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Classifying Relative Principal Fibrations
with Loop Space Fibers.

J. F. McCLENDON

The problem to be considered here is that of classifying and charac-
terizing Relative Principal Fibrations (==RPF’s) and connected Relative
Principal Fibrations (= connected RrPF’s ) up to homotopy. A typical
theorem (1.4) gives a bijection

between certain homotopy classes of maps and certain equivalence classes
of RPF’s.

By way of motivation, let me recall a result from [5, Cor. 3.4] (see,
also, [1]): if F - E - B is any fibration with ;ri(F) = 0, except possibly
when s c i C 2s - l, for some s, then E - B is a relative principal fibra-
tion. The fact that such a large class of fibrations can be represented as
relative principal fibrations suggests that some classification theorem is

desirable.

Also, RPF’s play a role in obstruction theory (see [4, 8, 1]). The ap-

proach to classifying maps over D is to factor a map into basic building
blocks which are RPF’s. Even if D is a point, RPF’s are required in the
non-orientable case [8]. Theorem 1.4 of the present paper classifies these
basic building blocks.

It will be shown in a separate paper that many evaluation fibrations
can be represented as connected RPF’s and the classification theorem proved
here will be applied to obtain a classification theorem for evaluation fibrations.

In 1.1 the notion of N-principal map is defined. The set P(X, Z) men-
tioned above is really a certain set of N-principal maps with N = QDZ.
Thus the classifying theorem classifies N-principal maps. This might be
viewed as giving a geometric interpretation of [X, Z]£-since each element

Pervenuto alla Redazione il 29 Ottobre 1979 ed in forma definitiva il 9 Giu-

gno 1980.
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can now be viewed as an N-principal map. It can also be viewed as clas-

sifying or characterizing RPF’s since RPF’s (originally defined as induced
from a D-path-loop fibration) are identified with N-principal maps (which
are defined without aid of an inducing map).

If D = * ( = a point) then the classification theorem above is due to

M. Fuchs [2]. Even if D = *, connected RPF’s do not seem to have been
discussed before and their classification may be of interest even in that case.

In section 1 the classification theorem for RPF’s is proved. In section 2
connected RPF’s are defined and their basic properties are developed. In

section 3 connected RPF’s are classified.

1. - Classifying relative principal fibrations.

First some terminology will be recalled [4]. Let u : C -&#x3E; D be a fixed

map. Top (u : C - D) = Top (C - D) is the category whose objects are
triples (Z, z, z) where z : C --* Z, z: Z -¿. D, and zz = 2c. The morphisms are
maps f : Z - Z’ satisfying fz = z’, z’ f = z. H: Z x I -&#x3E; Z’ is a homotopy
in the category if each Hi is in Top (C -&#x3E; D). [Z, Z’]c is the set of

Top (C --&#x3E; D) homotopy classes of maps. Write Top (D) for Top (id : D - D).
It has all the usual properties of Top (*) = the category of pointed spaces
and maps.

Now let N be a monoid in Top (D). n : D - N is the strict unit and

the associativity diagram is strictly commutative. Write 0(d) = n(d) and
use additive notation. A map a : N x , Y --&#x3E; Y is an N action on YETop (C -&#x3E;D)
if a is a map over D and n’(ny) = (n’+ n)y and O(d)n = n whenever
defined. Call (Y, a) (or Y) an N-space. These make up a category
TopN (C - D) with morphisms f : Y - Y’E Top (0 -+ D) which also satisfy
f (ny) = nf (y). A homotopy is a Top (C - D) homotopy such that each hTt
is also an N-map.

’ 

1.1 DEFINITION. (1) p : E - X E TopN (C -&#x3E; D) is a numerable N-princi-
pal map if:

(a) the N-action on X is trivial;

(b) X has a numerable cover {U} such that each Eu is homo-
topically equivalent to U X DN in TopN (V -&#x3E; D), V = x-1 U r1 C,
V - U X DN defined by c - (c, O(uc));

(c) ib*E = u*N.

(2) Two numerable N-principal maps are equivalent if they are homo-

topically equivalent in TopN ( C - X).
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In [6] relative principal fibrations were defined in terms of ordinary
paths (see [1 ] also). For the purpose of a classification theorem, however, y
it will be more convenient to use Moore paths.

A Moore path [e.g., 3] in Z is a pair m = (w, r) where w : [0, oo) z Z
is a continuous function, r e [0, oo), and’tv(t) = w(r) for t&#x3E;r. Define pom ==
= w(O), pine = w(r). If plm = pone’ then m + m’ - (w + w, r + r’) is de-
fined by 

-

This addition is strictly associative where defined. If z E Z define Oz = (cz, 0)
where cz(t) = z all t. Then Oz is a strict unit where defined. Let WZ be the

space of all Moore paths of Z, topologized as a subset of .F’( [o, oo), Z ) X
X [0, oo) where the first factor has the compact open topology. Write m(t)
instead of w(t) for m = (w, r).

pi : P,,Z ---&#x3E; Z is a Top(D) fibration with Top(D) fiber S2DZ. Let f: X -
-+ Z E Top (C --&#x3E; D). Then the pullback of f and PI is called a relative prin-
,cipal fibration (or -RPF) and denoted by P( f ) (ox° PD(f) if necessary). We
wish to classify these.

Assume henceforth that 0 -7 X is a closed cofibration.

Note that if Z E Top (D) then S2DZ is a monoid in Top (D) and if

f: X -+ Z E Top (0 -7 D) then P(f) is an QDZ-space under the action

QDZ X DP(l) - P(f), (m, (x, k)) -)- (0153, m + k).
Let Z E Top (D). A map f: X --&#x3E; Z c- Top (C -&#x3E; D) will be called nu-

merabZe if X has a numerable cover {U} such that U and U: U --3- Z
are homotopic in Top (V -&#x3E; D), Tr = x-I U c C.

The following lemma shows that under reasonable hypotheses every f
is numerable.

1.2 THEOREM, Suppose Z E Top (D) and X E Top (C -&#x3E; D) and X has a
numeracble cover {U} o f Top contractible sets. Suppose Z --&#x3E; D is a fibration
with connected fibers. Then every f : X -&#x3E; Z E Top (C - D) is numerable.
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PROOF. Let U c- {Ul, g = zx. If V # 0 then f and g agree on V so f (U)
and g( U) are contained in the same path component of Z so f - g: U ZY
rel (V). If V = 0 then suppose U contractible to u, xu = d. Then f ur
gu E Z(d) and Z(d) connected so again f ( U) and g( U) are in the same com-
ponent of Z so f - g : U -7 Z. Now g factors through the section z of the
fibration Z - D so both homotopies can be adjusted to be over D.

1.3 DEFINITION. Z E Top (D), X E Top (0 -7 D).

(1) } P(X, Z) = all equivalence classes of numerable QDZ-principal maps.
B --&#x3E; X.

(2) [X, Z],’ = the set of homotopy classes (Top (C - D) homotopy)
of numerable maps X - Z.

The following theorem is the main theorem of this section and the rest
of the section in devoted to its proof.

is well defined and a bijection.

COMMENTS. (1 ) I f C is empty and D is a point then 1.4 is a theorem

of Al. Fuchs [2].

(2) The theorem can be viewed as giving a « geometric » interpreta-
tion of the functor H(X) = [X, Z].c-i.e., H(X) consists of equivalence
classes of S2,Z-principal fibrations on X.

(3) Note that the above theorem does not follow from any of the
various known classifying space theories or even from their (currently non-
existent) Top (D) generalizations. The reason is that 1.4 classifies relative

principal fibrations rather than Top (D) principal fibrations.

(4) It is convenient to view the theorem as having three parts

(a) f - g in Top (C - D) implies P( f ) equivalent to P(g);

(b) every numerable QZ-principal map is equivalent to an in-
duced one;

(c) P( f ) equivalent to P(g) implies f - g in Top (C - D).

Note that (ac) and (b) are stronger that the corresponding results with

«equivalent» replaced by o strong fiber homotopy equivalent ». On the

other hand (c) is weaher. However there are three situations where (c) is,
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easily proved assuming only strong fiber homotopy equivalence [for sim-

plicity take C = *. Recall that h: E ---&#x3E;- E’ is a strong fiber homotopy
equivalence if it is a fiber homotopy equivalence and hi - i’ where
i : F -* p-’(*) c E and i’ : F --&#x3E; p’-’(*) c E’ are the natural homeomorphisms,
F = Q*Z-l(*) here].

(c1 ) g - zx. Here the fiber homotopy equivalence gives a section
of P(f) - Z and thus the desired homotopy X -&#x3E; P.,,Z.

(c2) Z = L,,(G, n) (classifying space for local coefficient cohomol-
ogy). Here the classifying map is the transgression of the
fundamental class so a strong fiber homotopy equivalence
yields f - g in Top (* -&#x3E; D).

(c3 ) X = l:A. In general P( f ) strongly fiber homotopy equivalent
to P(g) gives 92f -,Qg (this follows, for example, from Cor.
2.7 below). Let a: A-&#x3E; 92,EA be the adjoint of the identity,
then (ilf) a"" (Qg) a but (Qf) a is the adjoint of f-so f"" g in
Top (*). A simple argument with the path-loop sequence then
shows f - g in Top (* --&#x3E; D) (using X = l:A).

1.5 LEMMA. Let L = 4iiDZ, f, g : X - Z E Top (C --&#x3E; D). If f and g are
homotopic in Top (C -&#x3E; D) then the RPF’s P(f) and P(g) are homotopy eqiti-
valent in TopL(C __&#x3E;_ X). In particular, f - £ill implies P(f) is homotopy equi-
valent to X X nL.

PROOF. The hypothesis that C -&#x3E; .X is a closed cofibration assures that

the homotopy H between f and g can be chosen to have length zero on C
so that the natural map (x, k) -&#x3E; (x, k + H(x)) from P( f ) to P(g) is under C.
It is easily seen to be a homotopy equivalence with homotopy inverse
(x, k) - (x, k - H(x)). (It would suffice here to assume C a cozero sub-
space of X.)

1.6 LEMMA. f is numerable iff P(f) is numerable.

PROOF. f ( ll’ N zx U in Top (V --&#x3E;- D) iff P(f)v is equivalent to P(zx)Y
(by 1.5) and the latter is U X DL.

1.5 and 1.6 show that the function .P of Theorem 1.4 is well defined.

PROOF THAT P IS 1-1. Let e: P(f) - P(g) be an equivalence. By the
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definition of P(f) and P(g) there are commutative diagrams

where K(c, m, t) == m, k(e, t) ==;ue. Since E = C X DL, L = QZ, and e is

both a C-map and an .L-map it follows that e is the identity on E so that
F U Ge U IT is well defined. Also the diagram is commutative. This gives

The existence of the extension H in Top’ (0 - D) ) follows from the fol-
lowing lemma. The map h then gives f - g in Top (C --&#x3E; D), proving that P
is 1-1.

1.7 LEMMA. Suppose N a Top (D)-monoid, p : E -&#x3E; B E TopN (0 - D),
p’: P - Z E TopN (D), and the N action on B and Z is trivial. Suppose
B :) A, FA: PA -&#x3E; p’ a given map in TopN (0 - D) and
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(1) P contractible to p(D) in Top (D).

(2) .I’A extends to .I’Y: pY - p’, V a halo around A.

(3) B - A has a numerable cover {U} such that B u --&#x3E; U is dominatep
by U X,N --&#x3E; U.

Then FA has an extension to F: p - p’ in T opN (0 - D).

PROOF OF 1.7. Is similiar to that of corresponding results in [Fuchs, 2].

The next lemmas will be used to prove that P is onto. Lemmas 1.7

and 1.9 are formulated so as to be applicable in section 3 also.

1.8 DEFINITION. Suppose N is a monoid omit in a category with

homotopy. Call N a hi-monoid (= monoid with homotopy inverse func-
tion) if there is an r : N - N such that m(l, r): N - N X N - N is homo-
topic to the identity (where m is the product function for N).

1.9 LEMMA. Suppose N is a hi-monoid in Top (D) and .X E Top (C -&#x3E; D).
Suppose g: E - E’ is a TopN (C - X) map where both E and E’ are homo-
topically equivalent to X X DN in TopN (C -&#x3E; X). Then g is a TopN (C -&#x3E; X)
homotopy equivalence.

PROOF. We can assume both E and E’ are .X X DN and define h : X X DN --
X x,N by h(x, n) = (x,n(rg2(x,O»)}. Here r:N--+N is the homotopy
inverse function and g2 is the second component of g. It is not hard to check

that h is a homotopy inverse of g.

1.10 LEMMA. Let L = QZ, p : E --&#x3E; X E TopL (C -&#x3E; D) a numerable map,
and p’ : PZ -&#x3E; Z the natural projection. If there is a Top’ (C -&#x3E; D) map F
from p to p’ which is f on the bottom then E is homotopically equivalent in
TopL (C -&#x3E; X) to P(f) and f is a numerable map.

PROOF OF 1.10. Since P(f) is a pullback the map F gives a TopL (C --&#x3E; X)
map g: E -&#x3E; P(t). By a Top’ (C -&#x3E; X) version of Dold’s theorem it will

suffice to show g( U) is a Top’ (V -&#x3E; U) homotopy equivalence for all U

in some numerable cover, V == u-I U c C.

By hypothesis E( U) is homotopy equivalent to U XDL. The map g
then gives a section of P(f)(U) -&#x3E; U so f and zx are homotopic on U and

P( f ) ( U) is (by 1.5) homotopically equivalent to U X DL and f is numerable.
The above lemma 1.9 shows that g( U) is a homotopy equivalence as desired.
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PROOF THAT 1’ IS ONTO (IN 1.4). Let E --&#x3E; X be given in P(X, Z). We
have, -L = s2,z7

LEMMA 1.7 gives the extension (shown) ) and lemma 1.10 then shows Ef .

is equivalent to P( f ) proving P is onto and completing the proof of 1.4.

2. - Connected relative principal fibrations.

In this section and the next it will be assumed that

(1) the fixed map ai: C - D (see section 1) is pointed, so all spaces
and maps will be pointed unless the contrary is stated,

(2) D is a path connected space and z : Z -&#x3E; D is a Top fibration with
fiber T = z-lda, and

(3 ) X is a path connected space.

2.1 DEFINITION. Let f: X -&#x3E; Z c- Top (C -&#x3E; D) and P(l) be as in sec-

tion 1. P( f ) has a natural base point (xo, 0) where 0 = 0(£do) E PD Z. The

path component of (.Toy 0) in P( f ) will be denoted by P( f ) and P( f ) will be
called the connected relative principal fibration ( = connected RPF) induced
by f.

In this section some of the basic properties of connected RPF’s will
be developed. In the next section some of these properties will be used
to prove various classification results.

The following notation will be used

4e = - fe + fe for any path e in X,
n1 - m’ for paths means homotopy with ends fixed.
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I want to compute the action of paths in X on the fibers of P( f ) - X.
Since Z - D is a Top fibration it can be easily shown that P( f ) --&#x3E; X and

hence P( f ) - X are also Top fibrations. Recall that if F -&#x3E; B -* B is any
Top fibration then a path c from bo to b, gives a map

This is not necessarily pointed and determined only up to homotopy (see
Spanier [9, p. 101]). This is the action of paths in the base on the fibers.

Let .g(z) = p-"(z) be the fiber of p: PDZ -¿. Z over z. Since Z - D is a

Top fibration with fiber T, p is also, with fiber H(z,,) = S2T. A path a in Z
from zo to z gives a’: H(z) --&#x3E; GT. Since Z - D has a section, (Qi)*: [H(z),
DT]l -&#x3E; [H(z), QZ]0 is monic and a’ is determined by (92i) a= a" : H(z) -+ S?Z.

This will be proved by comparing P,,,Z --&#x3E; Z with another fibration. Let

Then R --&#x3E; Zi m -&#x3E; m(l), is the Top fibration naturally associated with the
map z. Let R(z) be the fiber over z. Let ac be a path from zo to z so
a’ : R(z) - R(zo). The following lemma is not hard to check directly from
the definition of the action and the definition of R.

2.3 LEMMA. aff (m) == m - a in .R(zo).

Now consider the following commutative diagram

where is the inclusion. Since P.,,Z is contractible to D it is not hard to
see that y is a fiber homotopy equivalence. Thus y(z) is a homotopy equi-
valent with homotopy inverse v(z). Let

The following lemma is proved by direct calculation.
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PROOF OF THEOREM 2.2. The naturality of a - a’ gives

a homotopy commutative diagram. a" = (S2i) a, wa’ B y and

But k is a path in .g(z) so Tk = *, so wa’y(k) - F{a) + k - a proving the
theorem.

Turn now to .P(/) - X. Let F(x) be the fiber over x and c a path from x,,
to x in X giving

Let c" = (.Qi) c’. The naturality of the action leads to the following corollary.

2.5 COROLLARY. c"(x, N1) - f c + m - fe.

Recall that for any fibration F --&#x3E; E -B there is a natural map
b: QB -&#x3E; F defined by b(c) = c’(*). In particular, QT -+PDZ -+Z gives
b : S2Z -&#x3E; QI.

The fibration T 0- Z -- D gives QI - QZ -&#x3E; QD and the section z

gives a map e:.QZ -&#x3E;- QT such that e(Qi) f’J 1. In fact 8 is defined by

2.6 COROLLARY. b - - s.

PROOF. This follows from 2.2 since 2.2 shows b - T - 1.

Then it follows from 2.2 (or 2.6) that:

The next theorem gives a very useful characterization of all the ele-

ments of JP(/). Recall that d e = - f e + f e (d is not necessarily a homo-

morphism).

2.8 THEOREM. Let (x, m) c- P(l). Then (x, m) eP(/) iff there is a path a
in X from xo to x with m -,J a in Z.
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PROOF. First take x = xo so (xo, m) is identified with m E DT. There

is an exact sequence

so m c- -P(t) iff im - 0 iff m - bf e for some e in QX. But in QZ, by 2.7,
b f e is b’e - le - fe and replacing e by - e gives the desired result.

For a general (x, m), let c be a path from ro to x so c’ : F(x) ----&#x3E; F(x,,) =
= QT and (x, m) E P( f ) iff c’(x, m) is iff c’(x, m) - - le + f e for some loop e
of X. By 2.5 this says (in S2Z) that f c + ne- fc- - fe + f e. Then 2.8 follows
by setting - e + c.

2.10 THEOREM. (1) N is a sub-monoid of SZD Z.

(2) The action of Q.,)Z on P(f) gives an action

and N is the largest subset of QDZ giving such an action.

PROOF. (1) Suppose k, k’E N(d) and e from xo to .r is given. First,
select w’ with k’-,Jw’-,Je, then, select w with k-,Jw-,Jw. Then

k + k’- 4w - 4 e as desired.

(2) k c- N(d) iff for every m with ne - 4e, some e, there is a w with

k + ne - 4w iff (by 2.8) (x, k + m) E P( f ) all (x, m) E P( f ) and this proves (2).
Some other representations of N = N, will be needed later. Define

N,, N, y N, by

N3(d) same as N2 1;?llt « for some .r )&#x3E;.

Note first that it is always true that
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The only non-obvious inclusion is the last. Let

Consider now two hypotheses that will be used in the next theorem
and later as well.

HYP. A: (1) The elements of ;7r,,(D, d,,) commute with those of the

image of L1 in 7r,(Z, zo).

(2) The elements of f*n,(X, ro) commute with those of the

image of d in 7r,(Z, zo).

]Ffyp. B: The elements of f*7l(X, xo) commute with those of £*ni(D, do)
in 7l1(Z, zo).

2.11 THEOREM. Assume Hyp. A or Hyp. B. Then

(2) N is a hi-monoid.

PROOF OF (1 ). (i.e., N4 c N). First assume Hyp. A. It is helpful to
note that under Hyp. Al the representation in k E N4 is valid for any c

from to cla since

Now given e from xo to x (in the definition of -

Now assume Hyp. B. k E .N4 and e from zo to x are given.

PROOF OF (2). Let k E N(d). Suppose e given from Zo to x and w from xo
to x such that k -,dw -,Je, so - k -,Je -.Jw.

works. The proof using
Hyp. B is similar.

NOTES. (1) ;r,(Z, *) is always a semi-direct product of 7l1(T, *) and

7l:1(D, *) by means of z* . Hyp. Al will follow if this is a direct product
representation since 1m Li c Ker (z*) = nl(T, *).
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(2) Let D,,Z(d) be all loops of Z(d ) at zd which are pointed null-
homotopic in Z(d). Let DZ be all elements of QZ which are freely
homotopic in Z to the constant map: S" -&#x3E; z,, - It is not hard to check

[see, 2 7, 2 4.1 ] that D,,Z = u SZD Z.

(4) If f is freely homotopic to g over D then f*, g*: n,,(X, *) --* n,(Z, *)
are conjugate by an element of 1l:1(T, *). If we assume A1 and also that

the elements of f*1l:I(X, xo) commute with those of Ker (z*) (a bit more
than A2) then N(f) = N,,(I) = N4(g) = N(g). This observation will be useful

in connection with evaluation fibrations [7].

2.12 THEOREM. 7/ f - g in Top (C - D) then N f - Ng and P( f ), P(g)
are homotopically equivalent in TopN ( C - X), N = N f = Ng.

PROOF. The definition of N shows that Nf = Ng and the maps (see
proof of 1.5) giving Pf homotopically equivalent to Pg restrict to the desired
equivalence here.

The final theorem of this section will be a local representation theorem
for P( f ). Perhaps first it should be pointed out that there is something
to prove. Recall (1.6) that (Pf)u is homotopically equivalent to U X DQDZ
for appropriate U. This shows that the path component of a nice base
point in (Pf)u will be homotopically equivalent to U XDDZ- However
this is not (.Pf)u and so is not relevant here.

2.13 DEFINITION. Let f: X - Z E Top (C - D). An open subset U of X
will be called f-regular if

(1) ZT is path connected.

(2) For some x E U and any path m from zxx to f x over xx, there is a
homotopy F: -&#x26; - f : U - Z in Top (V --&#x3E; D), V = u-1 U, such that F(x) = m.

2.14 THEOREM. Suppose Hyp. A1 or gyp. B and suppose U is f-regular.
Then P(f)u and U X D N are homotopy equivalent in TopN (V -&#x3E; D), V = u-i U.

PROOF. Let F: U -+ PDZ be the given homotopy so that F(x) = m.
There are maps L.X: P(f) I -&#x3E; U &#x3E;C D,S2DZ, cx(x,m) = (x, m - F(x)), and {3:UXD
!JDZ -+ P(f)u, fl(x, k) = (x, k + F(x)).
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(2) f3( U XnN) c P(f)u. Proof : given (x, k) E U XnN. As above Xi - 4E
so F(x) - 4 e. The definition of N gives w from xo to x so that k I’J Llw - LIe.
Hence + F(x) - 4w - 4 e + 4 e - 4w so f3(x, m) E P( f ).

Similar arguments show that the natural homotopies afl- 1, fla - 1
have the correct image spaces. This proves 2.14.

Note that if D = *, Hyp. B is fulfilled. Here

and 2.14 says that for appropriate U, (Pf)u is equivalent to UxN.

3. - Classifying connected relative principal fibrations.

The assumptions at the beginning of section 2 are still made here.

3.1 DEFINITION. Z E Top (D). A map f : X - Z E Top (C -* D) is con-

nected-numerable if X has a numerable cover by f-regular sets (see 2.13
for « f -regular » ) .

3.2 THEOREM. Suppose Z E Top (D), X E Top (C - D), and X has a

numerable cover by sets each of which is contractible to a non degenerate base
point relative to that base point. Suppose the fiber of Z -+ D is connected.
Then any f : X -&#x3E; Z E Top (C - D) is connected-numerable.

PROOF. Similar to the proof of 1.2.

3.3 DEFINITION. Let Z E Top (D), X E Top (C --* D), N a sub-hi-monoid
of S2,,, Z.

(1) P(X, Z, N) - all equivalence classes of connected numerable

N-principa,l maps E - X (in def. 1.1, E is now assumed to be path con-
nected).

(2) [X, Z]CN= the set of all homotopy classes of connected numerable
maps f : X - Z, with N = N f .

3.4 THEOREM. Assume Hyp. A or Hyp. B. Then

is well defined and a bijection.
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PROOF. I’ll point out the modifications necessary in the proof of 1.4.

2.14 and 2.12 show that P is well defined. In the proof that P is 1-1,
restrict F and G to P( f ) and P(g). Since PDZ --* Z can be viewed as having
an N action (rather than a S2,Z-actioia) 1.7 can be applied (using 2.14 to
check hypothesis (3)). This shows P is 1-1.

Since we assume .E is connected, lemma 1.10 can be modified to apply
to P( f ) as follows (since 1.9 applies directly). In the proof of 1.10, g: E -
--*P(f) gives g : E - P(f). Now the remaining part of the proof is valid
for P. The proof that P is onto is now just the same as the proof that P
is onto.

NOTES. (1) Note that both sets in 3.4 will be empty if N is not N f for
some f.

(2) Suppose f* = n, (X, xo) -+nl(Z, zo) for all f : X - Z E Top (C -&#x3E; D)
(e.g. n,,X finite, nlZ free abelian). Then N = Nf - DDZ, for all f, so

is a bijection (Hyp. A is automatic here). So elements of [X, Z]£ can be
« geometrically» represented either by RPF’s or by connected RPF’s.

(4) Suppose Hyp. A or Hyp. B and N = N( f ) = N(g). Then the

following are equivalent

since both are equivalent to f - g in Top (C - D).
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