriminant 4511, with R, consisting of one place dividing a
prime with small norm.

10. — Totally real fields. Fuchsian groups.

10.1. Assume now k to be totally real, i.e., b = 0. Then the functional
equation yields

(1) Lu(—1) = [Dy[F5i(2)/(— 2n2),
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and 7.3(1) can be written

@) p(Ih) = (—1)3¢(—1)ae-20+1-4- T (No—1) .

v€ERys

The Euler-Poincaré characteristic y(I'y) of I'y is given by

3) (T3 = (—2n)2u(IL) = (—2)e-2+14(—1) [T (No—1).

vERys
The group 'y is a quotient of D! by a group of order 2, hence

(4) 2(DY) = (—2)(—1) [T (Fo—1).

vERs

Note that if a = d, this is equal to (—1)¢ Z(SLzoR,), in view of [20: p.159].

10.2. Consider now the case of Fuchsian groups, where a = 1. TUsing
10.1(1) we can also write 7.3(1) as

(1) a(I'g) = 2630}, 51051 [G(—1)| [ (Vo —1).

vERy

This can be used in particular for the triangle groups which can be
defined arithmetically. Some were already investigated by R. Fricke [6; 7]
and a complete determination of those groups and of the associated qua-
ternion algebras has been carried out by K. Takeuchi [12]. Moreover, it is
shown there that the underlying groundfields have all class number one,
so that I‘(PR,) realizes the minimum of the volume, and is the triangle
group (recall that we have included orientation reversing isometries at the
real places (3.0)).

As an example consider the group of the triangle (2,3,7). Here
k = Q(cos2x/7) is the maximal totally real subfield of the cyclotomic field
of the seventh roots of 1. It is cubie, and we take for B a quaternion algebra
ramified at exactly two infinite primes. Thus R, is empty. It can be checked
that [0;_:0**] = 2. Moreover, it is known that {y(—1) = —1/21 [20: p. 163].
We get indeed u(l'p) = m/42.

This group is denoted Ty in [6]. There Fricke also considers commen-
surable groups I, Iao, I. The group I, is the group of the triangle
(2, 4, 7), Tty = I'u9 N ey has index 2 in I, and 9 in Igy. These groups
can be described as follows in the set-up of §§ 4, 5.

Note first that 2 remains prime in %, and if v, is the corresponding place
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of k, then Nv, = 8. We may write I'y; = I'g, where I'y is defined by the
vertices (P,) of the various Bruhat-Tits buildings. Then I7,, is the group
which fixes the P, for v % v, and stabilizes the edge ¢ for v=v,. It indeed
contains an element which is odd at exactly 2, namely z — (2 +1)/(1—2)
[6: p. 456]. The reduction mod v, maps I, onto the projective group of the
projective line P!(Fy), and [, on the stability group of a point, i.e., on
the affine group of F;. The inverse image of the group of translations has
then index 7 in I';, and is the group I
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