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Nontrivial Solutions for a Class of Nonresonance Problems
and Applications to Nonlinear Differential Equations.

H. AMANN - E. ZEHNDER

Introduction.
In this paper we study existence problems for equations of the form
Au= F(u)

in a real Hilbert space H. Here A is a self-adjoint linear operator, and F

is a potential operator, mapping H continuously into itself. We suppose

that there exist numbers « << f, not belonging to the spectrum ¢(4) of 4,

such that o(4) N [«, f] consists of at most finitely many eigenvalues of

finite multiplicities. There are no restrictions whatsoever on ¢(A) outside

the interval [«, f]. In particular, 6(4) can be unbounded above and below.
As for the nonlinearity ¥, we suppose that

(1) alu— o] < CF(w) — F(v), u— vy <flu— o]

for all w,ve H. Roughly speaking, this condition means that the non-
linearity F' can only interact with the finitely many eigenvalues of 4 in [«, §].

The original problem is reduced to the study of critical points of a func-
tional f, which is neither bounded above nor below, in general. Thus standard
variational methods do not apply directly. Condition (1) implies that f
possesses a saddle point on an appropriate subspace of H. Taking advantage
of this fact, we reduce the original problem to the study of critical points
of a functional a, defined on the finite-dimensional subspace Z of H, spanned
by the finitely many eigenfunctions of A, belonging to the eigenvalues
in [e, B]. This approach has been introduced by the first author in [2].

Pervenuto alla Redazione il 30 Luglio 1979 ed in forma definitiva il 30
Agosto 1979.
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In order to study the existence of critical points of a, we suppose,
roughly speaking, that F' has a derivative at infinity, F'(oo), such that

0¢O‘(A—-— F'(0)).

This is a nonresonance condition at infinity, and it is shown that it implies
the validity of the Palais-Smale condition for a. In contrast to [2], where
it has been assumed that F'(oo) = »Iy for some » ¢ o(A4), we allow now
o'(F’(oo)) to be arbitrarily distributed in [«, f]. Then, given some mild
additional hypotheses, which are satisfied in all of our applications, we de-
duce the existence of at least one solution of Aw = F(u). This is achieved by
means of a generalized Morse theory in the sense of C. C. Conley [18]. This
theory has the advantage, that it does not require the critical points of the
functional @ to be nondegenerate.

Then we consider the case that F(0) = 0, in which situation we are
interested in the existence of nontrivial solutions of A4 = F(u), which cor-
respond to nontrivial critical points of a. In order to deduce the existence
of nontrivial critical points of the functional a, we employ two different
approaches. Namely we use elementary critical point theory and, again,
the generalized Morse theory of C. C. Conley. In each case, the basic idea
is to compare the behavior near zero to its asymptotic behavior near in-
finity. Of course, each of the two approaches applies to different situations.

Our principal abstract results are contained in Section 8, namely The-
orems (8.1) and (8.3), and in Section 9, Theorems (9.1) and (9.4).

In the second part of this paper we apply our general abstract results to
three different kinds of problems. Namely, we prove the existence of solu-
tions for certain nonlinear elliptic boundary value problems, the existence
of periodic solutions to a class of semi-linear wave equations, and the
existence of periodic solutions of Hamiltonian systems of ordinary differ-
ential equations.

In order to demonstrate the scope of our results, we now outline some of
the applications in a simple setting.

Let Q be a bounded domain in R* with smooth boundary 0£, and con-
sider the nonlinear Dirichlet problem

— Au = f(uw) in
(2)
u=0 on 09,

where f e C1(R, R). Moreover we suppose that

f'(o0) :=lim /(&)

|&]—>o0
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exists. Then, by meaning by an «eigenvalue of — 4 » an eigenvalue of — 4,
subject to the Dirichlet boundary condition, the following result is a very
special case of Theorem (10.2).

THEOREM 1. Suppose that f'(co) is not an eigenvalue of — A. Then the
nonlinear Dirichlet problem (2) has at least one solution.

Suppose, in addition, that f(0) = 0. Then the nonlinear Dirichlet problem (2)
has at least one nontrivial solution, provided there exists at least one eigenvalue A
of — A such that either f'(0) << A<<f'(o0) or f'(o0) << A<<f'(0).

The existence of solutions of nonlinear boundary value problems of the
prototype (2), where f is supposed to be asymptotically linear (or at least
linearly bounded), has been studied by numerous authors (cf. the end of
Section 10 for bibliographical remarks). In the more interesting case that
f(0) = 0, it is a common feature of all of these results, that there exists at
least one nontrivial solution, provided f'(£) «crosses at least one eigen-
value of — A if |£| goes from 0 to infinity ». However in each one of the
papers known to the authors, this result has only been shown under addi-
tional restrictions, either on f, or on the eigenvalues, which are being
« crossed », or on both. In our Theorem 1 and, of course, in the much more
general Theorem (10.2), we establish for the first time this result in full
generality, without any further restrictions besides of the nonresonance
condition at infinity.

At this point it should be mentioned, that many papers on so-called
Landesman-Lazer problems suggest the validity of our general result also
in the case that there is resonance at infinity, provided we impose Landesman-
Lazer type conditions. In fact, an analysis of these « Landesman-Lazer
type proofs» shows that these additional Landesman-Lazer conditions
provide appropriate a priori bounds, which we have deduced in our case
from the nonresonance condition. By exploiting this observation, it should
not be too difficult to replace our nonresonance condition by Landesman-
Lazer type conditions, in order to extend our results to the case that resonance
at infinity occurs. However, for simplicity and to avoid unnecessary length,
we do not consider this somewhat more general case. A similar remark
applies to our other applications. (For another interesting treatment of
the resonance case we refer to the recent paper by K. Thews [42]).

Next we give an application to a nonlinear wave equation. Namely, we
are looking for 2z-periodic classical solutions of the problem

Uiy — uacazz.f(u) for (z,1) € (0, JZ)XR
3)

u(0,1) = u(n,t) =0, teR,
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where f e C}(R, R) and [f'(§)|>a> 0 for all £ R. Moreover, we assume
again that
f'(00) :=1lim f'(§)

[§]=>o0
exists.

It is known that the wave operator [1 under the above periodicity con-
ditions has a pure point spectrum, extending from — oo to - oo, and that
every nonzero eigenvalue has finite multiplicity, whereas 0 is an eigenvalue
of infinite multiplicity.

The following theorem, which is a special case of Theorem (11.2), shows
again that (3) has at least one nontrivial solution if f(0) = 0 and f'(§)
« crosses at least one eigenvalue of [ if |&| runs from zero to infinity ».
(It should be observed that, due to the monotonicity restriction |f'|>a>0,
f'(§) cannot cross 0.)

THEOREM 2. Suppose that f'(oo) is not an eigenvalue of ). Then problem (3)
has at least one 2m-periodic solution.

Suppose, in addition, that f(0) = 0. Then problem (3) has at least one
nontrivial solution if there exists an eigenvalue A of U1 such that either f'(0) <
< A< f'(o0) or f'(c0) < A <<f(0).

For bibliographical remarks concerning the problem of the existence of
periodic solutions to the nonlinear wave equation we refer to the end of
Section 11.

We finally describe some applications of our general results to the exist-
ence problem of periodic solutions of Hamiltonian systems

(4) u = JI,(t, u),

where J€ € C2(R x R?, R) is periodic in ¢ for some period 7 > 0, and where
J e L(R*) is the standard symplectic structure on R2¥. We shall assume

sup |H..(t, &)| < oo.
(t,8)

THEOREM 3. Assume the Hamiltonian vectorfield is asymptotically linear:
JI,(t, &) = Tbook + o[&]), a8 [E] > oo
uniformly in te R, for a time independent symmetric b € L(R*Y). Then the

Hamiltonian system (4) has at least one T-periodic solution, provided ¢(Jbw) N
N i2n|TVZ = 0.
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We next assume, in addition, that the Hamiltonian vectorfield JJ€, has
an equilibrium point which we assume to be 0, JI,(f, 0) = 0. We consider
a Hamiltonian vectorfield satisfying

JI.(t, &) = Jbo& + o(|E]), as |§]—0

and

JR,(ty &) = Tbek + 0([E]), a8 |§] = oo,

uniformly in ¢ € R, for two symmetric and time independent by, b € L(R2Y).
The aim is to find T-periodic solutions of (4) which are not the trivial solu-
tion %(f) = 0. In order to describe the difference between the two linearized
Hamiltonian vectorfields at 0 and at oo, Jb, and Jb«, which will guarantee
a nontrivial T-periodic solution, we introduce in section 12 an integer,
Ind (by, b, 7). This integer, which is a symplectic invariant, is defined for
two symmetric by, bo € L(R2¥) and a frequency 7 > 0, and it involves only
the purely imaginary eigenvalues of Jb, and Jb» and their relation to the
frequency 7. For instance Ind (by, b, 7) = 0 if b, = b, or if b, and be
have no purely imaginary eigenvalues, while Ind (by, be, T) = 0 if by, > 0
(resp. bo << 0) and bo << 0 (resp. bo> 0). A nonvanishing index gives rise
to a nontrivial 7-periodic solution of (4), as is seen from the following
theorem. Here and in the following we denote by £,(R2¥) the space of
symmetric linear operators on R2¥.

THEOREM 4. Let J(t, ) be periodic in t with period T > 0, and assume

JI. (8, &) = Jb& + o(|€]), [£] =0
JI, (1, &) = Jbel + o(IE]),  |E] > o0

uniformly in t € R, for two time independent by, bo € £,(R2Y). Assume a(Jb,) N
Ni2x|/TVZ = 0 and o(Jb)) Ni2x/TVZ = 0. If

2
Ind(bo,bm,fn)¢0,
then the Hamiltonian system (4) possesses at least one nontrivial T-periodic
solution.

COROLLARY. If by > 0 (resp. by < 0) and b < 0 (resp. be > 0), the Hamil-
tonian system (4) has at least ome mnontrivial T-periodic solution provided
a(Jbe) Ni(2n|T)Z = O and o(Jbo) N i(27/T)Z = 0.
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The explicit computation of the integer Ind (b,, b, 7) leads to other
more delicate existence statements, which also are global in nature. In the
time independent case we find nonconstant T-periodic solutions with pre-
scribed period 7 for asymptotically linear Hamiltonian equations. For
example, let J& be a convex function on R with b,, b > 0. If the two
linear Hamiltonian vectorfields Jb, and Jb» are symplectically inequivalent
one finds a 7-periodic solution for every 7 > 0 belonging to some open
and unbounded subset of R, _. As for the results and as for bibliographical
remarks we refer to Section 12.

The organization of this paper is seen from the following table of contents.

PART I: General theory

The basic hypotheses

A saddle point reduction
The reduced problem
Higher regularity
Asymptotic linearity

A R o

Estimates near infinity

-3

Estimates near zero

8. General existence theorems based upon elementary critical point
theory

9. Existence theorems based upon generalized Morse theory

PArT II: Applications

10. Elliptic boundary value problems
11. Periodic solutions of a semilinear wave equation

12. Periodic solutions of Hamiltonian systems.

Finally we should like to thank C. C. Conley, Madison, for helpful discus-
sions on his generalized Morse theory, and R. Stocker, Bochum, for his
advices on problems of algebraic topology. We also like to thank J. Moser,
New York, for valuable discussions on Hamiltonian equations.
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ParT ONE

GENERAL THEORY

1. — The basic hypotheses.

Throughout Part One we use without further mention the following
hypotheses and conventions.

H is a real Hilbert space with inner product <.,.>,
and we identify H with its dual.

A:dom (A)c H—H s a self-adjoint linear operalor .
(4) There exist numbers o << f such that «, f ¢ 0(4), and o¢(4) N (, B)
consists of at most finitely many eigenvalues of finite multiplicity .

We denote by
M<le<..<ln

the eigenvalues of A in («, ), and by m(4;) the multiplicity of 4,.

(F) F:H>H s a continuous potential operator such that
alu— o] < (F(w) — F), u— vy <flu—o|* Vu,0eH.

We denote the normalized potential of A by @, that is, ® € CY(H, R) satis-
fying @(0) =0 and &'=F.

We let {E;|1 € R} be the spectral resolution of 4, and we define ortho-
gonal projections P, P e £(H) by

P ) B
}L;:Jﬁﬁh, 1;:=Jdﬂa, P:=Jﬁﬁh,

respectively. Moreover, we let

X:= P (H), Y:=P(H), Z:=PH).
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Observe that
H=X®pY®Z,

and that Z is finite-dimensional with
”
dim Z = > m(4,))
i=1
(with the usual convention that the empty sum has the value 0).

Next we define self-adjoint linear operators

Ref(H,X), SeLH,Y), Tel(H, Z)
by

R:=fw——m4dE“ s;:ju-@%dEA
B

and
8

T::f(l——a )y tdE; = z(ﬂ. —a)”

3

respectively, where P; denotes the orthogonal projection of H onto the
eigenspace ker (4,— A) of 4.

It is an immediate consequence of these definitions, that R, 8, and T
are pairwise commuting, that R|X, 8|Y, and T|Z are injective, and that
(1.1) — R4+ 82+ T2=(A—oa)t
Hence

—R*=—P R*=P (— RH—S*—I—P) PA—a)'=(A—a)*P,
and, consequently,

(1.2) —(A—a)R*=P_

Similarly we find that
(1.3) (A— )82 =
and

(1.4) (A—o)T2= P
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2. — A saddle point reduction.

Formally, the equation Au = F(u) is the Euler equation of a variational
problem. To be more precise, let

() := ;<(Au, u)— Du) Yuecdom (4).

Then, for u, h € dom (A), the directional derivative dg(w; k) (that is, the
«first variation ») of ¢ at « in the direction % is given by

Splu; h) = (Au— F(u), by .

Hence the solutions of Au = F(u) correspond to the « critical points » of ¢
and, in principle, critical points could be obtained by variational methods.
However, variational methods are difficult to apply directly, since ¢ is
only defined on the dense subspace dom (4) of H. In addition, there is no
restriction on the spectrum of A outside of the interval («, 8). Thus o(4)
can extend from — oo to 4+ oo and, in fact, this will be the case in some of
our applications. In other words, in general the quadratic term {Aw, u)
will be indefinite in the strong sense, that is, it can be positive definite and
negative definite on infinite-dimensional subspaces of H, respectively.

Assumption (F) implies that the nonlinearity « interacts » only with
that part of the spectrum of A, which lies in (e, ). Thus the behaviour
of ¢ on the reducing subspaces X and Y of A should be roughly the same
as the behavior of the quadratic form {Au, ) on these subspaces. In fact,
it can be shown that ¢ is strictly convex on X and strictly concave on Y.
This fact can then be used to reduce the infinite-dimensional variational
problem to a finite-dimensional one, which, roughly speaking, involves
only o(4) N («, B).

To exhibit quite clearly the saddle point structure of the functional g,
we introduce now a new functional f, which is defined on all of H, and whose
critical points are in a one-to-one correspondence with the solutions of the
equation Au= F(u).

For this purpose we let

d%(u)::@(u)—g[[uuz VueH,
and we define
feC(XxYXZ,R)
by
f@, 9, 2) := 3(le]*— ly|*— le]?) + Pu(Bx + Sy + T2) .
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Then it is not difficult to verify that (x,y,2) is a critical point of f iff
Rz 4 Sy -+ Tz is a solution of Awu = F(u). Moreover, letting

B, := min {g(4) N (B, o)}
if ¢(4) N (B, o) 5= @, fixing f, > f arbitrarily otherwise, and setting

ui=P.—PHB—x)*>0,
it is easily verified that the maps

x — D, f(x, y, 2) — px
and

y —— Dyf(@, y,2) — py

are monotone for every (y,2) € Y XxZ and (x,2) € X X Z, respectively.
Thus, due to an observation of Rockafellar [37], it follows that, for every
z € Z, the map
M :XxY—>XxY,
defined by
M (x,y) := (le(w’ ¥, 2), — Duf(x, ¥, z)) ’

is u-monotone, that is,

(2.1) <M (21, Y1) — M (@2, Y2), (@1, Y1) — (@2, ?/2)>>;“”(w1’ Y1) — (@2, Ys) "2

for all (z,, v,), (%2, ¥:) e X XY and z€ Z.
Let
Fo(u) :=F(u)—au VYuecH,

and observe that

D,f(x,y,2) = « -+ RFEy(Rx -+ Sy + T%?)
(2.2) Dyf(@,y,#) = —y + SFu(Ro + Sy + T¢)
D, f(w,y,2) = — 2 + TFx(Rw + Sy + Te)

for all (x,y,2)e X XY xZ. Thus M, is continuous for every ze Z, and
the basic existence theorem for monotone operators (e.g. [23]) implies that
the equation

M (@,9) =0
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has a unique solution (x(z), y(2)) for every z€ Z. But this means precisely
that (2(2), y(2)) is the unique saddle point of the functional

f(-,-,2): XxY—-R
(e.g. [23]).

Let 2,€ Z be fixed. Then (2.1) and the definition of (2(2), ¥(2)) imply
that, for every z € Z,

<Mz($(zo)’ ?/(zo))y (m(zo)y ?/(zo)) - (x(z)a f’/(z))>>.u” (w(z‘))7 y(zO)) - (w(z)’ ?/(z)) ”2 .

Thus
(2.3) I((2), ¥(2)) — (2(20), y(20)) | <@ || M(a(20), ¥(20)) |

for every ze Z. Since, by (2.2), the map
Z—>XXY, & M) y@)
is obviously continuous, it follows that
(x(°)yy('))EG(Z’XXY)7
that is, the saddle point (x(2), y(2)) depends continuously on z¢€ Z.

In fact, much more is true. Namely, due to an observation of Brézis
and Nirenberg [14, Proposition A.5], hypothesis (F) implies the global
Lipschitz continuity of F. More precisely,

|F(u)— F)| <[(B— ) + lelllu— o] Vo, veH.
This implies easily the existence of a constant y>0 such that
l Mz(w(zo)’ ?/(zo)) I<yle—a| Ve 2eZ.
‘Consequently, (2.3) shows that

(@), y(+): Z—>XxY

is globally Lipschitz continuous.
Now we define ¢: Z - R by
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Then it can be shown [2] that g e (' (Z, R) and that
9'(2) = Dsf(2(2), y(2), 2) .

(Observe that, in general, the map (x(-), y(-)) is not differentiable, so that
the chain rule cannot be applied.) Thus, by using the representation (2.3)
of D;f and the global Lipschitz continuity of F and (x(-), y(+)), it follows
that ¢’ is even globally Lipschitz continuous.

In the following proposition we collect the basic facts derived above.

(2.1) PROPOSITION. There exists a globally Lipschitz continuous map
(w()7y()) Z—~+XxY,

such that (w(z),y(z)) 18 the unique saddle point of f(-,-,2): X XY —>R for
every z € Z. Thus the point (2(2), y(2)) € X X Y 1is characterized by the « saddle
point inequalities »

(2.4) f2(@), y, 2) <g&)<f(w, y(2),2) Vi@, y,2) e XXV XZ,
where

9@) 1= f(2(2), y(2),2) VeeZ,

as well as by the fact that (x(2), y(2)) is, for every z€ Z, the unique point
(@, y) e X X Y solving the system

(2.5) 0= a4 RF,(Rx + Sy + T?)
(2.6) 0=—1y -+ SFuRzx -+ Sy + Tz).

Moreover, g has a globally Lipschitz continuous derivative g': Z — Z,
which is given by

2.1 9'(2) = — 2+ TF\(Ra(z) + Sy(2) + Tz) VzeZ.

Finally, z is a critical point of g iff Rux(z) -+ Sy(e) + Tz is a solution of
Au = F(u).

Observe that, by the above proposition, the problem of finding solutions
of the equation A = F(u) is equivalent to the problem of finding critical
points of the funectional g. This reduction to a finite-dimensional case has
been introduced in [2]. Proposition (2.1) is essentially a restatement of
some of the results of [2], and we refer to that paper for further details.
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It is also worthwhile to notice that, up to now, the finite-dimensionality
of Z has not been used.

(2.2) REMARK. Suppose that X is a topological space and
2 xH—~H, (0, %) = F(o, u) -

is a continuous map such that, for every o € 2, the function F(e,*): H > H
satisfies (F) (with « and g independent of ¢). Then, denoting by @(s,-)
the potential of F(o,-) and defining f(o,-): XX ¥ XZ —~ R by

f(o, 2,9, 2) == ¥(l2]*— ly|*— |2]*) + Palo, Bz + Sy + T2),

an inspection of the above proof shows that, for every (o, 2) € 2 X Z, there
exists a unique saddle point (x(s, 2), y(o, 2)) of f(o,",",2): Xx Y R, and
that (#(-,*), y(-,")) € O(Xx Z, X x ¥). Moreover,

(#(0,%),y(0,°)): Z > X XY

is globally Lipschitz continuous, uniformly with respect to o€ 2.
Let
g(o, 2) 1= f(O’, (0, ?), y(o, z)’z) V(o,2)e XX Z.

Then ¢(o,-) € CY(Z, R) for every o€, and D,g¢(c,"): Z —Z is globally
Lipschitz continuous, uniformly with respect to ¢ € 2. Finally, 2 is a cri-
tical point of g(o,-) iff Rxz(c,2) + Sy(o,2) + T2 is a solution of the equa-
tion Au = F(o,u), 0 € 2. O

As an immediate corollary to Proposition (2.1) we note the following
exvistence and uniqueness result, already given in [2].

(2.3) THEOREM. If o(4) N (x,f) = 0, then the equation Aw = F(u) has
exactly one solution.

ProoF. It suffices to observe that, in this case, Z = {0}. |

Since, by the above theorem, the case o(4) N (a, f) = 6 has been com-
pletely solved, we assume henceforth that o(A) N («, f) = 0.
3. — The reduced problem.

Observe that

T-1:= (T|Z)'€£,(Z) := {B € L(%)|B = B*},
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and let

(3.1) a:=— goT-1e CYZ, R)

and

(3.2) u(z) := Rw(T'2) + Sy(T12) -2 VzeZ.

Then, by Proposition (2.1),
u(*): Z —~>H

is globally Lipschitz continuous, and
(3.3) u(z) edom (4) VeeZ

(cf. (2.5) and (2.6)). Moreover, a has a globally Lipschitz continuous deriv-
ative, given by

(3.4) a'=— T log'oT-1,
Thus Proposition (2.1) implies that
2 is a critical point of a iff u(z) is a solution of Au = F(u) .

Hence we have reduced the original problem of finding solutions to the
equation Au = F(u) to the equivalent problem of finding critical points of
the functional a € C'(Z, R).

In the following lemma we collect some properties of a, which will be
useful for finding critical points.

(3.1) LEMMA. For every z€ Z,

(3.5), a(z) = {Au(z), w(2)> — P(u(2))

and

(3.6) a'(z) = Az — PF(u(z)) = Au(z) — F(u(z)) .
Proor. Let

Rt:=(RX)y:im(R)cX X
and

8 1:=R8Y):imS)cY—-Y.
Then, by (1.2),

l#?= | B~ Re|* = (R-*Rw, Rwy = — {(A— o) Ra, Ry
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for all # € X such that Rz e dom (4). Similarly,

lyl*= <(4 — ) Sy, Sy>
for all ye Y with Sy € dom (4), and

l2]?=<(A—a) T2, Tz) VzeZ.
Consequently,

3.7  f@,y,2) = — < A(Rx 4 Sy + T%), Re + Sy + T2) + P(Rx + Sy + Tz)

for all (z,v,2) € X XY xZ such that Rz, Sy € dom (4). Now the asserted
representation of a(z) follows from the definitions of @ and u(-), and from (3.3).
The equation

(3.8) a'(2) = A2 — PF(u(2)), 2€Z,

follows easily from (3.4), (2.7) and (1.4). By substituting (w(z),y(z)) into
the equations (2.5) and (2.6), applying R to (2.5) and 8 to (2.6), and by
using (1.2) and (1.3), we find that (Rx(T-'z), Sy(T-1z)) € X x Y is charac-
terized by the equations

(3.9) 0 = ARz(T-'2) — P_F(u(2))
and
(3.10) 0 = ASy(T-'2) — P, (u(2))

for all ze€ Z. Thus, the last part of the assertion follows by adding the
equations (3.9) and (3.10) to (3.8). O

We include here an invariance property of the functional a, which we
will use in a later paper discussing multiplicity results.

(3.2) ProprosiTION. Let U € L(H) be a unitary operator, which commutes
with A and F, that is, AU>UA and FoU= UoF, respectively. Then
aoclU = a.

ProoF. Since U commutes with A, the subspaces X, ¥, and Z reduce U,
and U commutes with R, S, and 7. Furthermore, since U commutes with F"
and preserves inner products

1 1 1
&(Uu) — f (FU), Uu)ydi — f (UF(tw), Tuydt = f (Fltu), u)di = D(u)
0 0 0
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for all w e H. Thus, by the definition of f,
(3.11) f(Ux, Uy, Uz) = f(x,y,2) V(9,2 eXXxYXZ.

Since the inequalities (2.4) characterize the saddle point (x(2), y(2)), it fol-
lows that

f(x( Uz), v, Uz) <f("”( Uz), y(Uz), UZ) <f(w7 y(Uz), Uz)
for all (x,y)e X xY. Hence, U being unitary,

{(UU-a(Uz), Uy, Uz)<f(UU-2(U2), UU-'y(Uz), Uz) <
<f(U=x, UU-y(Uz), Uz)

for all (»,y) e X x Y. Thus, by (3.11),
1(U-2(U?), y, 2) <f(U-a(Uz), U-'y(U?), ) <f(w, U-y(U%), 2)
for all (x, y) € X X Y, which, by the uniqueness of the saddle point, implies

(U-12(Uz), U-y(Uz)) = (#(2), y(2)) VeeZ.
Consequently,

(#(T2), y(Uz)) = (Un(2), Uy(2)) VezeZ,
and

9(Uz) = (#(Uz), y(Uz), Uz) = f{(Un(z), Uy(2), Uz) =
= f(»(2), y(2), 2) = g(2)

for all ze Z. Now, since U commutes with 7-1, the assertion follows from
the definition of a. O

4. — Higher regularity.

For an analysis of the critical points of a € C1(Z, R) it is desirable to
know that a e C*(Z, R). This can easily be achieved by assuming that
Fe C(H, H). However, in all of our applications H will be an L,-space
and F a substitution operator. But then it is well known (e.g. [5]), that,
in general, F € C\(H, H) iff F is an affine map. Thus it is not reasonable
to assume that F € C'(H, H). However we may well assume that F has a
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symmetric Gateaux derivative
F:H >, (H),

which, of course, will not be continuous on H, in general.

By differentiating formally the middle term in (3.6), we find that the
resulting expression involves F' only at points of the form u(z). In general,
these points will belong to a proper subspace E of H, carrying a stronger
topology than H, such that F' may well be continuous on E. Since this
is in fact the case in our applications, we shall analyse this situation more
thoroughly in this section.

First we prove the following characterization of u(z) — z.

(4.1) ProPOSITION. For each z € Z, the equation
(4.1) Av= (Iy— P)F(v+2)

has a unique solution v(z), and

(4.2) ) =uz)—=2.
Proor. Let
(4.3) v(2) := u(2) — 2 = Ra(T-12) + Sy(T'2) VzeZ,

and recall that (Ra(T-'z), Sy(T-'2)) € X x Y is characterized by the equa-
tions (3.9) and (3.10). From this fact the assertion follows easily. O

We introduce now the following regularity hypothesis (R), where we write
V e Wif V and W are Banach spaces and V is continuously imbedded in W,
that is, V is a vector subspace of W and the natural injection is continuous.

(i) Fe CO(H, H) possesses a symmetric Qdteauxr derivative F'.

(ii) F is a real Banach space such that

(B)
Z->E<>H and F'|E€C(E,L,H)).

(ili) P.o(-)eC(Z, E).

Clearly, Z being finite-dimensional, Z <~ F iff Zc E. Moreover, Z <> E
and (iii) imply «(-)e C(Z, E).
It should be observed that (R) is satisfied (with ¥ = H), if ¥ € CY(H, H).
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Moreover in certain applications it may be possible to avoid the relatively
complicated looking condition (R) by a judicious choice of the underlying
function spaces. However, we are interested in a general abstract theory
which is applicable to a wide variety of problems without redoing the same
arguments over and over again. For this reason we have to introduce con-
dition (R).

(4.2) LEMMA. If (R) s satisfied, then
(2(+), y(+)) € O*(Z, X x ¥).
Proor. Let &:= (x,y) e X XY =: 5, and set
M(&, 2) := M.z, y) = (D:f(%, Y, 2), — Daf(w, Y, 2)) -

Then it is an easy consequence of the representations (2.2) and the linearity
of the operators R, S, and 7, that

M:ExZ -5
has a Gateaux derivative

(4.4) M = (D,M,D,M): ExZ —~LEXZ, E),

which, using matrix notation, is explicitely given by

Ix -+ RF.(p)RIX RF(p)S|Y
@.8) DM ) = ( SFUPRX — —Iy+ SF;uo)SIY)
and
(4.6) D,M(,2) = (RF (p)T|Z, SF.(p)T|Z) ,

where p := Rx -+ Sy + T-.
Since M(-, 2) is y-monotone for every z € Z (cf. (2.1)), it follows easily that

<D1M('§’ Z)’l’], 77>>,u”7]“2 Vf, ”]GE, Vee Z.

Thus, x4 being positive, one deduces easily that D, M (&, z) has a bounded
inverse
DM 2) P el(5) V(2 eEXZ.

Let £(z) := (x(2), y(z)) denote the saddle point, which (cf. Section 2)
is characterized by the equation

(4.7 M(&(z),2) =0 VzeZ.
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Moreover let
B(z) := [D, M(&(2), 2)]

and observe that, due to formula (4.5), B(z) depends only through wu(7%)
on z€ Z. Thus condition (R) implies that

(4.8) B(-)e C(%,L(8)) .
Let z€ Z be fixed, and let ¢ with
(4.9) 0<e< }|B()]
be arbitrary. Moreover, let
n(h) i= E(z + h)— &) VheZ.
Then (4.7) and the mean value theorem, imply

:IIM(s(z)+n(7z>,z+h) M(&(z), 2) — Dy M(&(2), 2)n(h) — D, M(&(2), 2) h|
<Sup l{M'( (2) + ty(h), 2 + th) — M'(£(2), 2) [ ([n(R) ]| + [ R]2)}

for all ke Z. Since, by (4.5) and (4.6), M’(§(z),z) depends only through
u(T2) on z, the regularity hypothesis (R) implies easily that the map

Z—>LEXZ,E), k> M(E@) 4 ty(h), z 4 th)

is continuous, uniformly with respect to fe[0,1]. Consequently, since
7(0) = 0, there exists a number J > 0 such that

1Dy M (&(2), 2) () + D, M(£(2), 2) b <e(n(R) | + [B])
as soon as ke Z satisfies |h| <d. Thus
(4.10) In(k) + B(2) D, M(E(2), 2) B| <e|B)|(In(k) ] + [2])
for |h|<d. Now, if we put

y 1= 2| B(2) D, M(&(z),2)| + 1,
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we deduce from (4.9) and (4.10) that
—1
In@)| —E5= [l < (k) + [R])2,

that is, |n(k)|<v|h|, and therefore, that
In(h) + B(2) D, M(§(2), 2) k| <e(y 4 1)|B(:) | [4]

for all ke Z satisfying ||h| <d. By the definition of n(h), this proves that
&(+) is differentiable at z and that

(4.11) &'(2) = — [D,M(&(2),2)] ' D, M(£(2),2) VzeZ.
Finally, since (R) and (4.6) imply
-DzM(E(),) € 0(Z7 £(Z, E)) ’

it follows from (4.8) and (4.11) that &'(-) e C(Z, E). O

(4.3) CoroLLARY. If (R) s satisfied, then u(-)e CYZ, H). Moreover,
im (%'(2)) c dom (A4) and

(4.12) Av'(2) = (I— P)F'(u(2))w'() VzeZ.

More precisely, v'(2) = u'(2) — I, s, for each z€ Z, the unique element B
in L(Z, X ®Y) satisfying im (B) c dom (A) and the equation

AB = (I— P)F'(u(?))(B+ I,).

Proor. It is an obvious consequence of Lemma (4.2) that u(-) € C\(Z, H)
and that (cf. (3.2))

w'(2) = Re'(T-12) T+ Sy'(IT2) T+ I, VzeZ.

Moreover, (4.5), (4.6), and (4.11) imply that (m’(z),y’(z)) is the unique ele-
ment in £(Z, X X Y) satisfying
'(2) + RF.(u(T?))(Ra'(2) + Sy'(z) + T|Z) = 0

and
—y'(2) + ST, (u(T2))(Ra'(2) + Sy'(2) + T|Z) =0
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for every z € Z. Hence, by applying R to the first and S to the second of
these equations, and by using (1.1) and (1.4), it follows that

im (Ra'(2)) U im (Sy'(2)) c dom (4),
and that

A(Rz'(2) + 8y'(2)) = (I — P) F'(w(T?))(Rx'(z) + Sy'(2) + T|Z),

that is,
Av'(T#) T|Z = (I— P)F'(u(T?))(w (T?)T|2)

for all ze Z. Now the assertion follows easily. O

Observe that the following lemma is not just a consequence of the chain
rule, since, in general, there is no chain rule for Giteaux differentiable maps.

(4.4) LeMMA. If (R) is satisfied, then
Fou(-)eC\(Z, H)

and
(Fou) () = F’(u(z)) w'()el(Z,H) VzeZ.

Proor. By Corollary (4.3), F’(u(z))u’(z) is well defined and belongs to
£(Z, H). Let z€ Z be fixed, and let

wh) ;= u(z+ h)—u(z) VheZ.

Then, by the mean value theorem,

| F(u(z + b)) — F(u(z)) — F'(u(z))w' (@) h]
< sup |F'(u(z) + tw(h)) — F'(u(2))| |wh)] + [|F'(w(2))] |wh)—u'(2) )

0<ik1

for all he Z. Thus, since, by (R), w(-) € C(Z, E) and F'|EeC(E, £(H)),
we find that Fou(-)e C'(Z, H) and that (Fou)'(2) = F’(u(z))u’(z). O

After these preparations we can now prove the following fundamental
regularity result.

(4.5) ProPosITION. If (R) is satisfied, then a € C*(Z, R), and
a'(z) = A|Z — PF'(u(z))u'(2) = [A — F'(u(2))] w'(2)

for all ze Z.
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Proor. It follows immediately from A4|Z € £(Z) and Lemmas (3.1) and

(4.4), that a € C*(Z, R) and a"(z) = A|Z — PF’(u(z))u’(z)‘ Finally, (4.12)
implies now the second representation of a’(z). (]

(4.6) REMARK. Let CX(H) be the Banach space of all k-linear symmetric
continuous operators from the k-fold product of H into H. Denote by (R),,
k>2, the following regularity hypothesis:

(i) FeC(H, H) possesses Gateaux derivatives
FO: H — ¢i(H) for 1<i<k.

(R);, (ii) & is a real Banach space such that

Ze>E<H and FYEeC(E,iH) forl<i<k.

(iii) Po(-)eC(Z,E).
Then it follows from the above proofs by means of casy induction arguments

that (2(+), ¥(+)) € CZ, X x Y), that u(-) € CX(Z, H), that Fou(-) € C*(Z, H),
and that a € C**(Z, R). O

5. — Asymptotic linearity.

Consider the following hypothesis concerning the asymptotic behavior
of I near infinity.

There exists Bo € L,(H) such that

0(Bw) Clo, /] and 0¢0(4— Bo),
and there are constants
(Foo)

0,>0 and 0<y,<min{|i||€0(4 — Bw)}

such that

| F(4) — Bot| <¥o 4| + 6, VYueH.

Clearly, the condition that 0 ¢ 6(4 — B) is kind of a « nonresonance » con-
dition at infinity. Moreover, since By is bounded and symmetric, 4 — B
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is self-adjoint (e.g. [27, Theorem V.4.3]). Hence
(5.1) min {|4|| € 0(4 — Bw)} = (4 — Bo)'| ™,

and the restriction
Yo < min {|4]|2€ 6(4 — B)}

is equivalent to the condition
(5.2) Yoo (A — Ba)™1] <1.

Recall that F is said to be asymptotically linear, if there exists an oper-
ator F'(co) € L(H) such that
m |F () — F'(c0)u| _

1i
o0 o]

0.

Then F'(co) is uniquely determined and called the derivative of F at imfinity.

(5.1) LEMMA. Suppose that F' is asymptotically linear, F'(oo) is symmetric,
and 0 ¢ o(A — F'(o0)). Then (Fo) is satisfied, and yo > 0 can be chosen ar-
bitrarily small.

ProoOF. We have to prove the assertion that O‘(F'(oo)) C [e, B]-
Observe that Hypothesis () implies

au]? <t {F(tu) — F(0), up<pllu]®
for all we H and ¢> 0. Hence
alul2< EE(tw) — F'(co)tul, uy — t71<F(0), w) + <F'(co)u, up<ful®
for all we H and ¢> 0. Thus, letting ¢ — oo,
aful?<<F'(co)u, uy<plu* VueH,

which, by the symmetry of F'(co), implies o(F'(o0)) C [a, B]. O

In the remainder of this section we deduce some simple, but important
consequences of hypothesis (Fo).

(5.2) LEMMA. If (F«) is satisfied, then
[a' ()| =»|2]| — 6 VeeZ,

where v:= (A — Boo) 1|1 — y, > 0.
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ProoF. It follows from (5.2), that » > 0. Since, by Lemma (3.1),
a'(2) = Au(z) — F(u(2)) = (4 — Bu)u(2) — (F — Bw)(u(z)) ,
condition (Fu) implies
la'(2)] > (4 — Bo)u(2)| — |(F — Beo)(u(2)) |
> (A — Boo) ! [ u(2) | — Yoo (2) | — b0 = » | u(2) | — beo

for all ze Z. Hence the assertion follows, since, by orthogonality and (3.2),
lu@ > 2. U

(5.3) COROLLARY. If (Fw) is satisfied, then a satisfies the Palais-Smale
condition, that is, every sequence () in Z, for which (a(zk)) 18 bounded and
a'(z;) — 0, possesses a convergent subsequence.

Proor. The assertion is an immediate consequence of Lemma (5.2) and
the finite-dimensionality of Z. O

6. — Estimates near infinity.

In this section, using hypothesis (F.), we give qualitative estimates for
the functional @ near infinity.

(6.1) LEMMA. Let (F,) be satisfied. Then, for every y > ya, there exists
a constant 6>0 such that

a(2) <3<(A — Boo + y)(P_0(2) + 2), P_0(2) + 2 + 6
and
a(2)> }<(A — Beo— )(P,0(2) + 2), Pyo(e) + 25— &

for all z€ Z.

Proor. By the mean value theorem and (¥7.),

Plu)—3 <Buu, v

1
< [i< @0 —Botw), wl @< ul + 0. ]u]
0

for all w e H. Since

— 6%
Y 22 VueH,

Solul Bl + =
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it follows that

(6.1) @(u)—% (B, u) <§ lu|2+6 VueH,

where §:= 62 /2(y — y..).
Since, by the saddle point inequality of Proposition (2.1),

g(z)>f(w(z), 0, z) Vee Z,
and since Rx(z) € dom (4) (cf. (2.5)), we deduce from (3.7) that
9(2)>— 3<A(Ra(2) + T#), Ra(2) + Te) + D(Ba(z) + T2)

for all ze€ Z. Now the first estimate of the assertion follows from (6.1),
the definition of @, and the fact that P_v(z) = Rx(T-12). A similar argu-
ment based on the second half of the saddle point inequality implies the
second estimate of the assertion. 0

In the following we use the standard order relation between self-adjoint.
operators, and B> 0 means that B is positive definite. In this connection
we write usually y instead of yI,, provided no confusion seems possible.
Moreover, we let

a_:= max {o(4) N (— oo, a)}
if o(4) N (— oo, &) % @, and we fix a_< « arbitrarily otherwise. Similarly,
we let

B := min {o(4) N (B, o)}

if this set is nonempty, and f, > # is arbitrary otherwise.
(6.2) PROPOSITION. Let (F,) be satisfied.

(@) Suppose that, for some § > yw, there exists an operator C, € L(H),.
which commutes with P and P_, such that

o+ 9< 0, <Bo.
Then there exists a number 6 > 0, such that

WR) <A — 0z +Pre>+ 0 VeeZ.
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(b) Suppose that, for some 7 > ywo, there exists an operator C% € £ (H),
which commutes with P and P, such that

Bo<Co<fi—7.
Then there exists a mumber 6 > 0, such that
aR)>3(A— 0L —9P)z2)— 06 VzeZ.
Proor. (a) Let C:= C_ — 7 and observe that
A—Bo+7<A—C and (4— O)[[XNdom(4)]<0.
Hence, by the commutativity of ¢ with P and P_,

(A — By, + 7)(Po@) + ), P_o(@) + ey <
<A — O)(P_v(z) + 2), P_ov(2) + 2> <
<{(4— O)P_v(2), P_v(2)) + (4 — O)z, 2) <
<4 —0)z 2

for all ze€ Z. Now the assertion follows from Lemma (6.1).
(b) This part is proved similarly. O

(6.3) REMARK. Concerning the commutativity properties of Proposi-
tion (6.2), it should be observed that, due to the fact that P+ P_4 P = I,
an operator C € £(H) commutes with two of the projections P,, P iff it
commutes with all three of them. O

7. — Estimates near zero.

Suppose, it is already known that the equation Aw = F(u) has a solu-
tion w%,. Then, by replacing F by u — F(u 4+ u,) — F(%,), we can assume
that w, = 0. In this case we are interested in the existence of nontrivial
solutions.

In this section we give qualitative estimates for a near 0 € Z, which will
be the basis for proving existence theorems concerning nontrivial solutions of
Aw= F(u). We begin with the following obvious consequence of the uni-
queness of the saddle point and the definition of a (cf. also [2, Lemma (4.3)]).
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(7.1) LemmA. If F(0)= 0, then a(0)=0 and 0 is a critical point of a.
The following lemma is the analogue to Lemma (6.1).

(7.2) LemMmA. Suppose that F(0) = 0, and let (R) be satisfied. Then

(7.1) a(2) <3<[A — F'(0)](P_v(z) + 2), P_v(z) + 2> + o(|2]?)
and

(7.2) a(2) > <[4 — F'(0)](P,0(2) 4 2), P,o(z) 4 2> + o([2]*)

as z2—0 in Z.

ProoF. The definition of a and the saddle point inequalities (2.4) imply
a(z) = — g(T-'2) <— f(#(T'2), 0, T-2) VzeZ.
Thus, by (3.7) and since P_v(z) = Rx(T-'z),
(7.3) a(z) <L (A(P_v(2) + 2), P_v(z) + 2) — B(P_v(2) + 2)

for all ze Z. Since @(0) = 0 and F(0) = @'(0) = 0, the mean value the-
orem implies

Pg) = $<CF'(0)g, 0> + [Fltg) — F'(0)tg, gt
0

hence, applying the mean value theorem again,
@m——@wmp|—wﬂﬁm 70)] lg?

for all ¢ € H. Consequently, letting ¢ := P_v(2) -} 2, hypothesis (R) and the
fact that »(0) =0 imply

(7.4) — D(P_v(2) +2) <— §<F'(0)(P_v(e) +2), P_v(2) +2)> + (1) | P_v(z) +2| *

as 2 —0. Thus, v(-) being globally Lipschitz continuous, the estimate (7.1)
follows from (7.3) and (7.4). The second estimate is proved similarly. O

The proof of the following important proposition is now completely
analogous to the proof of Proposition (6.2). Hence it is left to the reader.
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(7.3) PROPOSITION. Let (R) be satisfied and let F(0) = 0.

(a) Suppose that there exists an operator C, €L, (H), which commutes
with P and P_, such that

o <0y <F'(0).
Then

a(2) <34 — 05)z, 2> + o(|2]?)
as z2—>0 in Z.

(b) Suppose that OF € £,(H) commutes with P and P, and satisfies
F'(0)< Cf <f, -
Then

a(2) >34 — 05 )z, 2> + o(]2]?)
as z2—>0 in Z.

8. — General existence theorems based upon elementary critical point theory.

Throughout this and the following section we presuppose hypothesis (F,).

We begin with an elementary existence theorem for the equation
Au = F(u). (Observe that condition (R) is not presupposed, and recall that
a_ and B, are defined after Lemma (6.1).)

(8.1) THEOREM. Suppose that each one of the operators CE € £,(H) com-
mutes with P, and P_ and that

o+ Yo< O <Bu< 0f <B,— 9.

Then the equation Aw = I'(u) has at least one solution, if either

(8.1) [A— 07+ 7«l|Z<0
or
(8.2) [A— Ci—yx)|Z>0.

Proor. It suffices to show that the functional ¢ has a critical point.
Choose , ¥ > vy« such that [A— O + ;7][Z< 0 and [4 — 0} — 9] |Z> 0, re-
spectively. Then Proposition (6.2) implies a(?) —— oo as |2| — oo, if (8.1)
is true, and a(2) — oo as |z|| - oo, if (8.2) is true. Hence, Z being finite-
dimensional, a possesses a global maximum or a global minimum, respec-
tively. O
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For the following corollary we recall that 1, and 4, have been defined
in Section 1, and that B >0 means that B is positive definite.

(8.2) COROLLARY. Suppose that either Bo >4, + Yo 0 Bu<k 1 — yo.
Then the equation Au= F(u) is solvable.

Proor. This follows from Theorem (8.1) by letting O := (4, + 7)Ix
and Of := (4, — 9) Iy, Where Yo < $ < Bo— Ay ald Yo < < 41 — Bo. 0O

In the following theorem, by using again elementary critical point theory,
we prove the existence of a nontrivial solution of Au = F(u) if F(0) = 0.

(8.3) THEOREM. Suppose that F(0) = 0 and that (R) is satisfied. Let
each one of the operators CE, CE el (H) commute with P, and P_, and
assume that

o+ Y0< Oy <Bo< 0} <f,— ¥
and
a < Oy <F'(0)< 0y <B,,
respectively.

Then the equation Auw = F(u) has at least one nontrivial solution, provided

one of the following conditions is satisfied:

(i) (A—OCx+9)|1Z<0 and (A— Cf)|Z £ 0.

() (A—0f —9,)|1Z>0 and (A— Cy)|Z * 0.

(i) (A—Cq+7x)|Z* 0 and (A— Cf)|Z> 0.

(iv) (A—CEL—9)|Z<0 and (A— Cy)|Z<0.
Proor. By Lemma (7.1), 0 is a critical point of a. Hence we have to

show that each of the hypotheses (i)-(iv) implies the existence of a nontrivial
critical point of a.

(i) The proof of Theorem (8.1) shows that in this case a attains its
maximum at some point 2, € Z. Since (4 — C;)|Z €0, there exists a non-
trivial subspace Z_ of Z such that (4 — C;)|Z_> 0. But then Proposi-
tion (7.3.h) implies that 0 is not a local maximum of a. Hence 2, 7~ 0.

(ii) In this case the above arguments apply to — a.

(iii) Since (4 — Cy)|Z > 0, Proposition (7.3.b) implies that a has a local
striect minimum at 0 € Z. Since there exists a number § > y» such that
(4— O, +9)|Z * 0, Proposition (6.2.a) implies easily the existence of a
2 € Z\{0} satisfying a(z) = 0. Now, since, by Corollary (5.3), the functional
a satisfies the Palais-Smale condition, and since Z is finite-dimensional, a
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variational lemma of Ambrosetti and Rabinowitz [6, Theorem (2.1)] implies
the existence of a nontrivial critical point 2, of a such that a(z,) > 0.

(iv) In this case the arguments of the preceding paragraph apply
to — a. O

(8.4) COROLLARY. Suppose that F(0) = 0 and that (R) is satisfied. Then
the equation Aw — I'(u) has at least one montrivial solution, provided one of
the following conditions is satisfied:

(i) B>+ v, and F'(0)<K 4,.
(ii) Bo <A — v, and F'(0)> 4,.
(iii) B> A+ v, and F'(0)K 4.
(iv) Bo <A, — y, and F'(0)> 4,.

ProoF. This follows from Theorem (8.3), if we let 0% := yZI, and
CF := yiEI,, and if y¥ and pE are chosen as follows:

(1) A Fy0<va < B, and F'(0) < yi < A

(1) Beo<9i <2 — 9y, and F'(0) > yy > A;
(ili) Bo>yg >4, +7y., and F'(0) <y, < 4;;
(iv) Bo <9t <2, —y, and F'(0) >y, > 4,. U

(8.5) REMARK. It should be observed that the above proofs contain the
additional information that there is a nontrivial eritical point 2z, of a such
that a(z,) >0 if (i) or (iii) are satisfied, and a(z,) <0 if (ii) or (iv)
are true. O

Corollary (8.4) generalizes Theorem (5.3) of [2], where it had been as-
sumed that Be= [(4 -+ Ary1)/2]1x for some ke {0,1,...,n} with Ay:= o_.
Although the hypotheses of Corollary (8.4) are rather simple, Theorem (8.3)
is much more flexible and better suited for our applications to Hamiltonian
systems.

9. — Existence theorems based upon generalized Morse theory.

The definiteness assumptions of Theorem (8.1) and (8.3), needed to apply
elementary critical point theory, are somewhat unnatural and rather restric-
tive. In this section we show that these hypotheses can be dropped, provided
we impose a commutativity condition for Be.
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The proofs of this section are based upon topological tools, namely on
a generalized Morse theory for isolated invariant sets of rather general
dynamical systems, due to C. C. Conley and R. W. Baston [19], in its
general version given by C. C. Conley [18].

We begin with the following general existence theorem, which should be
compared with Theorem (8.1). (Recall that we presuppose hypothesis (Fo)
throughout, and we emphasize the fact that we do not presuppose con-
dition (R)).

(9.1) THEOREM. Suppose that Be commutes with P. Then the equation
Au = F(u) has at least one solution.

Proo¥r. Define a continuous map [0,1]XH —H by
(0, u) > Fo(u) := aF(u) + (1 — 0)Bou .

Since the spectrum of B is contained in [«, 8], it follows that F, satis-
fies (F'), uniformly with respect to o €[0,1]. Hence Remark (2.2) applies,
and we can define

ag:= — g(o,")oT* VYoe[0,1].
Then (cf. Lemma (3.1)),
a,(z) = Az — PFs(u(o, 2)) = Au(o, 2) — Fs(u(o, 2))
for all ¢ €[0,1] and 2z € Z, where

u(o, 2) := Rx(o, T12) + Sy(o, T-'2)+ 2.
Hence
a,(?) = (A — Bo)u(g, 2) — o(F — Bu)(u(0, 2))

and, consequently,
(9.1) lage)|>v]e] — 60 VeeZ, Yoe[0,1],

where » > 0 and 6.>0 are independent of o€ [0,1] (cf. Lemma (5.2)).

Since the vectorfield a",(-) on Z is globally Lipschitz continuous, it de-
fines a flow for every ¢ €[0,1]. Let S; denote the set of bounded solu-
tions of the equation

(9.2) d=a,(2),
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that is, S; = {2 € Z| there exists a bounded orbit of (9.2) containing z}.
Then (9.1) implies the existence of a compact set K c Z containing S, in
its interior for every o €[0,1] (cf. [18, Section 11.4.3.A]). Hence K is an
isolating neighborhood for the isolated invariant sets Ss, ¢ €[0,1], which
are therefore related by continuation ([18, Section IV.1, Theorem (1.3)]).
Thus, by the invariance of the homotopy index [18, Section IV.1, Theorem
(1.4)], the homotopy index of S; is independent of ¢ €[0,1]. For ¢ = 0, the
vector field a, is given by

ay(2) = (A — Bo)z Ve Z,

which follows immediately from the fact that B, and P commute. Since
0 ¢ 6(A — Buw), it follows that S, = {0} and that 0 is a hyperbolic rest point
of the flow defined by a,. But the homotopy index of a hyperbolic rest
point is the homotopy type of a pointed sphere X, whose dimension, m,
equals the number of positive eigenvalues of a, (ef. [18, Section 1.4.3]).
Thus the homotopy index, h(S,), of 8, is the homotopy type [X™], where

(9.3) m := « positive » Morse index of (4 — Bw)|Z,

that is, m is the dimension of a maximal subspace Z, of Z such that
(A— Bw)|Z,>0.

Suppose now that the (gradient) flow defined by 2 = a'(z) = a;(2) does
not have a rest point. Then §; = @, and the homotopy index of S, is the
homotopy type of a pointed one-point space (cf. [18, Section I.3.3]), which
is distinet from [2™]. (This is also true, if m = 0, since 2° is a pointed two-
point space.) This contradiction shows that ¢ must have a critical point,
which implies the assertion. U

(9.2) REMARK. If we impose the stronger assumption that B, commutes
with P and P., then we can give a simpler proof of Theorem (9.1), based
on a recent variational lemma of P. H. Rabinowitz [34, Theorem (1.2)].
Namely, in this case, letting C := C := B, Proposition (6.2) implies the
existence of complementary subspaces Z, and Z_ such that

(9.4) ale)<—e_|z|2+0_ VeeZ_
and
(9.5) aR)>¢e 2|2 — 0, VeeZ,,

where ¢, and 8, are appropriate positive constants. Indeed, for Z_ (resp. Z,)
we can take the subspace of Z spanned by the eigenfunctions belonging to
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the negative (resp. positive) eigenvalues of (4 — Bw— y) IZ, where y > o
is sufficiently close to y». On the basis of [34, Theorem (1.2)], inequal-
ities (9.4) and (9.5), and the fact that a satisfies the Palais-Smale condition,
one deduces now eagily the existence of a critical point of a.

However it should be remarked that the assumption, that B. commutes
with P and P,, is, of course, more restrictive than the assumption that B
commutes with P. In fact, in our applications to Hamiltonian systems,
we shall give examples where B, commutes with P, but not with P, (cf. the
remarks following Lemma (12.3)). O

In the following we denote, for any C € £,(Z), by

m; (C) [resp. mz(C)] the « positive » [resp. « negative »]

Morse index of C,

that is, mj (C) [resp. mz (0)] is the dimension of a maximal subspace of Z
on which C is positive [resp. negative] definite. Moreover, we let

my(C) := dim Z — mj (C)— my (C).

Finally, if C € £,(H) commutes with P, which implies that (4 — 0)|Z € £,(Z),
we write simply

mF(4— C) and my(4— C) instead of mi((4— 0)|Z)

and my((4 — C)|Z), respectively .

Using these notations we can now prove our basic existence result for non-
trivial solutions of Aw = F(u) for the case that F(0) = 0 and B. com-
mutes with P.

(9.3) PrOPOSITION. Suppose that B commutes with P, that I'(0) = 0,
and that (R) is satisfied. Then the equation Aw = F(u) has at least one non-
trivial solution, provided
(9.6) m3 (A — Ba) ¢ [m3 (a"(0)), m3 (a”(0)) + my(a’(0))] .

Proor. Let § be the set of bounded solutions of the equation

(9.7) Z=d(2).

Then it has been shown in the proof of Theorem (9.1) that S possesses a
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homotopy index h(S) and that

(9.8) k(8) = [2™],

where m := m; (4 — Bu).

Since F'(0) = 0, Lemma (7.1) shows that 0 is a critical point of a. Sup-
pose now that {0} is an isolated invariant set of the gradient vector field a’
in the sense of C. C. Conley [18, Chapter I, §6.2]. Hence it possesses a
homotopy index A(0). Suppose we can show that h(0) = h(8). Then, there
must exist a bounded solution of (9.7) not containing 0 in its closure. Con-
sequently, dealing with gradient flows, the w-limit set of the corresponding
orbit must contain a critical point of a, that is, there must exist a non-
trivial critical point of a.

Suppose now that 0 is the only critical point of a’. By a linear co-
ordinate change we can assume that a’ is of the form

A E+1(&n0)
A n+f(&n,0
fo (57 7,y 0,

where 2z = (§,7,0)eZ_XZ_xZ, with dim (Z,) = m*, dim (Z_) = m™:=
= myz (a"(0)), dim (Z,)=m", A, ef(Z,) with 4, >0 and 4_<0, and
f:=(f.,7_, 1) € OYZ, Z) such that f(0) = 0 and f'(0) = 0. Let ¢, be the
flow of this vector field. Then there exists a local homeomorphism & of Z,
satisfying h(0) = 0, such that the transformed flow w,:= hog,0h~! has
near 0 the following normal form

(9.9) v, 0) = (eXP [tA+]§, exp [tA_]n, Xt(C)) y

where yx, is an appropriate local flow near 0 € Z,. The proof of this topo-
logical normal form, which generalizes a well-known result of Hartmann
and Grobmann, is implicitely contained in a paper by K. J. Palmer [32]
(where the time-dependent case is treated. The same result has been an-
nounced in [10] and [38] for the case of a C>-vector field.)

Since the flow (9.9) is a product flow on (Z,_ X Z_) X Z, with isolated in-
variant sets §,:= {0} c Z,xZ_ and §,:= {0} c Z,, respectively, it follows
from [18, Chapter III, 6.D] (and the fact that the homotopy index is, of
course, a topological invariant) that

h(O) = h(S1)/\h(So) ’
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where A denotes the smash product (reduced join). Since k(S;) is the index
of a hyperbolic rest point,
h(Sy) = Zm"

(ef. [18, Chapter I, 4.3]). The index h(8,) is the homotopy type of a space h’,
which ean be obtained from a compact subset N of Z, and a closed subset
M c N by collapsing M to a point, that is, h»'= N/ M (ef. [18, Chapter IT1.5.1]).
Consequently (cf. [18, Chapter II1.6.1] or [48, Chapter III.2]),

h(0) = [Z™" AR

Thus it remains to show that A(S) s~ h(0). To see this we compute the
Alexander-Spanier cohomology H (with real coefficients) of X= and of
PXOFN o (cf. [40, Chapter 6]). It is known (ef. [18, Section IV.4.5]) that

(9.10) H»Xm) =R.

On the other hand, it is known that X»"Ak»’ is homeomorphic to the
m+-fold (reduced) suspension XA (ZA...(ZAR™)...) of k' (e.g. [48, Chap-
ter II1.2]). Let C:= h»’ and

A := {[exp 2nit] \z|0<i<}, we O}

B := {[exp 2nit] Az|}<t<1, we C},
where (s, x) —> sAx denotes the canonical projection XxC — XAC, and

where X is identified with (8%, (1, 0)). Then A and B are closed subsets
of 2’AC such that

ANC=A4UB and O(C=~ANB.
Moreover, A U B, A, and B have the same base point. Since a closed sub-
space of a compact space is a «taut » subspace relative to the Alexander-

Spanier cohomology theory [40, Theorem (6.6.2)], it follows from [40, The-
orem (6.1.13)], that we have a long exact relative Mayer-Vietoris sequence

. >Hy(A U B) > Hy(A)® HY(B) ~H(ANB) — ...

(relative to the base points). Since 4 and B are contractible (modulo base
points), He(A) and H«(B) are trivial, and we obtain a short exact sequence

0 — He(C) - H+(ZANC) -0
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for all ge Z. Thus HY(C)~H+ (XA C) and, by induction,
ﬁq(27n+/\ hmo) ~ Hq—nz+(hm°)

for all ge Z. Consequently (recall that h»' is obtained from a compact
subset of K, ~ R'"°),
Ho(Zm" A’y = 0

for ¢ < mt+ and ¢ — m* > m’. Hence, by (9.10),
ﬁ(Zm) = H_m(2m+/\hm°)

if m ¢ [m*, m* + m®], which implies h(S) == h(0). (1

We should like to remark that the principal ideas of the above proof
are due to C. C. Conley.

By combining Propositions (9.3) and (7.3) we obtain now the following
general

(9.4) THEOREM. Suppose that B. commutes with P, that F(0) = 0, and
that (R) is satisfied. Then the equation Au = F(u) has at least one nonirivial
solution, provided one of the following conditions is satisfied:

(a) There exists an operator Cy € £,(H), with commutes with P and P_,
such that
a_<Cy <F'(0)
and

(9.11) m; (4 — C5)>my; (A — Ba).

(b) There exists an operator C; € £,(H), which commutes with P and P,
such that
F'(0)< 0y <P,
and

(9.12) my(A— OF)>m;(A— Bo).

ProOF. (a) Proposition (7.3) implies the existence of a subspace Z_
of Z of dimension m; (A — Oy ) and of a constant ¢ > 0, such that

a(z) <— elz[*+ o([l2]?)
a8 2 — 0 in Z_. This estimate implies easily

my (a”"(0)) + my(a”(0)) <dim Z — mz (4 — Cy).



&
3
o

NONTRIVIAL SOLUTIONS FOR A CLASS ETC.
Thus, by (9.11),
mz (a"(0)) + my(a’(0)) < dim Z — m; (A — Bw) = m; (4 — Bo),

where the last equality follows from the fact that 0 ¢ ¢(4 — Bs). Heunce (9.6)
is satisfied, and Proposition (9.3) implies the assertion.

(b) In this case Proposition (7.3) implies the existence of a sub-
space Z, of Z of dimension m; (4 — Oy ) and of a constant ¢ > 0, such that

az)>efz]*+ o(]2]?)
as 2 —0 in Z,. From this estimate it follows that
my(A— 0f)<mj(a"(0)).

Hence (9.12) implies the validity of (9.6), and the assertion follows again
from Proposition (9.3). O

We add a simple corollary which will suffice for some of our applications.
(9.5) COROLLARY. Suppose that Bew = voly for some ve € [a, f]. More-

over, let F(0) = 0 and let (R) be satisfied. Then the equation Au = f(u) has
at least one nontrivial solution, provided either

(9.13) Bo << 1 < F'(0)
or
(9.14) F'(0) < 2 < Bao

for some ke {1, ..., n;.

ProoF. Fix &> 0 such that & < |4, — v, |, (2 — & 4 + &) Na(£'(0)) =0,
and (A, — & A -+ &) No(4) = {4}. Moreover, let Oy := (4 + &)1, and
0;’ = (lk—— S)IH- Then

k
my(A— Cy) = 3 m(4;)
i=1
and
my (A — O(T) = Zm(lj) .

i=k

Furthermore, a_< Oy < F'(0), if (9.13) is true, and F'(0)<C) < B, if (9.14)
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is satisfied. Now the assertion follows from Theorem (9.4), since

k—1
mz(A— Ba)< 3 m(k)

i=1

and

mi(4— Ba)< Smik). [

i=k+1
It seems worthwhile to point out that in the proof of Proposition (9.3)

we have obtained the following topological result.

(9.6) PROPOSITION. Suppose that the vector field v € CY(RY, R¥) has 0 as
an isolated rest point. Let m* or m®, respectively, denote the dimension of the
unstable- or center-mamnifold, respectively, of the rest point 0. Then, if {0} is
an isolated invariant set of & = v(x), its homotopy index h(0) is given by

h(0) = [Zn AR,

where X»" is a pointed m*-sphere and b is obtained from a compact index
pair (N, N,) in R™" by collapsing N, into a point (¢f. 118, Chapter I11.5]).

PArT TWoO

APPLICATIONS

10. - Elliptic boundary value problems.

In this section we consider the semilinear elliptic boundary value
problem (BVP)

A(x, D)u = f(x,w) in Q,
(10.1)
B(z, D)u = 0 on 092,
where Q c RY is a bounded domain with smooth boundary, 02, lying locally
on one side of 2. Moreover we suppose that

(i) A@, Dyu:= 3 (=1)*'D¥a,D’u) is a strongly uniformly el-
o, 1Bl <m
liptic differential operator of order 2m, with real smooth coefficients.
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(ii) B(w, D) is a family of m smooth boundary operators.

(iii) (A4(x, D), B(w, D)) induces a self-adjoint linear operator A in
H := L,(2), which is bounded below.

(iv) For every p e (1, oo), there exists a constant ¢ > 0 such that

[ullmgm@y<o(|A(@, D)u]1,0) + %] z,a)

for all u e W2™(Q) satisfying B(z, D)u = 0 on 99.
(v) feC(2%xR,R) and( s)ug) leg(w, n)| < oo, where f: denotes the
2, 7)EQ X

partial derivative of f with respect to the second wvariable.

By a solution of (11.1) we mean a classical solution.

It is well known that the hypotheses (i)-(iv) are satisfied, for example,
if B(x, D) is the family of boundary operators describing Dirichlet boundary
conditions, or if m =1 and

N
B(z, D) = z a:;(®) ‘Dyu + b(x)w,

hi=1

where b e 0°(02, R), v = (v, ...,»") is the outer normal on 02, and (a,;)
is the symmetric coefficient matrix of A(x, D) (cf. [23, 29]).

Standard elliptic regularity theory implies that the BVP (11.1) is equiv-
alent to the equation

(10.2) Au = F(u)
in H, where F is the Nemytskii operator of f, that is,
F(u)(@) := f(x, w(®)) VYoel, YueH.

It follows from assumption (v) that F is a continuous potential operator on H,
which is everywhere Gateaux differentiable, the derivative F' being given by

(10.3) [F' (w) k(@) = fs(x, w(@)) h(z) Vwel,

for all w, he H (cf. [2, Section 6]).

It is a consequence of Sobolev type imbedding theorems that A4 has a
compact resolvent. Thus A has a pure point spectrum consisting of eigen-
values '

M< << Ay<...
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of finite multiplicities, having no finite accumulation-point. Moreover, the
eigenvalue problem A« = Au is equivalent to the elliptic eigenvalue problem

A(@,Dyu = lu in Q,
(10.4)

B(x, D)u =0 on 0Q.
In the following we let 4,:= — co.

(10.1) LeMMA: (a) Problem (10.2) satisfies conditions (A), (F), and (R).

(b) If theve exist positive numbers ¢ and o and an integer k € N such that
o e<f@, Off<hp—e V@ &e@xR
satisfying |&|> o, then condition (F) with

Be := 2"](7% —}‘ }-k+1)1H
is satisfied.

ProoF: (a) Condition (v) implies the existence of constants « << g such
that a<fe(z, ) <p for all (z, ) € 2 X R. Since we can assume that «, f ¢ o(4)
this estimate and the spectral properties of A imply easily the validity of
the hypotheses (4) and (F).

Since Z is spanned by finitely many eigenfunctions of (10.4), which are
smooth, it is obvious that Z <> C(2). It follows from Proposition (4.1)
that, for each z e Z, the functions P, v(z) satisfy the equations

AP.v(z) = P, F(u(?)

where u(z) = P, v(z) + P_v(z) + z.
It is not difficult to verify that

(10.5) dom (A) = {u € Wy™(Q)|B(z, D)u = 0 on 02}
(ef. [29, Section 11.8.3]). Hence (10.5) and the Ly-estimate (iv) imply

| P.v(2) — Pyo(o) lwgm < of | F(w(2)) — F(u(z0) | 1, 4 | Po(e) — Puv(20) 1.}
for all #, z, € Z (where, of course, one has to take everywhere the same sub-

seript -+ or —, respectively). Since u(-)e C(Z, H) and Fe C(H, H), it
follows that P, v(:)e C(Z, Wa"(2)). Thus, by a Sobolev type imbedding



NONTRIVIAL SOLUTIONS FOR A CLASS ETC. 579

theorem, P.v(-)e O(Z, L,(R2)), hence u(-)e O(Z, L,(£2)), for an appropri-
ately chosen p > 2.

Since the eigenfunctions of (10.4) are smooth, it follows easily that P_
and P, and hence Piet(Lq(Q)) for every ge(1,00). Thus, by the L, -esti-
mate (iv),

| P.v(2) — P.o(zo) [wam < o{ | F'(w(z)) — F(u(z0)) |, + [Prv(z) — Poov(zo) |1}
for all z,2,€ Z. Since, by (v),
fa, &)<+ blE] V(v &) e OXR

and appropriate constants a, b > 0, it is well known that F e((L,(Q), L,(2)).
Hence it follows that P,v(-) € C(Z, W2"(L)), hence u(-) € C(Z, W2"(Q)). By
repeating this bootstrapping argument a finite number of times, it follows
finally that P,o(-)e C(Z, 0(9)).

Finally, the fact that f:("(2) implies casily that F'|C(2)eC(0(Q), £(H)).
Moreover it follows that condition (R) with E = C(£) is satisfied.

(b) For a proof of this fact we refer to [2, Lemma (6.3)]. O

After thesc preparations we can now prove the following general ex-
istence theorem.

(10.2) THEOREM. Let conditions (i)-(v) be satisfied and suppose, in ad-
dition, that there exist positive constants ¢ and o such that

A 3<f("£', 5)/5\/\ Ak‘{.l_‘ &

for all (@, &) € QxR satisfying |£|> 0, and some ke N (where Jy:= — o).
Then the semilinear clliptic BVP (10.1) has at least one solution.

Suppose, in addition, that f(x,0) = 0 for all e 2. Then the BVP (10.1)
possesses at least one nontrivial solution if either

(10.6) felo, )<l — ¢ or  fe(@,0)>4 . -F¢
for all x e Q.

PrOOF. Due to Lemma (10.1), the first assertion follows immediately
from Theorem (9.1).

It is an obvious consequence of the representation (10.3), that the in-
equalities (10.6) imply F'(0) < 4, or F'(0) > A.,,, respectively. Since, by
Lemma (10.2), 4, << Beo << 44,4, the second part of the assertion is a con-
sequence of Corollary (9.5). O
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The problem of the existence of nontrivial solutions to nonlinear elliptic
boundary value problems has attracted numerous authors (cf. [1-4, 14, 15,
20, 26, 34, 41, 42]. The bibliographies of these papers should also be con-
sulted.) In order to describe the qualitative feature of the results so far
known, let us consider the simple case of the boundary value problem

—Au = f(u) in Q,
(10.7)

=20 on 092,

where f is smooth, asymptotically linear, and f(0) = 0. (Clearly, in almost
all of the above mentioned papers there are considered more general situa-
tions as far as the differential operator and the boundary conditions, the
regularity hypotheses for f, and the asymptotic behavior is concerned. It is
our purpose to exhibit only the qualitative features of the hypotheses.)
The best results so far known are due to K. Thews [41] and P. Hess [26].
In [41] it is shown that (10.7) has a nontrivial solution if either

)<  and  f(0) < A <f'(00) < Ay
or

f&)>4_ and Ay < f'(o00) < A < F/(0)

for some k€ N* and all £ R. Hess [26] obtains the existence of at least
one nontrivial solution if either

Ay <f'(0) < <A < f/(00) < /114.1

and
(10.8) (F(&) — 4_18)E>0 VEeR
or
Ay <f(o0) < <A <f(0)<Aipa
and
(10.9) (f(&) — h28)E<0  VEER,

for some k,!e N* satisfying k<I. Observe that our results imply that
neither of the restrictions f'<A.,., f'> 241, (10.8), or (10.9) is necessary.

Finally, concerning the case that resonance at infinity occurs, we refer
to our remarks in the Introduction about Landesman-Lazer problems.
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11. - Periodic solutions of a semilinear wave equation.

In this section we prove the existence of classical 7-periodic solutions
of the semilinear wave equation

Uy — Uge = f(@, 8, w) in (0, ) XR,
(11.1)
u(0,t) = u(w, ) =0 for teR,

where we impose the following assumptions:

(i) T=2x/t for some 7€Q, 7> 0.

(i) e ([0, 7] xRxR,R) and f(x,t + T, &) = f(x, 1, §)
for all (x,t, &) €[0,x]x RXR.

(iii) There exist constants « << f such that either o > 0 or < 0, and
such that
a<felx, t,)<p V(z,t, 1) e]0, 7] xRxR,
where f: denotes the partial derivative with respect to the third
variable.

We let Q:= (0,7) x(0, T) and H := L,(2), and we define
D:dom(D)cH-»H by Ou := Uts — Ugo y

‘where dom (CJ) consists of all ue CxQ) satisfying u(0,:) = u(x,*) = 0,
u(+,0) = u(-,T), and u,-,0)= u,-, 7). Then it can be shown that
A := [J* the adjoint of [J, is self-adjoint. Moreover, A has a pure point
Spectrum, given by

o(4) = {j2— 2k|(j, k) e N* x Z} ,

and every A€ a(A)\{0} is an eigenvalue of finite multiplicity, whereas 0
has infinite multiplicity. Hence we can assume that o, 8 ¢ o(4).
In the following we denote by F the Nemytskii operator of f, that is,

F(u)(z, t) := f(x, t, u(z, 1)) V(z,t) e

and all we H. Then condition (iii) implies that F is a continuous potential
operator on H, possessing everywhere a Gateaux derivative F’, given by

[F'(w)h)(x, t) = fe(, t, u(x, 1)) h(x, 1) V(z,1) €2
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and all u, he H. It follows now from regularity results in [33] that the
problem of finding T-periodic classical solutions of (11.1) is equivalent to
the problem of finding solutions to the equation Au = F(u) in H (cf. also
[2, Lemma (8.2)]).

(11.1) LEMMA. (a) The problem Auw = F(u) satisfies conditions (4), (F),
and (R).

(b) If there cwist positive numbers ¢ und o and consecutive eigenvalues
A< A of A such that

Z+3<7£(m1t?§)/§<z—‘8 V(z,t,§) e QX R
satisfying |&|> o, then condition (F,) with

. By = 2714 + NI,
is satisfied.
Proor. (a) Hypotheses (ii) and (iii) and the above information on ¢(A4)
imply easily the validity of (A4) and (I).
We claim that condition (R) with I := O(2) is true. Indeed, since Z
is being spanned by finitely many smooth eigenfunctions of A, it follows

that Z <> 0(£2). Morcover, the regularity assumption upon f implies, as in
the preceding secction, that ¥'e C(Z, C(9)). Hence it remains to show that

P,v(-)eC(Z, (D),
where P, v(z) is the unique solution of
(11.2). AP v(z) = P, F(u(z)) VeeZ,

and u(e) = P,o(z) + P_v(z) + 2 (cf. Proposition (4.1)).
For this purpose we let

A-1:= [A|(dom (4) N ker (4)4)]-*.
Then it is known (cf. [33, Formula (1.3)]), that
(11.3) A-1ef(ker (4)*, CHD2) N HY(Q)).

We assume now, for definiteness, that ker (A)c X = P_(H). Then, using
the facts that w(-) e 0(Z, H) and F e C(H, H), (11.3) and equation (11.2),
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imply
(11.4) P.o(-)eC(Z, C(2) N H(ND)) .

In the following we denote by P, the orthogonal projection of H onto
ker (4), and we let Q := P_— P,. Then equation (11.2)_ is equivalent to
the system

(11.5) AQv(z) = QF (u(2))
(11.6) 0 = P,F(vo(2) + 7(2)) ,

where o,(2) := Pyov(z) and 7(2):= u(2) — vy(2) = Quv(2) -+ P, v(2) 4 2 for all
z€ Z. Thus, similarly as above, (11.3) and (11.5) imply

Qu(-) e 0(Z, 0(2) N HY(Q)) .
Consequently, recalling (11.4),
(11.7) r(+)e 0(Z, (D)) .

Now (11.6) and the regularity results of [33] (cf. also [2, Lemma (8.1)])
imply that
2(2) € O(R) VeeZ.

Finally, in order to show that v,(-) € 0(Z, 0(2)), we employ some ideas
of P. H. Rabinowitz [33].

By means of Fourier series it is easily seen that ker (4) consists of the
closure in H of the set of functions ¢ of the form ¢(x, t) = (¢ + ) — p(t — @),
where y is smooth and periodic with periods 2z and 7' (cf. [13, 33]). Sup-
pose that ¢ eker (A4) has the representation ¢(x,?) = p(t + o) — p(f — )
such that

[y] :=fzp(t+w)dmdt=o.
0

In this case, which can always be achieved by adding a suitable constant
to p, we let p¥(x,t) := y(t + ) for all (z,1) € Q.
By means of a Fourier series development it is easily verified that

(11.8) f 1t + ©)g(t — x)dwdt = 0,
2

whenever f and g are 2m-periodic and square integrable, and [f][g] = 0.
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Finally, by multiplying (11.6) by — 1, if necessary, we can assume
that o > 0.

Now let 2z, 2, € Z be arbitrarily fixed, and let w := v,(2) — vy(2o) € ker (4).
Moreover, let

M:= }wt|gq = $lw e
define ¢: R —~ R by

t— M it t>M,
gt :=10 it t|<M,

t+M if t<— M,
and observe that

(11.9) tg(t)> Mlq(t)] VieR.
Then ¢ := g(wt)— q(w~) eker (4), and, due to (11.8) and (11.9),
(11.10) {p, w) = {g(w*) — q(w™), w* — w™)
= {g(w?), w*) 4 {g(w~), w™)
> M [ (Jq(w")| + lg(w)|) dod.
Q

Now (11.6), the positivity of (w, ¢), the assumption (iii), and the mean
value theorem imply

= (F(v(2) + 7(2)) — F(vo(0) + 7(20)), @)
= (F(vo(20) + 7(2)) — F(vo(20) + 7(20)), @
+ {F(vo(2) + 1(2) — F(wo(20) + 7(2)), >
> (F(vo(0) + 7(2) — F(vo(20) + 7(20)), @) + 20, @) .

Consequently, by (11.10),
(AL11) o [(lgw)] + lgter)) dwdt<
o

< |1 B (vo(20) + 7(2) — F(vo(20) + 7(20)) oz 19 2,02 -

Since ||@]z (0 <f(|q(w+)| + |g(w~)|) dwdt, and since the latter integral is posi-
Q
tive, if w = 0, we obtain from (11.11) and the definition of M,

%”’Wi l‘c(§)<0€_luF(”o(zo) + r(z)) - F('Uo(zo) + 7'(%)) ﬂ c@®) *
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Consequently, since |w| g <2|wt|og), it follows that

[ve(2) — vo(20) "G(.T))<°"_1 ”F(’”o(zo) -+ r(z)) - F(vo(zo) + r(zo)) ”C(_(_))

for all 2, 2, € Z. Hence (11.7) and the obvious fact that F|C(2) eC(C(2), 0(2)},
imply v,(+) € C(Z, 0(£2)). Consequently,

P_v(+) = vo(*) + Qu(-) € 0(Z, 0(Q)),

and the validity of (R) is shown.
(b) For a proof of this fact we refer again to [2, Lemma (6.3)]. )

After these preparations we can now prove the following general ex-
istence theorem for 7-periodic solutions of (11.1).

(11.2) THEOREM. Let the assumptions (i)-(iii) be satisfied. Suppose that
1 < 1 are two consecutive numbers of the (discrete) set {j2 — v2k2|(j, k) € N* x Z},
and that there exist positive numbers ¢ and o such that

(11.12) 14 e<fl@ t, E)E<d—¢

for all (z,t,&) €[0, x] XRXR satisfying |£|>0. Then the semilinear wave
equation (11.1) possesses at least one T-periodic solution.

Suppose, in addition, that f(x,t,0) = 0 for all (x,t) €[0,x] xR. Then
the equation (11.1) has at least one mnonzero T-periodic solution if either

(11.13) fe(@, t, 0)<d—e or fe(@,t,0)>1+¢

for all (xz,%) €[0, 7] X R.

REMARK. Suppose that 1 = 0. Then it is an easy consequence of (11.12),
condition (iii), and the mean value theorem, that « > 0. Consequently, in
this case only the second alternative of (11.13) is possible. A similar remark
applies if 1= 0.

ProorF oF THEOREM (11.2). The first assertion follows immediately
from Lemma (11.1) and Theorem (9.1). Since the inequalities (11.13) imply
F'(0) < 1 or F'(0)>> A, respectively, and since, by Lemma (11.1), 1< Bo<< 4,
the second part of the assertion follows, again on the basis of Lemma (11.1),
from Corollary (9.5). O

The problem of the existence of periodic solutions to the nonlinear wave
equation (11.1) has been studied by many authors under the assumption
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that f is of the form eg(w, ¢, £) and & > 0 is small (e.g. [13, 33, 43]). In addi-
tion the bibliographies of these papers should be consulted.) There are only
few papers studying the global problem (ef. [2, 13,20, 30, 35]). Rabino-
witz [35] treats the case of superlinear nonlinearities, to which our results
are not applicable. In the other papers the case of linearly bounded non-
linearities, to which the techniques of [35] do not seem to apply, has been
treated. As far as the qualitative behavior is concerned, the best results for
the latter case are contained in [2]. Namely it has been shown that there
exists at least one nonzero T-periodic solution if, given the assumptions (i)-(iii)
and assuming for simplicity that f is independent of (z, ¢) and asymptotic-
ally linear, either

f'<i and fO)<A<f(oo)< i
or

f'<i and f(oo)<A<f(0)< A
or

>4 and A< f(c0)<A<F(0)
or

> and A< {§(0)< i<f(c0)

for two consecutive eigenvalues of the wave operator. In addition, it is
always presupposed that f'(oo) is not an eigenvalue of L]. (We refer to [2]
for a comparison of these results with the above mentioned work of the
other authors.) Theorem (11.2) shows that neither of the assumption
f'< 2 and f'> 1 is necessary.

In a forthcoming paper [2a] we shall prove the existence of multiple
periodic solutions for a class of autonomous nonlinear wave equations.

12. — Periodic solutions of Hamiltonian systems.

In this section we consider the existence problem of periodic solutions
of Hamiltonian equations:

(12.1) p=— X, p,9), g = 2, p, 9,

where the dot denotes the derivative with respect to the independent
variable ¢. The Hamiltonian funetion J is assumed to depend periodically
on ¢ More precisely, denoting a generic point of R*» = R¥xXR¥ by
x := {p, q}, where p, ¢ € R¥, we shall assume in the following for the func-
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tion J€: R xR* — R:
(i) ¢+ T,-) = ¥(t,-) for all te R and some 7T > 0.

(ii) J€ possesses a second partial derivative J€,, with respect to x € R2¥
such that J,,e€ O(R xR, £(R¥)), and moreover

(12.2) sup [J€..(t, )| < oo
(tym)

Without loss of generality we normalize the Hamiltonian function as-
suming J(¢, 0) = 0, te R. We denote by J € L(R?),

o -1,
(12.3) Ti={,

the standard symplectic structure on R?¥, where I is the identity on R¥.
We then can rewrite (12.1) as

(12.4) @ = JI,(t, u).

The aim is to find 7-periodic solutions » € CY(R, R2Y) of (12.4).
We first formulate the problem in our abstract set up. For the remainder

of this section we let
27
ik

Ti=

and we consider the real Hilbert space H := L0, 7; R*). We define a
linear operator

A:dom(A)cH —~H by dom (4) := {z € H(0, T; R™)[»(0) = x(T)},

and
Az = — Ji = {§,— p} .

Finally F: H — H is defined by
F(u)(t) := %,(t, w(t)), Vte[0,T], VueH.

The assumptions (i) and (ii) imply that F is a continuous potential operator
on H, the potential @ being given by

T
d(u) = f J(t, u(t))dt, VueH.
0
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Moreover, F' possesses a symmetric Gateaux derivative F' on H, and
(12.5) [F'(w)h](t) = 3..(t, w(®))h(t), VYu,heH, te[0,T].
Therefore, by the mean value theorem,
alu—v|2<(F(u)— F@), u—v)<pllu—»|®, VYu,veH,
provided o, § € R satisfy
(12.6) a<XKeolt, E)<B, V(&) €0, TIXR™

that is alyl?< (Kt £)n, 1) <Blnl?, t € [0, T), & n € R, where (-,) denotes
the Euclidean inner product in R?. Observe that (12.6) is equivalent to
o(%..(, &) c [, B1, V(2, &) € [0, T1x R*, and that condition (ii) implies the
existence of constants «, f € R satisfying (12.6).

Clearly, every solution e dom(4) of

(12.7) Au= F(u)

defines (by 7-periodic continuation) a (classical) T-periodic solution of the
Hamiltonian system (12.4). Conversely, every T-periodic (classical) solu-
tion of (12.4) defines (by restriction to the interval [0, T]) a solution of (12.7).
Thus the problem of finding 7-periodic solutions of the Hamiltonian
system (12.4) is equivalent to the problem of finding solutions of the equa-
tion Au = F(u). Observe that, for v € dom (A4), the equation Au = F(u)
is the Euler equation of the variational problem:

T

8[{(p(0), d) — %(t, p0), g} ar =0,

0

subject to the periodicity conditions (p(0), ¢(0)) = (p(T), ¢(T)).
The following properties of the operator A are readily verified (cf. also [21).

(12.1) LemMMA. (i) A is self-adjoint, has closed range and a compact
resolvent.

(ii) o(A) = 7Z, and each A€ o(A) is an eigenvalue of multiplicity 2N .

(iii) For each Aea(A), the eigenspace ker (A— A) is spanned by the
orthogonal basis

t — exp [AtJ]e, = (cos At)e, + (sin At)Je,, k=1,...,2N,
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where {€;|1 <k <2N} is the standard basis of R*. In particular, ker (4) = R,
that s, it consists of the constant functions.

On the basis of Lemma (12.1) and the remarks preceding it, it is now
easy to prove the following

(12.2) LeEMMA. The problem Aw = F(u) satisfies conditions (A), (F),
and (R).

Proor. It is obvious that conditions (4) and (F) are true, if we fix
o, f € R\tZ such that (12.6) is satisfied. As for condition (R) we observe
first that, due to (12.5), F'|C([0, T], R*) e O(C([0, T], R), £(H)). More-
over, Lemma (12.1.iii) implies Z <> O([0, T'], R*¥), where Z is the subspace
of H spanned by the finitely many eigenfunctions of A belonging to the
eigenvalues 7Z N [a, #]. Finally, observe that, for every 1¢ tZ and v e H,

t
[(A— A)"10](t) = exp [tAJ Juy— |exp [A(t— s)J]v(s)ds, O<ti<T,
0

where
T

to = — [Loy— exp [TAJ]] 2 f exp [T — s)Jo(s)ds .
0
This implies

(A— A)-'ef(H, O([0, T], R®™)) Vi¢<Z.
Consequently, since Proposition (4.1) implies
Poo(z) = (A— A)'P, [v(z) — F(v(z) +-2)] VezeZ,
provided A¢ tZ, and since (‘) € C(Z, H), it follows that
P.v(-)eC(Z, O([0, T], R*¥)) .

Hence condition (R) with E = C([0, T], R*¥) is satisfied. |

In order to formulate the asymptotic behaviour of J¢ in the abstract
framework, we introduce some special linear operators in H. Let b € £,(R>)
be a symmetric matrix, then B e £(H) is defined by

Bu(t) := bu(t), Vie[0,T], YueH.

The following Lemma summarizes some properties of B needed later
on. Here and in the following o,(-) denotes the point spectrum.
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(12.3) LEMMA. (i) B is symmetric and o(B) = 0,(B) = o(b). The oper-
ator A — B is selfadjoint and has compact resolvent, hence 6(A — B) = o,(A — B).

(i) Aea(Ad— B) iff o(J(+ 1) NitZ~0.
B
(iii) Let «=— B, then B commutes with P ::de;, the orthogonal pro-

jection onto the subspace Z of H, spanned by the eigenfunctions of A belonging
to the eigenvalues in [a, ).

Proor. (i) It is obvious that B is symmetric and ¢(B) = ¢,(B) = a(b)
Standard arguments (cf. [27]) and Lemma (12.1.i) imply that A — B i
self-adjoint and has compact resolvent.

(i) From (i) we conclude that Aeo(4d— B) iff the equation
(A — B)u = Au has a nontrivial solution 4 € dom(A4). From — Ju— bu = Au
we find u(t) = exp [tJ(b + A)]u(0). Since u(0) = w(T) for u e dom (4), we
conclude that Aeo(d— B) iff 1ea(exp[TJ(b+ 4)]) = exp [To(J(b+ 4))],
by the spectral mapping theorem. Now the assertion (ii) is obvious.

(iii) For every leo(A) = tZ, let E(A):= ker (1 — A) be the eigen-
space of 4. Then, by Lemma (12.1):

(12.8)  B(2) -+ {V—

Obviously, B maps E(A) + E(— A) into itself. This implies the last part of
the assertion. O

tefo, T, x,yeR2N}.

cos (At)x + V— sin (At)y

As a technical sideremark we observe that if b e £,(R?¥) is of the form
b = Diag (a, — a), for a € £,(RY), then B(ker(A— A))cker(— A— A). Hence
B(X)c Y:= P,_(H) and B(Y)c X:= P_(H), provided « = — 8. Thus B
commutes with P, but it does not commute with P, or P_.

After these technical preparations we arc ready to prove the following
existence statement for T-periodic solutions of the Hamiltonian system (12.4).

(12.4) THEOREM. Let JE(t, x) be periodic in ¢ with period T > 0. Assume
the Hamiltonian vectorfield is asymptotically linear:

(12.9) JI (L, &) = Jb & +o(lE]), as | —>oo0,
uniformly in t € R, for a time independent bo € £,(R2¥). Then the Hamiltonian
system

W = JI,(t, u)

has at least one T-periodic solution, provided o(Jbw) N i(27/T)Z = .
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Actually we prove a more general statement. Instead of requiring (12.9)
we merely make the following assumptions on the asymptotic behaviour of J¢,:
there exist two constants p. and d., such that

(12.9') [x(ty @) — b | < Yool| 4 Oeo

for all (¢, x) € R x R?¥, where po satisfies 0 < y» << min {Ml[/’l € o(A — Bw)};
the operator B € £(H) being defined as

Bou(t) := boou(t), t€[0,T] and ue H.

ProoF. In view of the general assumption (12.2) we fix o:= — §,
B > 0, such that a ¢ vZ and o(be), o(¥,.(¢, £)) C [a, B] for all (¢, &) € R x R2¥,
Since by assumption ¢(Jbw) N i(27/T)Z = @, we know by Lemma (12.3.(ii)),
that 0 ¢ 0(4 — Bs). Due to (12.9'), condition (¥,) is met. By Lemma (12.3.(iii)),
B commutes with P, hence, recalling Lemma (12.2), the assertion follows
immediately from Theorem (9.1). O

In the autonomous case, that is, if JC is independent of ¢, Theorem (12.4)
is not of much interest. Indeed, in this case the first part of the following
proposition implies that, in general, J possesses a critical point hence,
(12.4) has a constant solution, which is clearly 7T-periodic.

(12.5) PrOPOSITION. Let fe C(R" R), and suppose that there exvists a
nonsingular matriz bo € L,(R") such that

If (%) — boo®| <Yool®| + 0w, VZER™,

where 8w >0 and 0 < yo < |bt|~! are constants. Then f has at least one
critical point. Suppose, in addition, that f'(0) = 0. Then f has at least one
nontrivial critical point provided

m~(be) ¢ [m~(1"(0)), m~(f"(0)) + m°(f"(0))] ,

where m—(-) denotes the « negative » Morse index.

Proor. The assertion follows easily from Theorem (9.1) and Proposi-
tion (9.3), letting H := R", A:=0, and F:=f". 0

In view of this Proposition we shall assume in the following that the
Hamiltonian vectorfield JJ€, possesses an equilibrium point, which we
agsume to be 0, hence JI,(f, 0) = 0. We consider a Hamiltonian vector-
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field satisfying
JI,(t, &) = JbE + o(|€]), as |§] =0

and

JH, (8, &) = Jbook + 0(|€]), as |§| = oo,

uniformly in #e R, for two symmetric time independent matrices b,,
bo € L,(R?¥), Our aim now is to find 7-periodic solutions of % = JI,(¢, u),
which are not the trivial solution w(f) = 0. In order to describe the dif-
ference between the two linearized systems at 0, and at oo, Jb, and Jbe,
which will guarantee a nontrivial 7-periodic solution, we shall introduce
next an integer, Ind (by, beo, 7).

For a fixed symmetric b € £,(R?") we define the quadratic forms Q,,
peR, on R¥ xR as follows:

(12.10) Qu?) := 2u(Jz, y) — (bx, ©) — (by, y),

with z:= {x, y} € R* x R**. The matrix of this form is given by

0o JT\ (b 0
(12.11) H(J 0)—(0 b),

observing — J = J7. With m*(-), m°(-) and m~(-) we denote in the fol-
lowing the positive, the zero and the negative Morse index, respectively,
of a quadratic form or of the symmetric matrix defining it.

(12.6) LEMMA. (i) m*(Qu) = 2N if u> max {x € Rlix € a(Jb)}. (ii) As-
sume Jb has no purely imaginary eigenvalues (except possibly 0) then
m*(Qu) = 2N for all u > 0. If, in addition, b is invertible, then m+(Qu) = 2N
for all u>0, and m*(b) = N = m~(b). (iii) m*(Qu) = 0 iff 1u ¢ o(Jb).

Proor. If y> 0 and sufficiently large, then m*(Q) = 2N, the positive
index of the form (Jw, ) in (12.10). If x4 decreases, the index m*(Q,) can
change only at those values of u, for which the matrix (12.11) is singular,
that is m°(Q,) = 0. This happens precisely for those values of u € R, for
which iy is a purely imaginary eigenvalue of Jb. Indeed, assume z:= {r, Yt e
€ R*¥ x R?Y ig an eigenvector of (12.11) with eigenvalue 0. Then, since
JT= —,

b+ pJy =0
by — uJr =0,
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therefore b(x 4 iy) = uJ(tx — y) = iud (@ 4 vy), hence
Ib(w - iy) = —iu(@ + iy)

therefore 4 iu € 6(Jb). From these remarks the assertion is immediate. [
We now define Ind (by, b, 7) € Z for b, b € £,(R2¥) and for 7> 0 as
follows:

(12.12) Ind (by, beo, 7) := Mm~(by) — M~(beo) + EI{W(Q;; ) — mHQE)} .

Here Q). (vesp. Q;7) is the quadratic form (12.10) with u:= jz and b:= b,
(resp. b := bx). In view of Lemma (12.6) the sum is finite. The following
properties of the integer (12.12) follow immediately from the definition and
from Lemma (12.6). Observe, 0 is also considered as purely imaginary in
the next Lemma.

(12.7) LEmMA. (i) Ind (b, beo, T) 78 a symplectic invariant, that is
Ind (s7bo8, $7bx 8, T) = Ind (bo, b, T) for all s€Sp (2N).

(ii) Ind (bo, boo, T) = 0 if either (1) by = be, 01 (2) Jby and Jbew have no
purely imaginary eigenvalues. O

We are ready to prove

(12.8) THEOREM. Let J(t, x) be periodic in t with period T > 0. Assume:

JI.(ty &) = Ibe& + o([E]),  [§] >0
TR, (t, &) = Ibe, &+ 0([E]), [§] = oo,

uniformly in te R, for two time independent symmetric by, bo € £,(R2Y). As-
sume o(Jbw) Ni(2n|TVZ = @ and a(Jb,) N i(2xn/T)Z = @. If

Ind (bo, be., 27”);& 0,

there exists at least one nontrivial T-periodic solution of u = JI.(t, u).

In view of Lemma (12.7) the occurrence of purely imaginary eigen-
values of Jb, or Jbs is necessary in order to have Ind (b,, beo, 27/ T) 5= 0.

ProOF. Define B,, Bw€ £(H) by Byu(t) = byu(f) and Bou(t) = botu(t),
te[0, T], uc H. Fix a:=— B for g> 0 sufficiently large, ¢ a(4). By
assumption o(Jbw) N 4(277/T)Z = @, hence by Lemma (12.3), 0 ¢ (4 — Bw),
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and (F,) is satisfied. The statement follows from Proposition (9.3). Indeed,
B and B, commute with P by Lemma (12.3). From Proposition (4.5) and
formula (3.2) we find

a'(0) = (A— By)|Z.

Since o(Jb,) N i(2n/T)Z = @, we have 0 ¢ o(4 — B,), hence my(a’(0)) = 0.
It remains to prove that

my (A — Bo) 7%~ m; (A — B,).

Let A = jre o(4),j>1, with v = 2x/T, and let E(4) c H be the corresponding
eigenspace. The restriction of A — B;, i = 0, oo, onto the subspace E(— 1) |
-+ E(A) c H defines a quadratic form. In view of (12.8) this form is given
by (12.10), with g = A and with b = b,, ¢ = 0, co. Therefore, by (12.12),
the definition of Ind (b,, b, 7),

my (A — By) — mj (A — Bw) = Ind (by, beo, T) .

The statement now follows from Proposition (9.3). O

We next compute Ind (by, bw, 7) in terms of the purely imaginary eigen-
values of Jb, and Jbw. To simplify the presentation we do not consider
the most general case, for which we refer to [2b].

Let b € £,(R?¥) be symmetric. The quadratic Hamiltonian function

k(z) = } (b2, ), weR¥,

defines the linear Hamiltonian vectorfield £ = Jbz on R?¥. Clearly, every
purely imaginary eigenvalue ix, x € R, of the infinitesimally symplectic
matrix Jb gives rise to a periodic solution of £ = Jbx with period 2z/|a|.
The purely imaginary eigenvalues of Jb occur in pairs -+ ¢|x|, « € R, that
is, if 4o is an eigenvalue of multiplicity 7, then — i« is an eigenvalue of mul-
tiplicity 1. It is well known (cf. [12]) that the eigenspace belonging to a
pair 4 s« of purely imaginary eigenvalues is a symplectic subspace of R*¥,
the restriction of Jb onto this subspace is infinitesimally symplectic with
quadratic Hamiltonian. Let - 4|a], k =1,2,..., be the pairs of purely
imaginary eigenvalues of Jb counted with their multiplicities. For simpli-
city we shall assume, that on the invariant subspace which belongs to these
eigenvalues, there exists a symplectic transformation s € Sp (2r), which puts
the corresponding Hamiltonian function into the following form:

(12.13) 1> alpi+ ),
k=1
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which is a symplectic normal form. We shall repbrase this assumption as
follows: the imaginary part of Jb is symplectically diagonalizable. It is
well known that this assumption is met, if the imaginary eigenvalues are
simple, or if the restrictions of the Hamiltonian function onto the eigen-
spaces of the pairs -+ oy are positively or negatively definite. The sym-
plectic normal form (12.13) allows to choose the signs of the pairs 4 7|a,l,
k=1,2,..,r in a symplectically invariant way; we call the (unordered) set.

8 1= {iay, t0ty, ..., tot,}

the set of positively oriented imaginary eigenvalues of Jb. For example,

let the multiplicity of the pair + iz, a€ R, be 8, with normal form
2

1o Y (p} + ¢f) — La(p} + ¢3), then the set of positively oriented eigen-

i=1
values is {ix, ie, — ia}. For an intrinsic definition of the symplectically

invariant « orientation », induced by the symplectic structure in the set of
imaginary eigenvalues, we refer to [31a].
In the following let [S] denote the cardinality of a finite set 8.

(12.9) LEMMA. Assume the imaginary part of Jb is symplectically diag-
onalizable, and let
8 = {iay, iaty, ..., fot,}

be the set of positively oriented imaginary eigenvalucs. Then:
m*(Q,) = 2N — 2[ix € Sla > u] 4+ 2[ix € Sla < — u]

provided p >0 and p~ o), k=1,2,..,r.
If, in addition, b is invertible, then:

m~(b) = N — [ia € Sl > 0] 4 [ix € Sl < 0].

Proor. In the proof of Lemma (12.6) we have seen that, for 4 > 0 and
sufficiently large, m+(Q,) = 2N, and that if u decreases, the index m™(Qu)
can change only if iu € ¢(Jb). Let now iz, « € R be a simple, positively
oriented eigenvalue of Jb. Putting, by means of a symplectic transformation,
the restriction of the Hamiltonian belonging to Jb onto the eigenspace of
the pair -+ iax into its symplectic normalform (12.13), that is into
Ya(a? 4 2%), we find for the restriction of — @, onto these eigenspaces:

(12.14)  2u(zy, — 2,y,) + «(@] + @f + v + 93) =
= {2um,y, + a(@l + y2)} + {— 2umy, + «(@f + 93} »
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where {z,y} e R*xR? Assume « >0, then the positive index of the
quadratic form (12.14) changes by - 2 if u crosses « from above. On the
other hand if « < 0, then the positive index of the form changes by — 2 if u
crosses — o = || > 0 from above. In case the eigenvalues of the pair
-+ i are not simple, the restriction of @, onto the eigenspaces is a sum of
quadratic forms of the type (12.14) according to the corresponding normal-
form which by assumption does exist. The Lemma now follows. O

We are ready to express the integer Ind (d,, b, 7) in terms of the posi-
tively oriented imaginary eigenvalues of Jb, and Jbn. By means of Lem-
ma (12.9), Lemma (12.6) and Definition (12.12) we easily find:

(12.10) LeMMA. Yet by, b € L,(R?) and 7> 0. Assume the imaginary
parts of Jb, and Jbe are symplectically diagonalizable and let

o .___ (.0 0 : 0
8° := {iaf, i3, ..., ial},
and
© ., (@ ;o . o
8% = {iay, G0g, ..., f0” },

be the sets of positively oriented imaginary eigenvalues of Jb, and Jbo. As-
sume o(Jby) NitZ = 0 and 0(Jbw) N itZ = 0. Then

(12.15)  Ind (bo, beo, 7) = m~(bo) — M~(beo) -+

+ 2 3 ([ia® € 8°)a® < — jr]— [ia® €8° |a® > jr]) —
i=1

(1> € 8®|a® < — jr]— [io® € 8®|a > j7]) ,

M8

—2

i=1

I

where
m=(by) — M (boo) = [ix® € 8° |a® < 0] — [iax® € 8 |x® > 0] —
— [ta® € 8®|a™ << 0] -+ [1a® € 8°|a® > 0].
In particular, Ind (by, b, T) 5= 0 if either (1) a® > 0 and a® << 0, or (2) a® << 0
and o® >0, or (3) Jb, (resp. Jbw) has no purely imaginary eigenvalues and

the restriction of the form be (resp. b,) onto the eigenspace of the purely imaginary
eigenvalues of Jbo (resp. Jby) is positively or megatively definite.

(12.11) THEOREM. Let JC(t, x) be periodic in t with period T > 0, and let

J.(t, &) = bo & + o(I€]), [£E]| >0
3.(t, &) = bk + o([E]), |£] > o0
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uniformly in t € R, for two time independent symmetric by, bo € L,(R?¥). As-
sume o(Jb,) N i(2x/TVZ = 0 and o(Jbw) N 1(27/T)Z = O, and assume that Jb,
and Jbo are symplectically diagonalizable. If Ind (b,, beo, 27t/T) 5~ 0, there
exists at least ome montrivial T-periodic solution of #u = JI,(t, u). Here
Ind (by, boo, 27t/ T) s ewplicitely given by (12.15).

(12.12) COROLLARY 1. If the restriction of b, onto the eigenspace of the
purely imaginary eigenvalues of Jb, is positively definite (resp. megatively
definite) and if the restriction of bo onto the eigenspace of the purely imaginary
eigenvalues of Jbew is megatively definite (resp. positively definite) then there
exists at least ome nmontrivial T-periodic solution of @ = JI.(t, u) provided
0(Jbo) N 127 /TVZ = O and o(Jby) N i(2n/T)Z = 0. O

In particular, if b,> 0 (resp. b, < 0) and be << 0 (resp. bo > 0), there
exists at least one nontrivial 7-periodic solution provided the nonresonance
conditions of Corollary 1 are satisfied.

(12.13) COROLLARY 2. If Jb, (resp. Jbo) has no purely imaginary eigen-
values, and if the restriction of be (resp. b,) onto the eigenspace of the imaginary
eigenvalues of Jbeo (resp. Jb,) is definite, then there exists at least one nontrivial
T-periodic solution of 4 = JI,(t, u) provided o(Jbw) N (2n|T)Z = O and
o(Jbo) N §(2n/T)Z = 0.

In particular, if Jb, (resp. Jbo) has no imaginary eigenvalues and Jbe
(resp. Jb,) has only one pair -+ ix, « € R, of imaginary eigenvalues, which,
in addition, are simple, then there exists at least one nontrivial T-periodic
solution, provided « ¢ (2n/T)Z.

In case the Hamiltonian function is independent of #, Theorem (12.8)
guarantees a nonzero (2s/7)-periodic solution of % = JJ,(u), for every
frequency 7 for which Ind (b, bw, 7) 5= 0. The periodic solution so found
may however be a constant, u(t) := y € R*, y 5= 0, namely if y is an equi-
librium point, that is JC,(y) = 0. Our next aim is to find nonconstant
T-periodic solutions of the time independent Hamiltonian system with
prescribed period 7. We clearly have to impose additional assumptions
on J&. We first study the case of a convex function J€, such that

JH(E) = JboE + o(lE]),  [E] >0
JH(E) = Tbeok + 0([E]),  [§] > o0
for two positively definite b,, b € £,(R?¥). In this case, as it is well known,

all the eigenvalues of Jb, and Jb, are purely imaginary, - iaj, o0 = 0, oo,
1<k<N (counted with their multiplicities), and Jb,, Jb are symplectically
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diagonalizable. There are symplectic transformations which put }(bsz, x),
o = 0, co into their symplectic normal forms

N
(12.16) 12+ a0, o6>0,k=12..,N
k=1

for 0 = 0, co. Assume o(Jb,) Ni7Z = O and o(Jbo) N i7Z = @. It then
follows from Lemma (12.10):

(12.17) Ind (bo, beoy 7) = 2 Y ([0®]™ > j7] — [a®]a® > j7]) .
=1
(12.14) THEOREM. Assume JX(x) to be a convex function, such that

Je,(£) = b, , 0
12.18) [ (&) E4o(lE), €]~

K.(§) = bk + o([E]), ] > oo
with by, b € L,(R2Y), by > 0, bo > 0. Then for every v > 0, such that o(Jby,) N
NitZ = 0 and o(Jbe) N i7Z = O, and such that Ind (b,, b, T) 5= O there is

a monconstant (2z/t)-periodic solution of 4 = JI,(u). Here Ind (by, be, 7)
18 given by (12.17).

Proor. Since by the convexity of JC, 0 is the only equilibrium point
of the Hamiltonian vectorfield JJ,, the statement is an immediate con-
sequence of theorem (12.8). |

(12.15) CoroLLARY. Let JC be conver and satisfy (12.18). Then the Hamil-
tonian system u = JI,(u) possesses at least one nonconstant (27/t)-periodic
solution for every T > 0 satisfying one of the following conditions:

(@) max{of} <7<max{ay} and o ¢1Z, 1<k<N.
() max{og} <tv<max{oy and oh¢rZ, 1<k<N.

ProoF. From (12.17) we read off:

(@) Ind(bo, beo, T) = 2> [0®le® > jT] >0
i=1

(®)  Ind (b, beoy 7) = — 2 3 [ > jr]<0. O
i=1

We point out, that in many of the previous statements the nonresonance
condition on b, is not necessary. This requires a more careful study of
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Ind (by, bw, 7) and the application of Proposition (9.3) in its full generality
(cf. [2b]). We mention another consequence of Theorem (12.14). Assume
that S, the set of positively oriented eigenvalues of Jb., is different
from §8° the set of positively oriented eigenvalues of Jby; then there is a
sequence {z.}, 7 > 0, such that Jim v, = 0 and Ind (b,, b, 7;) 5 0. There-
fore, if the two linear Hamiltonian vectorfields Jb, and Jbo are symplec-
tically inequivalent, there is an open and unbounded set U c R, such that
% = JJC,(u) possesses a nonconstant 7T-periodic solution for every T e U.
In addition, it can be shown [2b], that the integer [Ind (b, bw, 7)| is a lower
bound of the number of geometrically distinet 2s/z-periodic solutions.

In Theorem (12.14) JC is assumed to be a convex function. We finally
present an existence statement which does not assume that the auto-
nomous Hamiltonian is convex. Instead of giving rather general conditions,
we restrict ourselves to a simple situation, and we leave it to the reader to
deduce more general results along the lines of this proof.

(12.16) PrOPOSITION. Let J(¢, x) be periodic in t with period T > 0, and
let 36>0. Suppose that, for some constants o <<0 < f, o(3..(t x)) C [«, ],
V(t, ) e R x R*™. Assume

JI.(t, &) = o(I€]), €] =0
JI(t, &) = BIE + o(|&]), |£] > o0

uniformly in t € R. Then the Hamiltonian system u — JI, (L, u) possesses at
least one nontrivial T-periodic solution, provided T > 2xn|f and T ¢ (2n/B)Z.

If, in addition, JC is independent of t, then the system w = JIC,(u) pos-
sesses at least one nonconstant T-periodic solution for every T > 0 satisfying
T>2n/f and T ¢ (2n/f)Z.

PROOF. Since Be = fI; commutes with 4 and o(Bw) = {8} ¢ 7Z = a(4),
it follows that condition (F) is satisfied and that y»> 0 can be chosen
arbitrarily small. Since § > 7, there exists a largest positive number j such
that 1, = jz. Consequently, since B, = 0, it follows that (4 — B,)|Z < 0.
On the other hand, (4 — Bw)|Z = (4 — 8)|Z < 0. Consequently, letting
Cf := B, =0 and C; = B and choosing y» > 0 sufficiently small, The-
orem (8.3.i) implies the existence of a nontrivial solution « of Au = F(u).

Suppose now that J€ is independent of t€ R and that u(f) =y € R¥
for allt € [0, T]. Then u € ker (4) and @(u) = TH(y). Hence, by Lemma (3.1)
and since JC> 0, a(2) = — T¥(y) <0, which contradicts the fact that a(z) > 0
by Remark (8.5). Now the assertion follows. O
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The problem of finding periodic solutions of Hamiltonian equations
u = JI,(?, u) is an old one. Many papers are devoted to the study of periodic
solutions near an equilibrium point, say ¢ = 0, of the (usually autonomous)
Hamiltonian vectorfield JJ,. Clearly, every purely imaginary eigenvalue
of the linearization JJC,,(0) gives rise to a periodic solution of the linearized
equation, and it is well known that the presence of purely imaginary eigen-
values is necessary in order to find periodic solutions near x = 0. In the
case of purely imaginary eigenvalues - ‘a, ..., 4 ey, which are non-
degenerate in the sense that, say oy ¢ a,Z, 2<k <N, Lyapunov established
a one parameter family of periodic solutions close to # = 0, having periods
close to 27/, (cf. [28, 39]; see also [7 -9]). More recently, A. Weinstein [46, 47]
removed the additional nonresonance condition. He proved for e C?(R*¥, R),
satisfying J€(0) = 0, J'(0) = 0, and having a positive definite Hessian J&"(0),
that, for sufficiently small ¢ > 0, the energy surface J¢—1(¢) contains at least
N periodic orbits, whose periods are close to those of the linearized
system JE"(0). Subsequently this result was generalized by J. Moser [31],
R. Bottkol [11], A. Weinstein [45], and by E. R. Faddell and P. H. Rab-
inowitz [24]. The existence proofs of these bifurcation results depend on
topological arguments. If JC is sufficiently smooth, that is, J e C*(R%¥, R)
for k> 3N + 2, one finds in general an abundance of periodic solutions
near a nondegenerate elliptic equilibrium point. Indeed, under finitely
many inequalities involving the coefficients of the 4-th order jet of J at 0,
there is, in every open neighborhood of 0, a set of positive Liebesgue measure,
consisting of the closure of the set of periodic solutions in this neighborhood.
The periods of the solutions so found are however very large.

All the results described so far involve small perturbations and are, in
this respect, not global. As for more global results, P. H. Rabinowitz [36]
found on every regular energy surface, which is radially homeomorphic to
the (2N — 1)-sphere, a periodic orbit. Related results for convex Hamil-
tonians are due to A. Weinstein [44], I. Ekeland [21], and I. Ekeland and
J.-P. Lasry [22].

In contrast to these existence results for periodic orbits, whose periods
are either not at all or only approximately known, we are interested in the
existence of periodic solutions whose periods are prescribed. Results in
this direction are due to Rabinowitz [36], Clarke and Ekeland [17], and
J. Coron [20]. In [36] T-periodic orbits are found (in the autonomous case)
for every T >0, provided J& grows superquadratically (like ||, o> 2)
at infinity and grows slowly near the origin. As far as the growth condi-
tion is concerned, the results of [17] are related to ours. Namely, if J(z) <
< (k/2)|x|* for large values of |z|, and J(x)>(K/2)|x|* for |x| near zerq,
where K > 1/2k, the authors derive the existence of a T-periodic orbit with
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minimal period for every T satisfying 27/K < T < V/2/k, provided J>0
and J is convex. The solutions in question are characterized as the solu-
tions of a specific minimization problem following an idea of F. Clarke [16].
In addition estimates for the energy levels of the solutions are given.
A related approach has been used by Coron [20].

Our results are different in nature. We assume the vectorfield to be
asymptotically linear. The comparison of the linearized systems at the
equilibrium point # = 0 and near infinity yields (in the autonomous case)
the periods T for which we find periodic orbits. Related results for special
cases are due to D. C. Clark [15a]. We do not necessarily have to assume
that the spectra of these linearized systems are separated from each other,
neither that the Hamiltonians are convex. In addition we emphasize the
fact that we can handle without difficulties the nonautonomous case, which
is not true for most of the above mentioned papers.
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