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Monotonicity of the Free Boundary
in the Two-Dimensional Dam Problem (*).

LUIS A. CAFFARELLI - GIANNI GILARDI

Introduction.

Two reservoirs containing water with different levels are separated by
a porous dam D : the water flowing from the first reservoir to the other
wets a subset S2 of D.

The purpose of this work is to study monotonicity properties of the
flow in the two-dimensional stationary case. Our conclusion, in its simplest
form, is that the free boundary D n 2D is a monotone graph provided aD
itself satisfies suitable geometrical assumptions.

As part of our proof we obtain the result, which is interesting by itself,
that the now is tangential to the boundary of the dam at points of the
seepage line.

At last we show how our technique allows us to control the number of
monotone arcs of the free boundary in the case of several reservoirs.

It must be pointed out that our monotonicity assumptions on aD are
always natural hypotheses since in the formulation of the problem no new
reservoirs are allowed to be formed. It would be interesting to state the
problem in which water can form such reservoirs and show monotonicity
properties of the free boundary also in this case.

1. - Statement of the problem.

Let a, b, c, a,, bl , y,, y, be real numbers and Yo, Yi be two real func-
tions satisfying the following assumptions:

(*) This work is partially supported by the G.N.A.F.A. and the Laboratorio
di Analisi Numerica of the C.N.R. (Italy).

Pervenuto alla Redazione il 3 Settembre 1979.
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We shall use the following notations:

Filially v will be the exterior normal unit vector to 2D.

Consider the following problem:
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PROBLEM 1. Find a pair icp, p f satisfying the following condi-

tions (1.4)-(1.7) :

setting Q = f (x, y) E D: y  99 (x)l, A = D - S2 and X = characteristic func-
tion of Q,

finally, pv = - cos vy on TN and p,  - cos vy on To n aQ in the following
weak sense (1) :

The graph of Q will be called free boundary.
It is well known that this problem has one solution, that 99 is analytic

where Q(x)  y’(x) and p E C’,’(-D) da E ]o,1[ (see [1], [2]).
In this paper we prove that Q is strictly decreasing in [a, b] and that

Q(x) exists and Q’ (x) == Y’(x) at point x E [e, b[ satisfying gg(x) = Y(x)
(i. e. 8Q and aD are tangential).

Results of this kind were known only in some particular cases for the
shape of D (see e.g. [3], [5], [6]. For complete references about problem 1
see [4]).

We recall some known results that will be useful later:

LEMMA 1.1. Let Q be an open subset of W. If T E D, eo &#x3E; 0, u E C°(,S2 n
B20o ) ( 2) and Ju &#x3E; I in S2 n B,Lo(.7v-), u &#x3E; 0 in 12 (-) B,,L)(,(.T), u =: 0 on

8Q n B2Qo (x) then

(1) Clearly (1.7) also contains the equation Ap + Xv = 0.
(2) B,(y) and R,(y) are respectively the open and closed ball of center y and

radius e.
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PROOF. It is sufficient to prove (1.8) with so e Q r1 B(}o(x) since the con-
stant 1/2n in (1.8) does not depend on x° . Consider xo E , n Bo(x) and
e  Q,, and take v(x) = u(x) - u(xo) - (1 /2n) l0153 - X,,l 2. If v - 0 (1.8) is ob-

vious. Let us suppose v # 0. We have v E CO(tJ r1 B2(}o(x)), Av &#x3E;- 0 in

Q r1 Be(0153o); thus if yo is a maximum point for v in Q n B-,,(x,,) we have
yo E 8(Q m Be(xo)). In particular v(yo) &#x3E; 0 since v(x,,) = 0. If follows that

yo E aB,(x(,) since w  0 on 8Q r1 Bg(x,,). Thus v(yo) = u(yo) - u(x,,) - (1-/2n)e2,
and from v(yo) &#x3E; 0 (1.8) clearly follows. a

LEMMA 1.2. With the notations of problem 1, let a, (3, y E R be such that

Introduce the set .D = ]a, f1[ X ]y, oo[ and the f unct2on (3)

Then

PROOF. If VJ E Ð(D), V -&#x3E; 0, we deduce by (1.5), (1.7):

that is ZI p + Xy:&#x3E;O in D. Thus Dy(Llw - X) 0 in D. But 4 w - X = 0

in f)BD. Hence (1.11) follows. ·

We deduce now the following

COROLLARY 1.1. Let (xo, yo) be such that cx,  b, yo = gg(x,,) = Y(x,,)
(i.e. (xo, yo) belongs to the seepage line).

Then positive constants (20’ co exist such that

(3) We extend p and v to the whole of R2 by: p = 0 and Z = 0 in R2BD.
The function (1.10) has been introduced first in [3] to solve the dam problem in its
simplest form and has been used later in many other cases (see e.g. [5]).
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PROOF. By the previous lemmas, if po is small enough, we have (setting Be
instead of B,(x,,, y,,)):

But for some 6 E ]0, 1[ (4) we have

Hence, from (1.13), (1.14):

from which (1.12) follows with co = 5/8. a

2. - Behavior of the free boundary at the seepage line.

The aim of this section is to prove that 8Q and aD are tangential at the
seepage line; i.e. at points Po = (x, Y(x)) such that c cx  b, Y(x) = T(0153).

The basic idea is the following: the linear growth of p (given by corol-
lary 1.1) in a neighborhood of such a point Po is possible only if 3D and
8D are tangential at Po.

Our proof uses proposition 2.1y which we consider to be of independ-
ent interest and state in n-dimensions. In order not to distinguish be-
tween n = 2 and n &#x3E; 2, we will use the definition of capacity of a com-
pact subset .K of an open set .R c R" as given in [7]. Here and later .R will

be the half ball Bi (5) and the capacity of K with respect to Bi will be
simply denoted by cap .K.

We first need some lemmas.

LEMMA 2.1..F’or any n &#x3E; 2 and e E ]0, 2 [ there exists a constant ?o(8) such
that for any f unction g, which is continuous acnd non negative in 13i and super-
harmonic in Bi , the following estimate holds:

PROOF. Let G(x, y) be the Green function of B’ (which could be com-
puted explicitly from the one of Bl by reflecting the pole). It is easy to see

(4) eo, 6 depend on (xo, yo) and the geometry.
(5) With the notations: Be = B,(O) and Be = Be U R’
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that for some constant cl(E) we have

Let .K be the set Ix E B+: x.,, &#x3E; e, g(x) &#x3E;I I with g satisfying the assumptions
of the present lemma, and consider the capacitary distribution px and the
capacitary potential Vx of K. We have

From (2.2)-(2.4) and the definition of .g we deduce immediately

But g(y) &#x3E; TTA(y) in Bi since g is non negative and superharmonic in B:
and g &#x3E; 1 on K.

Therefore (2.1 ) follows with co(s) = cl(e)..

REMARK 2.1. If n = 2 there are some relations between capacity and
length of arcs. We will be interested only in circular arcs and confine our-
selves to the proof of the following:

LEBIBIA 2.2. There exist constants c1, cz , Cl &#x3E; 0 such that for any compact
circular arc L contained in Bt and having radius ;&#x3E;Ca the following inequality
holds

PROOF. Notice first that the Green function G of Bi satisfies

since, for fixed x E Bi , the function g(y) = G(x, y) + In (llx - yl) is har-

monic in Bi and  0 on aB+.
Consider now a compact circular arc .L contained in Bi and denote by

a its length and by C the circle containing L. If z and R are the center and

the radius of C, suppose R &#x3E;- 4 and notice that the closed ball 13 BI2(Z) does
not intersect Bi . It will be convenient to use the following notations:
for x E Bi define x E L according to ix -.Tl = min tlx - yl : Y E Z}; more-
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over for x, y E L denote by oc(x, y) the length of the arc contained in L and
having x, y as endpoints. We have for x, y E Bi

Thus, choosing 6 &#x3E; 0 such that t-1 arcsin t c 2 for 0  t  6, we get

.Fix now y E Bi and denote by L’ the arc contained in C and having
length 2a and 9 as midpoint. Choosing c, = max {4; 2/61 and denoting
by ds the differential of arc along C, we have if R:&#x3E; CS :

for some constant c2 &#x3E; 0 (since clearly a 4, for instance). Therefore, if

we consider the uniform distribution It on L of total mass c,lln (a/8)1-1,
we get

Hence we conclude

From lemma 2.1 we deduce immediately

LEMMA 2.3. For any n &#x3E; 2 and E E ]0, ![ there exists a constant e(E) &#x3E; 0

such that for any f unction v which is continuous and subharmonic in Bi and
satisfies v(x) c xn, the following estimate holds

PROOF. Choosing g(y) = e-’(y,, - v(y)) and applying lemma 2.1 we

get (2.7) with e(E) = ec,(E). a

Now we are able to prove the following basic proposition.
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PROPOSITION 2.1. Let B E ]0, 2 [ and Co &#x3E; 0 be gi1jen constants and Zc a con-
tinuous function in B1, snbharmonic in B1, satisfying

Define

and suppose that

Then

PROOF. We will prove (2.11) by a recurrence argument.
By hypotesis (2.8) holds. Suppose, inductively, that for fixed k_&#x3E;O

Define 1’(X) = Ckl’2k’u(x.-k) in Bi and apply lemma 2.2. Then (2.7)
holds with c(s) independent of k and we have

i.e.

That is we can choose Ck+l === Ck(l - C(£)Ylc)’ Hence we get

But, since ln (I - t)  - t, we have

Hence if (2.10) holds the product in the right side of (2.14) tends to 0

a s k 2013&#x3E; oo.

This completes the proof. .
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In order to apply proposition 2.1 to our situation we need the following

LEMMA 2.4. Let u be a real functions which is continuous in the half ball T3+
of R, subharmonic in Bt, and satisfies

Then for some co &#x3E; 0 we have

PROOF. Define 6 = dist (oR;; ?Bi n supp u) and if = sup tu(x); x C-,&#x26;+I.
By (2.15) 6 &#x3E; 0. Choose co = M/3.

On aB1 r1 supp n we have u  M  e,, x,,; moreover u = 0  e,, x,,, elsewhere
on 9BJ’. Therefore (2.17) follows from subharmonicity. a

We now apply the previous results to our situation and prove the fol-
lowing

THEOREM 2.1..Let Po T (xo, yo) be a point of the seepage line, i.e. c  x,,  b,
yo T(x,) = Y(0153o). Then

PROOF. By contradiction, suppose that (2.18) does not hold. Then

there exist p &#x3E; 0 and a sequence {xm} satisfying

Notice that the segments 8m = {0153m} X [q;(0153m), Y(x.)] do not intersect S-).

By lemma 1.2, p is subharmonic in some neighbourhood of Po. Since Y

is C2, there exist &#x3E; 0 and Qo E R2 such that the ball B = BR(Qo) does not
intersect D and is tangential to 2 D at Po. Define the inversion with respect
to aB by means of

and set

Define now the Kelvin transform of p :
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It is well known that subharmonicity is preserved under this transformation.
Changing coordinates and units, we may assume that Po = 0, Q c D c

c B/ c Ri and

(2.23) p is continuous in Bi and subharmonic in Bi .

From lemma 2.4 we get, for some Co&#x3E;0

In order to apply proposition 2.1 to the function p, consider the circular

arcs 8m = F(S,,): denoting their radii by Rm, notice that Rm &#x3E; Oo for some

Oa &#x3E; 0. Clearly there exist sequences (on;) and tkl and a constant vo &#x3E; 0

such that

-,Moreover, if £ E ]0, 9 [ is small enough with respect to p, the arcs

also satisfy

for some constant v &#x3E; 0 (depending on fl, E, vo). Therefore, if we define

we have: length Li &#x3E;,,v.
But, since the radius of L, is k1Rmj&#x3E;(!o’Skr, from lemma 2.2 we de-

duce the existence of /!. &#x3E; 0 such that

Now we can apply proposition 2.1 to the function p: recalling (2.23), (2.24)
and that fi&#x3E;O, we only have to verify that (2.10) holds. Since clearly Lj
is contained in the set {(x, Y) E Bt; y:&#x3E; s, p(2-k1. x, 2-1d. Y) === o} and capa-
city is an increasing set function, (2.10) is given by (2.25).

Therefore we obtain
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that is

which is impossible by corollary 1.1.
Thus we get a contradiction and the proof is complete. a

REMARK 2.2. It must be pointed out that the previous proof does not
require the monotonicity assumption (1.3). Hence the same result is still

valid in much more general cases.
It is sufficient to know that 8D is a smooth graph, D n 3D is also a

graph and p satisfies (in some neighbourhood of Po on C D) a homogeneous
Dirichlet boundary condition and the inequality p,,  - cos vy in the

sense of (1.17).
In particular we will use the result given by proposition 2.1 also in the

case of several reservoirs, that will be studied in sect. 4.

3. - Monotonicity of the free boundary.

In this section we study monotonicity properties of the free boundary.
We assume that hypotheses of sect. 1 are satisfied and prove that Q is

itself monotone on [a, b].
We begin with two lemmas.

LEMMA 3.1..Let xo c- [e, b[ be such that rp(xo) = Y’(xo). Then cp cannot

take at xo either a local maximum or a local minimum.

PROOF. Clearly, from (1.3) and theorem 2.1-. a

In the following u will denote the function p + y.

LEMMA 3.2. Let y be ac real number in [Y2’ yl] and w a non-empty con-
nected component of the set {(x, y): u(x, y) &#x3E; y} (resp.  y). Then ul- can
take a local maximum (resp. minimum) only on r, (resp. T2).

PROOF. Consider the first case. Let Qo c a) be a local maximum for ulw.
For some ball B with center at Qo, {ij contains tJ n B. Thus Qo is a local

maximum for uli,. It follows (by maximum and Hopf principles) that Qo
belongs to 8Q but not to D u 1-’N . By Lemma 3.1 Qo cannot belong to To ,
so Qo e Fl U [’2. But on r2 we have u = y2 c y. Therefore Qo E Tl.

The proof of the other case in similar.

Now we are able to prove the main theorem:
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THEOREM 3.1. The function 9? is strictly decreasing in [a, b].

PROOF. First we observe that q cannot be constant in any subinterval
of [a, b].

Indeed, by contradiction, suppose that D r1 8Q contains some horizontal
segment S. We have on S: u is constant and u, = 0. Thus uniqueness results
about the Cauchy problem for the Laplace equation imply that is constant
in f2, which is impossible since Yl &#x3E; Y2. Therefore, if cp is monotone then

it is strictly monotone.
Now we observe that if 9? were not monotone, it would take a local

maximum at some point of ]a, b[, since q is continuous and cp(b) :qJ(x) C cp(a).
Therefore it is sufficient to prove that q cannot take in ]a, b[ any local

maximum and we shall do it by contradiction.
Let x* E ]a, b[ be a local maximum for q. Consider the point P* =

(X*, y*) == (x*, qJ(x*)): from Lemma 3.1 we get P* E D.
On the other hand, the continuous function T on [a, x*] takes its minimum

in some point x* E [a, x*]. Clearly x* &#x3E; a and y* = cp(x*) c y*. Thus

P* =- (x*,Y*)ED.
But Hopf principle implies that P* (resp. P* ) cannot be a local maximum

(resp. minimum) for ul., because zlu = 0 in!2 and u, = 0 at P* (resp. P*);
so the open set {(X,Y)E!2:U(X,y»y*} (resp. {(X,Y)E!J:U(X,y)y*})
cannot be empty and has P* (resp. P* ) as a boundary point. We denote m*
(resp. m*) its (or one of its) connected components whose boundary con-
ta,ins P* (resp. P*) and look for the point P (resp. P) where - (resp. ulwJ
takes its maximum (resp. minimum).

By Lemma 3.2 we have P E .t1 and .P E t2. Hence we conclude that M*

and w* must have a common point Q.
Then w e have u(Q)  y* and u(Q) &#x3E; y*, while y*  y*. Therefore we get

a contradiction and the theorem is proved. a

4. - Generalizations.

We want to show how results about monotonicity properties could be

generalized to more complicated situations.
It will be sufficient to deal with the case of three reservoirs -Ri, .R2 , .R3

with levels Yl, Y2, Ya. Without loss of generality we will suppose y1&#x3E;y,,.
We shall use the following notations: TN still is the impervious part

of aD (which bounds D from below), Ti === oD n aRi and To = aD -
- (7"i U F2 U r3 U FN). As in sect. 1, smoothenss properties of aD are

assumed to be satisfied.
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Monotonicity properties of 8D (see (1.3)) are generalized as follows:

defining y = min yi and y = max Yi, , D r1 (R X ]y, y[) is supposed to have
exactly two connected components, say D’ and D" (with D’ between Rl
and .R2 and D" between R2 and R3). Moreover, all connected components
of aDr) To and aD" n To are assumed to be monotone arcs (more pre-

cisely Y’ 0 or Y’&#x3E; 0 on each of these arcs). Denoting the free boundary
by T’, T contains 1-’1 U F2 U F3, and, clearly, we shall be only interested in
monotonicity properties of the two connected components of 1-’- (r1 U r2 U F3)
which are given by T’= F r) (aD’-.r,) and T"== Tn (oD"-T3). 9?, and CP2
will denote the functions which represent T" and .T’" respectively.

Under the previous assumptions we still have q  T i  y (j === 1,2) and
the result given by Theorem 2.1 holds in the present case. Therefore, if

Po E T n ho then 7" and aD are tangential at Po ; in particular r is a strictly
monotone graph in a neighbourhood of Po.

We can prove the following theorems:

THEOREM 4.1. If y == Yi and Y == y2 , 991 is strictly decreasing. If y Y2
and y == y3 , 9?, is strictly decreasing.

PROOF. We consider only the case y = yl and y = Y2, since the other
case is quite similar.

As in the proof of Theorem 2.1, it is sufficient to show that Q1 (6) cannot
take any local maximum. By contradiction, let x* be a local maximum

for 9?1 and define x* by : Tl(x*) = min {CPl(X): x  x*l. As above, the points
P* = (x*, qi(z*)) and P* _ (x*, cp1(x*)) are in D and the open sets {(.r, y) E
E D: t1(s, y) &#x3E; 991(x*)l and i(x, y) E D: u(x, y)  CPl(0153*)} have connected com-
ponents w* and m* respectively such that P* E 8m* and P* E 8m* .

Defining P and P by: u(-P) = max lu(x, y): (x, y) e Co*l and u(l!.) ===
- min {u(x, y) : (x, y ) E CO* I we get easily that P E Fl U 7"3 and P E F2 U 13 .
Im any case it follows that m* n w* =F- 0 which is impossible. M

THEOREM 4.2. If 9 = y1 and y = y3, either 9?, or T2 is strictly decreasing.

PROOF. By contradiction suppose that CPl and T2 are both non-monotone.
We prove first that inf gi  y2 . By contradiction suppose inf cpl &#x3E; y2 .

As above, considering a local maximum of 99, we get a contradiction.

With similar arguments we obtain sup Q2 &#x3E; y2. Define now x* and x* by
cp?(x*) = max Q2 and ggl(x*) = min Tl, and consider the sets f(x, y) E Q:
U(Xl y) &#x3E; q;2(0153*)} and t(x, y ) E S2: u(x, y)  q;I(X*)}. As in the previous proofs
we conclude that their connected components m* and 0)* whose boundaries

(6) By definition, T, is defined in an open interval.
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contain (x*, Q,(x*)) and (x*, T,(x*)) respectively must have a common

point. Thus we get a contradiction. n

REMARK 4.1. Theorems 4.1 and 4.2 allow us to conclude that in any
case either cpl or Q2 is. strictly monotone.

The following theorem describes the shape of non-monotone arcs of the
free boundary.

In all cases the theorem can be proved with the previous arguments.

THEOREM 4.3. Suppose that either Q1 or Q2 is non-monotone. Then we have

i f y = yl and y = y2 , CP2 has a maximum and no local minima ;

’if Y = yl and y = Y3, eith,er qi has a minimum and no local maxima

or ’Q2 has a maximum and no local minima ;

i f y = Y2 and y = Y3’ Q1 lias a minimum and no local niaxima. s

We conclude by showing that in some cases one of the two arcs of the
free boundary cannot be monotone.

We have indeed:

THEOREM 4.4. If either yl - Y2| or IY2 - Y31 is small enough with respect
to yl - y3 then Q1 and Q2 cannot be both monotone.

PROOF. We consider for instance the case y = yl, since the case = Y2
is quite similar.

For fixed yo  yl , take y2 = yo + s and Y3 = YO + 6 where e and ð will
be properly chosen in the interval [0, y1- yo[. Denote by Q2(x; s, ð) the
function which represents the corresponding second arc of the free boundary.

Consider now the case c = 6 = 0. We have Yo :f{J2(X; 0, 0)  y, and

Q2,(x; 0, 0) cannot be monotone without being constant since its limits, as x
approaches the end-points of the interval where Q2(x ; 0, 0) is defined, are

equal to yo . But Q2(x; 0, 0) cannot be constant by uniqueness results about
the Cauchy problem for the Laplace equation unless yo = yl , while y1 &#x3E; yo.

Therefore T2(X; 0, 0) is not monotone and, by Theorem 4.3 Q2(J2 (x; 0, 0)
has a maximum point.

Denoting by y* the corresponding maximum value, we have yo  y *  y, -
But it is easy to see that the pressure in D increases as levels increase,

thus Q also increases. Therefore, CP2(X; e, ð) is an increasing function with

respect to each of the variables e and 3. It follows that, fore, ð E [0, y* - yo[,
gg,(x; e, ð) can.not be monotone with respect to x.
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