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One Attempt to the K3 Modular Function - I7.

HIRONORI SHIGA

§ 0. In the previous paper ([9], we quote it as the part I) the author
pointed out that the Picard’s modular function (see [1]) coincides with the
one for a certain family of elliptic A3 surfaces with 2 complex parameters.
The elliptic modular function is characterized as a function which gives
the moduli of elliptic curves. And already there are various extensions of
the theory of the elliptic modular function. Perhaps one fruitfull extension
is the one for the Abelian varieties. And the Abelian variety seems to be a
natural extension of the concept of the elliptic curve. But the author
thinks that the K3 surface is another extension. Then he tried to find a
new modular function of several variables by considering a family of K3
surfaces. The part I was the first experiment for this supposition. In this
paper we study several types of elliptic K3 surfaces and the period mapping
for them. And we show that the period is given as a ratio of two solutions
of Appell’s hypergeometric equation F,.

We proceed our consideration as the following. We study the elliptic K3
surface X with following properties (see [3] for the general theory of the
elliptic surface and [4], [5] for the K3 surface):

(i) X has a holomorphic section,

(ii) the functional invariant f is the constant function 0,

(iii) X has five singular fibres.

By a JOK3 surface we mean an elliptic K3 surface with the properties (i)
and (ii).

In § 1 we find a representing equation (1-5) for a J0K3 surface with
maximum number of singular fibres. Next we show that there are 9 types
of JOK3 surfaces with the property (iii) (Proposition 1-4). It will be called a
surface of class (j). Any JOK3 surface has an automorphism g of order
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three which preserves all fibres. Let A be a domain in P? defined by{f =
= [&, &, &]; &7 &5, 0 for i34 j}, where [£,, &, &] is a homogeneous coor-
dinate on P2. A surface S; of class () is determined by a point £ on 4. We
denote it by S;(£). There uniquely exists a holomorphic 2-form ¢ on §;(&),
up to constant factors, because 8; is a K3 surface. We determine this form
in Proposition 1-5.

In § 2 we construct a basis system I' = {C,, ..., C;;} of H,(8,(¢), Z)
and a basis system I'* = {G,, ..., Gy} of H,(8;(£), Q) with C;@; = d,; (Pro-
position 2-3). Among them C,, ..., 0;, and G, ..., Gy, are given as divisors.
The intersection matrix 4 = (G;@G),; ;<4 is determined in Diagram 4.

In § 3 we consider a period integral

) =[p, i=1,.,22
Ce

for a surface §;(&). Because C,, ..., C,, are algebraic cycles, we have 7,(§) =0
for ¢ =1,...,22. And it occurs a relation (3-4) among #,,...,7,. Con-
sequently the period mapping @ = [, ..., 75,] Teduces to a mapping from A
to P2 The image ®(A) is contained in a domain 2, (j=1, ..., 9), where Q;
is determined by Diagram 6 and (3-6). The domain £2; is biholomorphically
equivalent to a hyperball (Proposition 3-1).

And we define a monodromy covering domain A over /A at the biginning
of this section. Then @ becomes injective on A (Proposition 3-2).

In § 4 we consider the monodromy of #;(£). And we determine the
Appell’s hypergeometric function F, which coincides with #2,(§) (Proposi-
tion 4-1).

In § 5 we study the behavior of @ on the hyperplane H,; = {&; = &;;
1%j,4=1,2,3andj =0,1,2, 3}in P2. And we point out the domain 4,
to which the mapping @ can be extended. As a consequence of this inves-
tigation we know that @ induces a biholomorphic equivalence between
A =P? and (2,/@)*, where G indicates the discontinuous group induced
from the monodromy and (2,/G)* is the Baily-Borel compactification of
Q,/G, for j =1, 2, 3, 4 (Proposition 5-2).

The author obtained the results in the part- I and in this paper by
refering the esthetic principle « Honkadori» which is found in the medieval
Japanese anthology.

1. — Representing equation.

[1]. In the part I (Proposition 2-1) we already showed the necessary
and sufficient condition that an elliptic surface of basic type, namely a
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surface with a holomorphic section and without a multiple singular fibre,
should become a K3 surface. According to Pjateckil-Sapiro and Safare-
vié ([5], Corollary 2 to Theorem 1) a JOK3 surface (X, 7, 4) has no multiple
singular fibre. Then it becomes of basic type. Hence we have 4 = P and
%(X) = 24, where y indicates the Euler characteristic. We employ following
notations:

A: a compact Riemann surface with genus p,
f: a meromorphic funetion on 4,

&, ..., &: points on A such that f+ 0,1, c0 on 4’ =4 — {§,, ..., &}
(if f = constant we choose arbitrary points &, ..., &,),

&': a fixed point on A4’
{h1y ..., hsp}: a canonical generator system of z,(4, &),

g:: a closed arc with terminal point & which goes around &; in the
positive sense.

Then we obtain a generator system {h, ..., ks, g1y ..., g-} Oof m(4', &)
with only one relation

hohoh T G by ho byt By lg g, =1.

Let w be a multivalued analytic function on A’ defined by the equality
jow=f (if f=0,1 we set w =exp ($=i) and i, respectively), where j in-
dicates the elliptic modular function. Let w(£’) be a certain branch of w
at &. We denote by h,w(£') and g,w(&') respectively the values of w ob-
tained by the continuation of w(§’) along k; and g¢,. These are given by
modular transformations §, and 8,, respectively. Let S, and S, be
matrices in SL(2, Z) which induce 8, and §,, respectively, and suppose
that these matrices give a representation of m,(4', &) into SL(2, Z).

This representation is a homological invariant § belonging to §. It
follows a theorem due to Kodaira ([4], Theorem 10.2).

THEOREM. Let us consider the situation mentioned above. There exists
uniquely, as a fibre surface, an elliptic surface (X, m, A) of basic type with
the given functional invariant f and the homological invariant . And its
singular fibres are situated over &, ..., §&,.

By a critical point we mean a point &; such that z—(&;) is a singular
fibre.

Here we show that the homological invariant is uniquely determined
by the types of singular fibres in our situation. In case of { = 0 the matrix
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Sy (8y) is one of the following 6 types ([4], § 9):

1 0 1 1 0 1
So:(o 1)7 81:(__1 1)7 Szz(_l _1)’
—1 0y ", (—1 —1 0 —1
S S S G e

All matrices in (1-1) are commutative each other, then we obtain an ex-
plicit condition that {Sg,, S,,} gives a homological invariant belonging
to f=0:

u 1 0
(1—2) 51;11 S(U;) = (0 1) *

(1-1)

Let £ be such a homological invariant. And let (X, m, A) be an elliptic
surface of basic type with given f =0 and $ as mentioned in the above
Theorem. There is a one to one correspondence between the matrices S,
and the types of singular fibres #—1(&;) as the following:

matrix ‘ So | S, | S, I S, | S, I S;
(1-3) | tvve of ' -

ype 0 * * *

fibres regular 1T ‘ v . I3 ‘ v ’ II

By a JO singular fibre we mean a singular fibre listed in (1-3). Con-
sequently we obtain the following.

PRrOPOSITION 1-1. When we choose JO singular fibres n*(q;) (1 =1, ..., )
so that the corresponding matrices 8 ¢, satisfy the relation (1-2), then there exists
uniquely an elliptic surface of basic type with § = 0 which has the appointed
type of singular fibre over each &,.

REMARK 1-1. We can obtain a similar conclusion for the casef =
= constant.

REMARK 1-2. Let {y,,y,} be a basis system of ¢ = H,(n1(£'), Z) with
the properties
My.=—1,
fw = exp (%m’)fw,
Va

71

where o indicates the Abelian differential on m—1(£'). And let M,; be a
monodromy transformation of G induced from the arc g;. Then the matrix
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in (1-3) corresponding to m~%(&;) represents M, with respect to {yi,7.}.
Such a basis {y, y,} will be called canonical.

Let C be a JO singular fibre and let §; (¢ =0,1,...,5) be the corre-
sponding matrix. Then we have

{ Z(C) = 27::

(1-4) 8, = 8.

Next we consider r J0 singular fibres Ci, ..., C,, and let S, ,..., 8; be cor-
responding matrices. Assume that we have

M-

2(0) =24

(]

Because of (1-4) it follows §; ... 8; = 8}> = E. According to Proposition 2-1
in the part I and Proposition 1-1 we have the following.

PROPOSITION 1-2. Let us appoint finite points &, ...,& on P and the
types of JO singular fibres for each &; so that the total sum of their Euler charac-
teristics is equal to 24, then there exists uniquely a JOK3 surface with these
singular fibres.

REMARK 1-3. According to this proposition and the relation (1-4) we
know that a JOK3 surface has at most 12 singular fibres, and in the maxi-
mum case any singular fibre is of type II.

[2]. Let us consider the following variety X with 12 different parameters
& (@ =1,..,12):

12
np— m{n? [Il(u — &) — 173} =0,
(1-5) o
né“—ni{n? [[1(1 —u'g) — 7782} =0,

where [7,, 04, 1.] and [7, 11, 7,] are homogeneous coordinate systems on P2,
and we identify two points ([7o, 71,721, #) and ([ng, 7y, 7], #') by the
condition

_ 1 2 1B o
u_;’a Ne= U"N2y M=U N1, No=To-

If we use an affine coordinate (u,v =n,/n,, w = 7,/n,), We obtain an
affine representation of X:
12

(1-6) 'w3—'v{'02 ITw—&) —1} =0.

i=1
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Let n be a projection mapping from X to the u-sphere P. And let us
consider a fibre surface (X, x, P). It is easily shown that X is nonsingular
and n~!(#) is a nonsingular elliptic curve with the invariant 0 for every
except & (1 =1,...,12). And also we can see that »~'(§;,) is a rational
curve with one cusp singularity at [#e, 7, 7.] = [0, 1, 0], namely it is a
singular fibre of type II. Then the total sum of the Euler characteristics
of n-1(§,) is equal to 24. By Proposition 2-1 in the part I we obtain that
(X, =, P) is a K3 surface.

The curve L = {9, =9, = 0} = {5, =7, = 0} gives a holomorphic sec-
tion. Moreover we can show that the form ¢ = w—2duAdv in (1-6) gives a
holomorphic 2-form on X. Thus we obtain:

ProOPOSITION 1-3. The nonsingular variety X defined by (1-5) gives a
representation of a JOK3 surface with maximum number of singular fibres.
Its unique holomorphic 2-form is given by ¢ = w=2duNdv using the affine
representation (1-6).

REMARK 1-4. Let us consider the above surface (1-3). And suppose
that k critical points &, , ..., &, coincide with a point &,. Then the mono-
dromy matrix for the arc g, with respect to a canonical basis {y,,y.} in
Remark 1-2 is given by 8. Let ¢ be an integer with ¢ =% (mod 6) and
0< ¢ < 6. Because S, is of order 6, we have 8¥ = §%. By the correspond-
ence (1-3) we know that the fibre &#~1(&,) has to correspond to S,.

[3]. Next we consider a JOK3 surface with 5 singular fibres Cy, ..., C;.
Such a surface will be called of type F. According to Proposition 2-1 in
the part I we have

5
(1-7) S 4(C) =24
i=1

In the part T we already studied a certain class of surfaces of type F,
namely the surface with 4 singular fibres of type 1V and one singular fibre
of type IV*, We denote such a combination of singular fibres by 41V 4- IV*,

PrOPOSITION 1-4. There are mine classes of the surface of type I':

(1) 4TV -+ IV* (@) II =3IV - IT*  (3) 31T + IV* + II*
(4) 21T + IV 4+ IF + T1*  (5) 31V + 2I%: (6) 2IT + IV -+ 2IV*
() IT + 2TV + I% + IV*  (8) 2IT + 2T+ IV*  (9) II 4 IV + 31%.

Proor. If we consider the relation (1-4) and (1-7), we obtain the above 9
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combinations by an elementary calculation. By Proposition 1-2 there ex-
ists a surface with such a combination of singular fibres. q.e.d.

By a surface of class (j) (j =1, ..., 9) we mean the j-th surface in Pro-
position 1-4. Let us consider the following affine variety V with 5 different
parameters &; (¢ =1, ..., 5):

(1-8) w3 — v{v‘~’ ]i_[ (w— &) — 1} =0,

where we assume that the values »; satisfy the condition

{ Yo vy =12,
(1-9)

19,5 fori=1,..,5.

Let 8§ be a minimal nonsingular model of V, and let = be a projection
mapping from S to the u-sphere P. Then the fibre surface (S, x, P) is an
elliptic surface with five singular fibres over u = &, ..., &, and its func-
tional invariant f is equal to 0. Because of Remark 1-4 and the relation
(1-4) we have x(8) =24. This surface has a holomorphic section L =
= {v =w = 0}. By Proposition 2-1 in the part I we obtain that (S, n, P)
is a K3 surface, hence it is a surface of type F.

Let us consider the 2-form ¢ = w-2duAdv. It is holomorphic on the
regular fibre. Then we investigate its behavior on the singular fibre. Let p
be a projection mapping from V to the u-sphere. It is easy to see that
p~4(&,) is nonsingular on the affine part, and ¢ is holomorphic there. If
we set v' =1/v and w' = w/v, then we obtain a representation of V:

5
(1-10) wi—JJ(w—E&) +v2=0.
=1

From this representation we can see that p—(¢;) has various types of
singularities depending on »,.

We have normal forms of the isolated singularity on p~(£;) as Diagram 1.

These are rational double singularities. Then every curve which oecurs
as a consequence of the resolution of the singularity has the selfintersec-
tion number — 2. Already we know that ¢ is holomorphic at any non-
singular point on V. It does not occur that a meromorphic form has its
pole only along exceptional curves of second kind. Hence ¢ is holomorphic
on 8.

REMARK 1-5. If we have v, = 6, the fibre p~1(£,) has a singularity
x? + y%+ 28 = 0 at infinity. This is a simply elliptic singularity of type E,.
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Diagram 1
v, singular normal form classification
fibre of the isolated
singularity
1 1I nonsingular —
2 Iv 2+ y2+22=0 A,
3 13 v+ yP+B=0 D,
4 Iv* Pyt 2t=0 By
5 I1* o2y +25=0 By

Then it occurs a nonsingular elliptic curve E from this singularity. The
form ¢ has its pole along E, and we have n~(£,) = E.
From the above consideration we have the following.

PROPOSITION 1-5. We have a representation of a surface of type F as the
minimal nonsingular model of the variety V defined by (1-8) and (1-9). And
its holomorphic 2-form ¢ is given by w2du/dv.

2. — Homology basis.

[1]. Let us consider a JOK3 surface (8,7, P). Let {&,&,, ..., &, Eo}
be the totality of the critical points. And we assume that & =0 and
£, =o00. Let l; (1=0,1,..., ) be an arc connecting &, and co so that 1, does
not intersect any other I;.

We employ the following notations:

A: the base Riemann surface P,

A=A —{&, &,y .y &y b}y

Ay =4 —{l, 1, ..., L},

&': a fixed point on 4,,

C = 7,

{y1, .}: a canonical basis of H,(C, Z).

Let g, (¢ =0,1,...,7, c0) be the closed arc defined in § 1 [1] so that

any g, (i =0,1,...,7) does not intersect I, for ¢ > j and that g_.! intersects

loy .oy l, in this order. And let «; (i =1,...,7) be an oriented arc which
starts from 0 and goes to &; without intersecting any I, (j+ 1).



ll

I

| | 1
D b e O el et O el el O

21 6~-1 1 0 1 1 0 1-1 0~-1-1 O0-1 1 O 1 1 O
-2 1 0 1 1 0 1—-1 0~-1-~-1 O0-1 1 O 1 1 O 1 O
1-2 1 60-—-1 1 0 1 1 0 1—-1 O0-~-1-—-1 O—1 1 O O
o 1-2 1 0 1 1 0 1-1 0-1-1 0~1 1 O 1 1 O
1 0 1-2 1 0~-1 1 0 1 1 0 1—-1 O0—-1-—-1 O0-—1 O
1-1 0 1-2 1 0 1 1 0 1-1 O0—-1-1 O0~-1 1 O O
o 1 1 0 1-2 1 0-1 1 0 1 1 0 1-—-1 O0—1-1 O
1 0o 1-1 0 1-2 1 0 1 1 0 1-1 0—-1-—1 O0-—1 O
-11 0 1 1 0 1-2 1 0-—-1 1 O 1 1 O 1-—1 O O
o 1 1 0 1~-1 0 1-—2 1 0 1 1 0 1-~-1 O0-—1-1 0O
-1 0~1 1 0 1 1 0 1-2 1 0—-1 1 O0 1 1 O 1 O
-11 o0 1 1 0 1-1 0 1-2 1 0 1 1 O 1-1 O O
—-1~-1 0-1 1 0 1 1 0 1—-2 1 O0-—~1 1 O 1 1 O

-1-1 6~1 1 0 1 1 0 1-1 0 1-—-2 1 0 1 1 O 1 O

o 1-1 0~-1-1 0-1 1 0 1 1 0 1—-2 1 O0—1 1 O O

1 0-1-1 6-1 1 0 1 1 0 1-—-1 O 1-—2 1 O 1 1 O

110 1-1 0-1-1 0-1 1 0 1 1 O0 1-2 1 0-1 0

o 1-1 0-1-—-1 0~-1 1 0 1 1 0 1-1 0 1—2 1 O O

1 0 11 0 1-1 0-~-1-1 O0~-1 1 O0 1 1 O 1—2 1 O

110 1-1 0-1-1 0-1 1 0 1 1 0 1-—-1 0 1-—2 0

o 0 0 0o 0 00 0600 0 00 0 0 0 O0 0 0 o0 o

o o 0 0 0 06 06 06 00 00 0 0 0 0 O 0 0 0 1
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Let g be an element of x,(4', &) so that it induces a trivial monodromy
of H,(C,Z). If we make a continuation of a 1-cycle y on C along g, we
obtain a 2-cycle on S. We denote this 2-cycle by g Xy, and g will be called
a base arc of g Xy We define the orientation of g Xy as the ordered pair of
the orientation of g and the one of y.

[2]. Let us consider a JOK3 surface (S,z, P) with 12 singular fibres
aY&) (1 =0,1, ..., 00). We set

Grioa = g7 1 9™ X P2,
Gy = 9.9 Xy, fori=1,..,10,

(2-1)
G, =0,

Gypy=0C+ L.

The intersection matrix M = (G:G;),<; ;<. 18 given as the following:

This is examined by the same method developped in the part I § 3.

Here we note that LG, =0 (i =1,...,20) is obtained by the direct
observation of G; constructed by use of the representation (1-6). By an
elementary calculation we obtain that M is invertible. We have b, = 22
for a K3 surface. Hence {G,, ..., Gy} gives a basis system of H,(S, Q).

OHOOOOOOOOOOOOOQOOOOQOI
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Because the fibre space (7~(d,),n, 4,) is trivial, we can determine a
canonical basis {y,(u), y,(w)} of any fibre n~'(u) over a point « of 4, by
making a continuation of {y,,y,}. Let us consider the representation (1-6).
We can regard a general fibre #—(u) as a three sheeted covering Riemann
surface over v-sphere, and its ramified points are situated over v = 0 and
v = 4 f3, where

12

p={Iw—e).

i=1

We can realize {y;,y,} as the cycles obtained by arcs connecting two

ramified points over f and — . Consequently y,(u) and y,(«) tend to the

infinite point as w tends to a critical point &;. Hence we obtain a 2-cycle

on S as the continuation of a 1-cycle y(u) along «;. We denote it by o;Xy.
We set

Coiny = a; Xy,

Cz.', =“i><y2 fOI‘ 1: =1’ ...’10,
(2-2)

021 = Gzz ’

sz = Ua1,

where we define the orientation of C; (¢ =1, ...,20) as same as for G;. It
is easily shown from the construction that we have

(2-3) C.,G; =96, for1=i, j<22.
Let G be an arbitrary element of H,(S, Z) and set r, = GG,. It follows
from (2-3) that

(G—izzno,.)a,. =0 forj=1,..22.

i=1
This implicates G =, C; + ... + 7,,C,,. Thus we have the following.

PROPOSITION 2-1. The system {C,, ..., O} defined by (2-2) gives a basis
system of Hy(8, Z). And the system {@,, ..., Gy} defined by (2-1) gives a basis
system of Hy(S, Q). And these two systems are dual each other, namely we
have the relation (2-3).

[3]. Here we consider a surface (S,x, P) of type F. By a fractional
linear transformation we arrange the singular fibres so that they are situated
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as Diagram 2.

167

Diagram 2

class of types of singular fibres

surfaces 0 £ & g o
(1) v v v v Iv*
2) II v Iv v II*
(3) Iv* II 11 1I II*
(4) I3 v II II II*
(5) v 15 v v 13
(6) II v Iv* Iv* II
(7) i b Iv* v v II
(8) IV II I3 13 I
(9) v I3 I3 I; 1

For the moment we fix the parameters & = [&,, &,, &] so that we have

(2-4)

< &EH<&.

And we assume that I, (i =0, 1, 2, 3) is given as a line segment. We
define 2-cycles &,, G5, G; on S as Diagram 3.

Diagram 3

class of
surfaces

2-cycles
(G, Gy, G)

(1)

—1 -1

(97 900s 92" Goos 93 Goa) X V2

(2)

(97953, 92 Goss 92 Goo) X V2

(3)

—1_ -1

(gl goo’gz goo,gs yoo)XVz

(4)

(gl 900:92 goo’gs 900)X72

(5)

(9795, 9291929192 937 92) X 72

(6)

-1 -2

(97 9% 93 9> 93 9%0) X 72

(7)

(9179 92 9% 95295) X V2

(8)

—1_1

(g;lgoo’ g2 goo’ g3 Joo) X2

(9)

-1 -3

(gl gw, gz goo’ga goo)XJ’2

-
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We can easily show that they are certainly 2-cycles, because we already
know the monodromy transformation of H,(C,Z) induced from g, (Re-
mark 1-4). We set

(2-5) Gy = g7 X7 (t=1,2,3),

where ¢ indicates the base arc of G,,_;.

Next we construct algebraic cyeles on S. There are 14 components of
singular fibres which does not intersect the holomorphic section L. We
denote them by G,, ..., Gy, and set Gy, = L, G, = C.

By the construction we can show that we have

(2-6) 6.6, =0 for1<i<6 T<j<22.

Let A be the intersection matrix (a;) = (G:G;),<; ;<4 induced from
G1y ...y Gs. And let B be the one (by) = (GiysGise)i<i,j<16 induced from
G,y ...y Gy, We can determine B by considering the geometric figure of
the JO singular fibres.

REMARK 2-1. The matrix B is a direct sum of several minor intersection
matrices each of them is the one induced from a J0 singular fibre or the
one induced from @,, and G,,. But we must note that we excluded one
simple component from each singular fibre to get G, ..., Gs.

As a consequence we obtain that B is invertible for any class (j) (j =
=1, ...,9). According to the same method developped in the part I § 3
we can calculate the matrices A = A; for the surface of class (j) (j =
=1,...,9) as Diagram 4.

We can see that any A; is invertible. Let M be the full size intersec-
tion matrix (G;G;);<; ;j<5,- From (2-6) we obtain a direct sum decom-
position M = A @ B. Consequently we know that M is invertible. Then
we obtain a basis system {G, ..., Gi,} of H,(S, Q) for a surface of type F
with fixed parameters by (2-4).

Now we regard & = [&,, &, &] as a point on P2 And we use the fol-
lowing notations:

H,; = {& = [, &, &) € =&, where i for ¢ =1,2,3 and j =
=0,1,23,

A = P2— {the union of all H},

A = the universal covering of A,

Pp: the natural projection from A to A,
8,(&): a surface of class (j) determined by parameters & = [&,, &, &]
on A,

F; = {Sf(§)7 3 EA}-
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Diagram 4
0 —@ G 3F — 3B
A, =\ H 0 H |, 4,=|—3F G 3F |,
—G 'H 0 —3!B —3F G
0 B F G H —'H
A, =] 'B 0 BJ, 4,=| H 0 B 1,
—F B 0 —H B 0
0 2G 0 —2G 3B —3
A, =126 —26G —2'H], A,=1| 3'B — @G 3r |,
0 —2H —G 3F —3F G
—G — 3B —G 2tB —2'B
4,=| 3B —2G 4,=| 2B —26G 4B ,
— 3B — 26 —2B 4B —2¢
—2¢
A4, =| 4'B —26G
—4°'B 4B — 26

E:(l 0\), G—_—(2 1), F:( 0 1), B:(l 1)’ H:( 1 2\)‘
01 1 2 —1 0 01 —1 1

We can determine a trivial fibre space 5, over A with a fibre 8,;(£) =
= §,(&) for p(f) = &. Using the trlvmhzatlon of 5, we obtain a continua-
tion of the cycle @,. Hence we get a basis system of H,(8,(£), Q).

REMARK 2-2. The algebraic cycles G,, ..., G, are invariant when the
continuation is performed.

From the above argument we obtain the following.

PRrOPOSITION 2-3. Let Gy(£) (i = 1 ., 6) be the 2 -cycle on S;(£) obtained
by a continuation of G,. Then I'*(£ {G (E)y ey Go(£)y Gy ..oy Gp) gives a
basis system of H,(8;(§), Q). And the mtersect@on matmx A; 0]‘ Gl &), .y Gg(8)
18 given by Diagram 4. And algebraic cycles G, ..., Gy, are mthogonal to

Gi(&), ..., G5(8).

Next we construct a basis system I' = {C,, ..., Cy,} of H,(S, Z) which
is dual to I'*. Here again we consider a surface 8 of type F determined
by fixed parameters & with (2-4).
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When we make a continuation of a 1-cycle y on a general fibre along «,,
it tends to a 1-cycle on s—1(£;) which is homologous to zero. By this pro-
cedure we obtain a 2-cycle on 8, we denote it By a;Xxy.

REMARK 2-3. In general such a 2-cycle intersects some components
of the singular fibre. And the intersection multiplicity depends on the
homotopy class of y.

We determine 2-cycles C,, ..., C; on the surface §; of class (j) (j =
=1,...,9) by Diagram 5.

Diagram 5
class of construction of cyecles
surfaces
class (j) Cgimy = 0; X7y,
for j #5 Oy = a;xXy, fori=1,2,3
class (5) Cairy = ;X 91,

Oy =o;Xy, fort=113,
Oy = (otg — o) X9, — (O + Cp) ,
Oy = (% — o) Xy, — Oy + C5 + Gy

Let {C,, ..., U;;} be a basis system of the Abelian group of rank 16 gen-
erated by G, ..., G,, over Z. As same as for the system I™ we obtain a
system I'(§) = {Cy(€), ..., Cs(£), O, ..., Cay} of 2-cycles on 8,(£).

By the construction we obtain that

-7 Ci(&)Gy€) =6, fori=1,..,22and j=1,...,6.

And we can see that I'(£) is a basis system of H,(S,(£), Z) by the same
argument as Proposition 2-1. Hence we obtain the following.

PROPOSITION 2-4. The system I'(E) gives a basis system of H,(8,;(), Z)
which satisfies the relation (2-7). And C., ..., C,, arc given as algebraic cycles.
3. — Period mapping.

In the rest of this paper we consider only surfaces of type F. And we
employ the notations in § 2 [1] and [3].
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[1]. We already defined a holomorphie 2-form ¢ on a surface of type F
in Proposition 1-5. Now we consider the periods

s =f¢ (i =1,..,22)
Ci

for surfaces S;(€) of class (j) (j =1, ..., 9).
We have '

{3-1) Ny = oo =N =0,

because (s, ..., C,, are given as algebraic cycles. Let us identify two points &
and £ on A by the condition I'(§) = I'(§"). We obtain a covering domain A
over A by this identification. We call A the monodromy covering domain
of A for surfaces of class (j). We denote by £ a point on A with projection &.
Now we obtain single valued analytic functions nl(f), eny m(f) on .

Let V be the variety defined by (1-8), and let us consider an automorphism

w' = exp (2ni/3)w
U =u
v =

of V. This automorphism induces an automorphism p of the nonsingular
model 8, and p preserves each fibre z~1(u).

Now let us construct a canonical homology basis on C = a-1&'). We
regard this fibre as a three sheeted Riemann surface over v-sphere:

(3-2) w = {p(v*—p},
i i
where f ={ IT (E’—f,.)”‘}"*.
i=1

Let y be a oo-like closed arc on v-sphere which goes round 0 and
respectively in the negative and in the positive senses. Let p, be a closed
arc on ¢ with a projection y. And set y, =p2y,. Then we obtain a canon-
ical basis {y,, y.} of H,(C, Z).

By the construction of C,,..., C; (Diagram 5) we have C,; = p2C,;_,
(¢ =1, 3, 5). Hence it follows

(3-3) 72; = [exD (478/3)]93; 1 .

Set 7 = (41y ...y 722). And let {w,, ..., s} be a basis system of H*(S, Z)
given by differential 2-forms with properties

fw,. =06, fori,j=1,..,22.
Ci
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Such a basis system will be called a dual basis for I' = {C,, ..., Cp,}. Set

Q5 :fwiij
8

and let 7 be a matrix (a;);-; j<0.- Then we have the period relations:
(3-4) 7l'i =0,
(3-5) qI'5 > 0,

because S is a K3 surface ([5], p. 777).
According to (2-7) w; (j =1,...,6) coincides with G; as a current.
Consequently we have

a; =G@G;G; for 1<4, j<6.

Set n = (N1, 13, 7s). In view of (3-1) and (3-3) we can reduce the period
relations to

(3-6) nd,i>0,

where the matrices 4, are given by Diagram 6.

Diagram 6

0 —w —1 1 V=3  er—1
A= [0 0o —o], A,-3|—v=3 1 v=3),

—1 —w 0 w—1 —4/—3 1

0 1—w? 4/—3 3 — 3w? 3w

13: 1—w 0 1—w?], 14_—_ — 3w 0 l1—w?]),

—v/—3 l—ow 0 3w? l—w 0

0 2 0 —2 1— w? ~——\/:—3
A,=312 —2 20], Ad,=3]1—o —1 —+/=3],

0 2w —1 V=3 —4/—3 —1

—1 1—w? o—1 —3 2(1—w) —2(1—ow)
Ad,=3|1—0 —2 l—o]}, A= 2(1— w?) —6 4(1—w?) |},

w?—1 1—w? —2 —2(1—0w?) 4(l1—w) —6

—3 2(1—w?) —2(1—w?)
J,:2(2(1—w) —3 2(1 — w?)

—2(1—w) 2(1—w) —3
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Let ©; be a domain in P? defined by (3-6). Because any A, has two
negative and one positive eigen values, £2; is biholomorphically equivalent
to a hyperball.

Let us consider a mapping

Lo = 771(5) ’
D: &= ﬂz(é) 9
lo= "75(‘?)

from A to P2. In view of de Rham’s theorem we know that #, (i=1, 3, 5)
does not vanish at a same time. The mapping @ will be called a period
mapping for surfaces of class (j).

From the above consideration we have:

PROPOSITION 3-1. The period mapping D for surfaces of class (j) is a
holomorphic mapping from A to Q;, and Q; is biholomorpfically equivalent
to a hyperball.

[2]. Here we employ the following notations:

X: an algebraic K3 surface,
@: a holomorphic 2-form on X,

L: a free Z-module of rank 22 with an even integer valued uni-
modular symmetric bilinear form (,) of signature (3, 19),

l: a fixed element of L with (I,1) > 0.

REMARK 3-1. Such a Z-module L exists uniquely, up to isomorphisms ([9],
Chap. 5).
Let w and ' be two elements of H2*X,Z). If we define

(0, @) =J.w/\wl ’
X

then H*(X, Z) is isomorphic to L ([5], p. 776).
A marked K3 surface is defined as a triple (X, v, F) satisfying the con-
ditions:
(1) v is an isomorphism from L to H*X, Z),

(2) F is a line bundle on X such that ¢(F) =vy(l), ¢ indicates the
Chern clags, and FD =0 for any effective divisor D.
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Two marked K3 surfaces (X,,y,, F,) and (X,, y,, F,;) are identified if
there exists a biholomorphic mapping f from X, to X, with v, = f*oy,.

Let {e, ..., €;;} be a fixed basis system of L. And let (X,v, F) be a
marked K3 surface.

And set a basis system C,, ..., C,, of H,(X,Z) with a property

ffp(e,-) =0, fori,j=1,..,22.
Ce

Let M(l) be a family of all marked K3 surfaces (X, v, F) with fixed {. Then
we obtain a mapping ¥ from M(l) to P2 with homogeneous coordinate

{71, ...y M22] by setting
Ni =f¢’ .
C

According to Pjateckil-Sapiro and Safarevié we have the following Torelli
type theorem ([5], see also [7]).

THEOREM. The period mapping ¥ is injective.

Let us define a marking on §,(£). For the convenience we write S(£)
for 8,(£). Set

L = Hz(S(él)y Z) [ L(g) == H”(S(é), Z) ] D = Gzl + 2G22

and 1 = ¢(D).

We have (I,1) = D? = 2, because Gz, = —2, G2, =0 and G5, G,, = 1. Let
{@1(&), ...y 025()} be a dual basis of L() for I'§). Take an element o =
= 2,0,(8') + ... + @ap055(E') of L. We obtain an isomorphism v from L
to L(€) by defining p(w) = ,0y(E) + ... + 0.9(f). Hence we obtain a
marked K3 surface (S(£), v, F). We note that F' = ¢-loy(l) = [Gs + 2G4]
is induced from a divisor independent of the parameter &.

REMARK 3-2. Because S is a K3 surface, the Chern mapping ¢ is injective.

LEMMA 3-1. Let D be a divisor on an algebraic K3 surface S. Suppose
that there exists a divisor D' with only simple components which is linearly
equivalent to D. Then we have

H(8,0([D])) =0.
Proor. We consider the following sheaf exact sequence:

0 '—>Os[—"‘D] "903908/05[—D] —0.
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By the assumption we have
Os/Os["— D] = O,g/Os[— .D’] == OD’ .
Hence we obtain the long exact sequence:

0 — H°(8, OJ[— D]) — H(8, O5) - H(D', Op,)
— HY(8, O5[— D]) — HY(8, O5) — .
And we have
H°(8,95[—D]) =0,
H*(8, O5) >~ H'D', Op,) == C.

For a K3 surface we have
HY(S, 05) = 0.

Hence we have HY(S,0s5[—D]) =0. In view of Serre duality and the
triviality of the canonical bundle K of S, we have

HY(8, 05— D]) = H(S, O5(K + [D])) = HY(S, 0s[D]) =0 q.e.d.

LemMa 3-2. Let (8;(6,), v1, F1) and (8,(&), ¥2y Fa) be two marked K3
surfaces of class (j). They coincide each other if and only if & = &,.

Proor. The sufficiency is trivial. Then we show the necessity. We
write 8 and S’ respectively for S,(§) and S,(£). We have ¢, =0, ¢, = 24
for a K3 surface. Hence, by Riemann-Roch theorem, we obtain

dim H(8, O[D]) — dim HY(S, O[D]) + dim H*(S, O[D]) = D*2 + 2.

By Lemma 3-1 the second term of the left hand side vanishes. By Serre
duality the third term also vanishes. As we have D2 =2 for D =G, +
-+ 2@,;, then it follows

dim H(8, O[D]) =3 .

Take a coordinate covering |J U; =8, and let f, be a representing
tel
equation of D on U,;. Then we have

[D] = {fﬁ} = {fz/f:} .
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Let t be a parameter of the base curve 4 =P such that n~1(0) is a
general fibre. Set

¢P:(;l) =4,
q’gz) = filt,
<P§3)=fi/t2-

Then ¢® = {¢{V} (k =1, 2, 3) gives a basis system of H°(S, O[D]). Suppose
that we have (S, v;, F,) = (8',y,, F,). Then we can regard the latter as
the surface 8 equipped with another elliptic fibring with a holomorphic
section G, and a general fibre G,,. We denote this elliptic surface by (8',
M, A;). Let t, be a parameter on 4, = P. The parameter ¢ was given as a
ratio of two holomorphic sections of O[D]. Then also ¢, must be so. Hence ¢,
is a rational function R(?) of ¢ with the degree at most 2. But if the degree
of R is exactly two, (8',m, 4,) must have a disconnected fibre. This is
absurd. Hence R(¢) is a fractional linear transformation.

Let {&, &, &y &, w} and {&, &, &,, &, £..} be critical points of 8 and 8’
respectively. Because the projection x, differs from = only by a coordinate
transformation of P, {&,...,&x} coincides with {&,...,&.} as a set of
points. Hence the transformation R carries &, (i = 0, 1, 2, 3, co) to some &;.
The 2-cycles C,, C3, C; are constructed over the arcs between &, and &,
&,, &, respectively (§ 2, Diagram 4). If we have a point &; such that
R(&,) # &;, then the marking of (S8',m, 4,) can not coincide with that of
(8,7, 4). Then R must be the identity. Hence we have a same projec-
tion & of £ and . Reviewing the assumption (S;(&), y:, F:) = (8:(&),
v,, F,) we have I'(§,) = I'(§,). Thus we obtain & =§,. q.e.d.

As a consequence of the above lemma we obtain:

PROPOSITION 3-2. The period mapping D for surfaces of class (§) (j =
=1,...,9) is injective.

4. — Differential equation.

As already shown in § 3 Proposition 3-2 the dimension of the vector
space X generated by (&), ..., 7&) is three. Then we investigate the
monodromy transformation of X' induced from a closed arec on A.

Let & = [£,, &,y &,] be a fixed point on A. Let us make a closed arc f,;
as following:

B.; starts at & and vary only one parameter &; so that the moving
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point & goes around H,; = {[&,,&,&]: & =&, for i#j, i=1,2,3 and
j =0,1,2,3, co} in the positive sense.

Set
C, = (t;— ) X1

Co = (ts— ;) X7s .

Let k and I be two indices in {0, 1, 2, 3} — {i, j}, and let 7, and 7, be oriented
ares on A, starting at &; and goes to &, and &, respectively. Set

63 =’l‘1><y1, 64:7'1Xy2,

Cs =r,xy1, Co=1yX7,.

Then X is generated by
Bo=[p G=1,35).

(4]

And also we have the relation (3-3) for 7;. Let I and J be the types of the

singular fibres #—*(§;) and #~%(§;), respectively (I,J=1I, 1V, I}, IV*, I1%).

Let 8; and 8; be the corresponding matrices determined by (1-3) (4,§ =

=1,...,5). And let M;; be the monodromy transformation induced from £,;.
We can determine M;; as the following:

(Case 1). If we have j=£ oo,

C—'l . 71
1, () = (=) x8.8,(7),

@1 1,(5)= (&) + w—sa xs—m (™),
M, (g:) = (g:) + (¢ — o) X(8,— E) (i:) .

(Case 2). 1f we have j = oo,

Mii( 1) = (o;— ;) Xsi(yl)y
Ve

w2y (%)=t xs.:'+(ocj—oc,-)x(Szlsj~S;1)}(§‘),

| O

Nl

—
jo e
N—

u, (g) — fra XS+ (a5 ) X (8785 — S7Y) (V) .

Y2
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By using (4-1), (4-2) and (3-3) we can represent the monodromy M,;
with respect to the basis {7, 7, 7;}. Set

M)y =1—K/6, o(k) = exp ((—=v—1k)/3).

LEMMA 4-1. The monodromy M, is of order infinite if and only if
e(@)e(j) =1. And we have the Jordan’s normal form of M,; as the following:

e(@)e(i 0 0
(@ My~ 0 1 0] if js oo and g(i)e(j) #1,
0 0 1

1 0
@) M,~|0 1 0] ifjs coand o(i)o(j) =1,
0 1

0
eG) 0 0
(¢) My~| 0 o) 0 if j = oo and p(i)e(j) = 1,
0 0 o)y
o 1 0
(d) My~ 0 p@)* O if § = oo and p(i)e(j) =1.

0 0 ()Y

Let ¢ be a point on some H,; (i =2,3, j =0,1,2,3, co) and suppose ¢
is not an intersection point with other H,;. Let us choose a local coordinate
(w,y) in the neighborhood of ¢ so that we have x = (§;,— &;)/&:.

By Lemma 4-1 we can choose the following forms of basis system of X
in the neighborhood of q:

(@) Fi(z,y), Fa(a,y), V201 F (2, ),

() Fi(2,9), Fo(w,y), Fo(2,y) + (logz) Fy(w,y),

(¢) @ MOF(z,y), &' MO Fy(@,y), #*OFy(x,y),

@) & *OP(,y), &'V Fy(@,y), o' OFy(x, y) + (log x) Fy(, 3)}

where F; (i =1, 2, 3) indicates a single valued holomorphic function in
the neighborhood of g¢.
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Let us denote by A(%;) the value A induced from the matrix correspond-
ing to the singular fibre n~'(§,). Then, in view of (1-9), we have

(4-3) A&o) + Al&) + A& + AM&s) + AMéw) =3 .

If we consider the function # in 2 as a function of & with parameter y, 5
has singularities at # = 0, 1, co and &,/&,, where j = {2, 3} — {i}. The rela-
tion (4-3) indicates that the sum of the exponents of 7 satisfies the Fuchs’
relation. We can proceed the same argument as for y = &;/&, because
our functions are symmetric with respect to &, and &,.

According to the theorem of Picard-Terada ([1] and [6]) we can de-
termine the Appell’s hypergeometric differential equation which has the
solution 2.

PropPOSITION 4-1. Let 7:(§) (¢ =1,...,6) be a period for surfaces of
class (j). Set x =&,/ and y = &[E,. Then n,(x,y) is a solutéon of the
Appell’s hypergeometric equation Fy(x, B, B, y; x, y) with parameters indicated
in Diagram 1.

Diagram 7

class (5) 2o Ay Ay Ag o= A B=p=1—14 Y=o+ A4

1) 2/3 2/3 2/3 23 1/3 1/3 1
2 5/6 2/3 2/3 2/3 1/6 1/3 5/6
(3) 1/3 56 56 56 1/6 1/6 1
(4) 12  2/3 56 56 1/6 1/3 1
(5) 2/3 12 2/3 23 1/2 1/2 /6
(6) 56 2/3 1/3 1/3 5/6 1/3 /6
(7) 12 13 23 23 5/6 2/3 3/2
(8) 13 5/6 12 1/2 5/6 1/6 4/3
9 2/3 12 12 1/2 5/6 1/2 4/3

5. — Continuation of the period mapping.

Let F = {8(£)} be a certain class of surfaces of type F. From Lemma 4-1
we obtain that A has algebraic ramifications over H,; if and only if A(&,) +
+ A&;) #1, namely y(n'(&:)) + x(7 (&) #12. When the parameter ¢
shifts to a point on H,, we get an elliptic surface with 4 singular fibres.
By identifying &, and ¢&; this surface is represented by (1-8).

Let pu = [, u.] be a projective parameter on H,. Let S(u) denote
the above surface. If we have A(£;) + A(&) > 1, by Proposition 2-1- in the
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part I and Remark 1-4, S(u) is a K3 surface. And if we have A(£;) +
+ A&)= 1, we get a JO singular fibre of Euler characteristic

(@ YE)) + g(n2(E)) —12

over £, =¢&,. By the study of Kodaira ([4], § 12) we know that S(up) is
rational. In the former case ¢ = w-2duAdv is a holomorphic 2-form on
S(u), and 7(&) can be continued to H,;. The periods of S(u) generate a
2-dimensional vector space. And these are Gauss’ hypergeometric func-
tions. Also in this case the Fuchs’ relation is induced from the fact
2(8(w) = 24.

The above conclusions are obtained by the same argument as devel-
opped in § 4.

Next we consider an intersection point P;; of H, and H;,. Let S(P,;x)
denote the surface occurs by shifting &; and &; to &,. If we have A(&;) +
-+ A&)) + A&) > 2, 8(P;:) is a K3 surface and ¢ is a holomorphic 2-form
on S(P,:). This is obtained by the same argument as for S(u).

Hence the period 7(£) can be continued to this point, and D(P,;) is
an interior point of Q. If we have A(&,) + A(&) + A&) =2, S(Pyx) 18
rational and @ is extended to P,;;. In this case @(P,;;) is a boundary point
of 0, this is examined by observing the relation between 7, n; and #;.

Here again we consider the case that & is situated on H,;. In case of
ME) + A(&) <1 we have A(&) + A&) + A(&) > 2, where {k, 1, h} = {0, 1,
2, 3, oo} — {i, j}, then S(Pyy;) is a K3 surface. And the period of the sur-
face S(u) is given by @(P;;). Hence the period @(u) is a fixed point on Q
for any u on H,;. In case of A(&;) 4+ A(&;) + A(&) <2 we can see that P,
is an indefinite point of @ by the inverse procedure.

Hence we have:

PROPOSITION 5-1. We obtain a continuation of the period mapping @
to H,; and to P, as Diagram 8.

Diagram 8
(a-1)  A&) + A& >1 @(H,;) = a hypersurface on 2
(a-2)  A&) + ME) =1 @(H;;) = a boundary point of 2
(@-3)  A&) + AE) <1 @(H,;) = an interior point of 2
b-1)  A&) + A&) + A(gy) > 2 @(P;;;) = an interior point of 2
(b-2)  A(&) + M&) + Aér) =2 @D(P;;x) = a boundary point of 2
(b-3)  A(&) + A& + A& < 2 P, is an indefinite point of @

and @(P,;.) = a hypersurface of Q
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Let us consider a projective plane X = P2 with homogeneous coordinate
&, &, &]. 1f the monodromy covering A for class (j) has algebraic ramifica-
tion over H,, namely the case (a-1) or (a-3), we can attach ramified curves
to A. If we have (b-1) or (b-2) for a point P,;, we can attach ramified
points over P,;. In case of (a-3) we make the blow down of the curve
over H;;: And in case of (b-3) we make the blow up of the point over P,;,.
Thus we obtain an analytic space as an extension of 4. We denote it
by A,. By Proposition 5-1 we get an extension @, of @ to A,. And @, is
everywhere nondegenerate on A,. Hence, in view of Proposition 3-2, @,
is an injective mapping from A, to Q.

According to Terada ([6], Lemma 3) @D, is surjective. In general we
need the blow up and the blow down process to get A,, but only for j =
=1, 2, 3, 4 it does not occur the case (a-3) and (b-3). Let G be the discon-
tinuous transforrmation group of 2 generated by M,,. And let (2/G)* be
the Satake-Baily compactification. Then @, induces a birational equivalence
between P2 =/ and (£2/G)*. By the above consideration we obtain:

PROPOSITION 5-2. The extended period mapping D, gives a biholomorphic
equivalence between A, and Q. And @D, induces a biholomorphic equivalence
between P2 = A and (2/G)* for the class | =1, 2, 3, 4.

6. — Coda.

Finally we mention about the period mapping for the surfaces repre-
sented by (1-5). Let § be the totality of those surfaces. If we fix the
parameters &, and &, at 0 and oo respectively, then the element of § is
determined by a point & =[&, ..., &,] of the domain A = {§|§;+ &, for
i=1,..,10 and j =1,...,11} in P° where [&, ..., &,] is a homogeneous
coordinate. We denote it S(&).

Set

28 =[p G =1,..,10),

Gat

where @,; is a 2-cycle on S(£) given in § 2 [2] and ¢ is the holomorphic
2-form in Proposition 1-3. Then we get a period mapping

D AP

by defining @(&) = [m:(&), ..., N0(€)]. According to (3-4) and (3-5) we know
that the image @(A) is contained in a domain 2 which is biholomorphically



182 HIRONORI SHIGA

equivalent to the 9-dimensional hyperball in P°. And by the argument
gimilar to Proposition 3-2 we get the injectivity of @.

If we set o, = &,/&, (1 =1, ..., 9), then 7,(£) becomes an analytic func-
tion of 9 variables. According to Terada we know that #,(&) satisfies the
Lauricella’s differential equation given in [6] (***), where any parameter A,
takes the value 5/6.

And the surface S(£) is a deformation of an isolated singularity defined

by x2 4 y3*+ 22 =0.
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