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Analytic Convexity.

ALDO ANDREOTTI (1) - MAURO NACINOVICH

De Giorgi [6] and Piccinini [12] were the first to make the following
observation. Consider the Laplace operator in two variables z, y:

02 02
T Ty

as operating on functions of three variables x, ¥, ¢, and consider the equation
Au = f

for 4 and f functions of , y, ¢. Then one has the following facts
() for fe C°(R3) there exists 4 € C°(R?) such that Adu = f;

() there exist some f real analytic in R® such that the equation Au = f
has no real analytic solution % defined on R3.

Let & denote the sheaf of germs of C® functions on R3 and let A denote
the sheaf of germs of real analytic functions on R3. We consider the two
exact sequences of sheaves

0 64 & & 0

0 HAa #A A 0

where &4 and s represent respectively the kernels of the sheaves homo-
morphisms defined by the operator 4 on &§ or #£. Then we deduce exact

(t) Scomparso il 21 Febbraio 1980.
Pervenuto alla Redazione il 21 Settembre 1978.
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cohomology sequences

H(Re, §) A, HO(R?, §) ——> HY(R®, 81) —> 0

H°(R3, #£) -—é—> H'(R3, £) —> HY(R3, #4) —> 0
as HY(R?, §) = 0 = HY(R?, #). From the remark of de Giorgi and Piccinini
we derive that one has

HY(R3,6,) =0 and HYR3, #A4) %0

indeed this statement is equivalent to their remark. This suggests the fol-
lowing generalization (section 1). We consider a Hilbert complex of sheaves

Ao(D) (,, A1(D)

& &

0 & A, &EPo
or

LAoD) o A(D)

0 A, AP

i.e., a complex of differential operators with constant coefficients on R"
obtained by Fourier transform from a Hilbert resolution of a module over
the ring of polynomials in » variables and we let the complex of operators
act on C® or real analytic functions to obtain the two exact sequences of
sheaves given above. Then given an open set £ in R* we will say that it
is C* or analytically convex if

Hi(2,8,)=0 Vji>0 or respectively Hi(Q,#4,)=0 Vji>0.

The example of De Giorgi and Piccinini shows that these two notions of
convexity may be different.

After some general remarks on elliptic operators (section 2) that we
need later on, we begin the study of analytic convexity by the following
procedure. We consider the given complex as the complex of Cauchy data
on a linear subspace R* of a Hilbert complex in several more variables in
some RY (sections 3 and 4); this we call a suspension to R¥ of the given
complex. If the suspension complex has the first operator elliptic and if
R» in R¥ is in a Cauchy-Kowalewska position (i.e., R* is non characteristic
for the suspension complex) then we are able to reduce the study of the
analytic convexity of the given complex to the study of the C® convexity
of its suspension.

We consider then sufficient conditions for analytic convexity in terms
of the suspension complex (section 5), we give some examples and we in-
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vestigate the case of a convex open set. We show that in this case all
analytic cohomology groups in dimension > 2 vanish.

To turn the sufficient conditions into necessary conditions, one needs
an approximation theorem of Runge type (sections 6 and 7). We are able
to establish an approximation theorem of this sort for convex open sets
(section 8) or for starshapad opa2n sets for operators represented by homo-
geneous matrices of polynomials (section 9). We end up our investigation
with the study of the tangential Cauchy-Riemann complex for a real space
R~ in some complex space C». Satting z = x + 4y, since 4 = 4(02/020%),
we recover in a more precise cohomological form the example of de Giorgi
and Piceinini. Also we show with an example that for non convex sets
we may again have analytic cohomology in dimension > 2 without having C*
cohomology.

‘We hope to come back to this subject with an extension of the principle
of Phragmén-Lindelof of Hormander [8] to the situation we have considered.

1. — > and analytic convexity.
a) Let Q be an open set in R* and let §(£2) denote the space of complex

valued O® functions defined on 2. Set &(2) = §(£) x...x§L2) p times.
Let ’

1) (8%(Q), 44) = {&(2) AlD) g0, 0) A1(D) g, ) 42(D) e}

be a complex of differential operators with constant coefficients. Here A4 ,(D)
is a matrix of type p,,, Xp; with entries differential operators with con-
stant coefficients. The assumption that (1) is a complex means that

A;.(D)AD) =0, Vj.

Complexes of this kind can be obtained as follows. Let 9, = C[&,, ..., &,]
be the ring of polynomials in the n indeterminates &,,...,&,. Let 44(§) =
= (@:;(€)) be a p, Xp, matrix with polynomial entries, let t4,(£): 5+ — T3¢
be considered as a §,-homomorphism, and set N = coker {¢4,(&): T2 — ¥},
By a theorem of Hilbert (cf. [3]) we can continue this homomorphism by
a finite sequence of J,-homomorphisms

4a®) ,, Ald)

w

@) o N g0 g

gren Aaa®)

n
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to obtain an exact sequence, i.e., a free resolution of N. We also can assume
that d < max (2, n).

Replacing the matrices *A4;(&) by their transposed and the indetermi-
nates &; by ©¢/dx; we obtain a complex (1) of differential operators with
constant coefficients which moreover has the property of being exact on
open convex sets Q.

The condition for the complex (1) to be exact on open convex sets charac-
terizes the complexes obtained from Hilbert resolutions (2) (cf. [3]). We
shall therefore call those complexes in the sequel Hilbert complexes.

The Hilbert complex (1) is obtained from complex (2) by the following
procedure:

«) we consider §(£2) as a T,-module by letting a polynomial p(§) e ¥,
operate on fe §(2) by
p(8) f = p(D)f

where D = (004, ..., 0/0x,).
B) We apply the functor Homg (-, §(£2)) to the sequence (2).

Let b = T,(ps(), ..., ¢,(£)) be an ideal of §,. Any &,-homomorphism
g: b — §(2) is an assignment

o(pi(f)) = fi@) e §(Q) 1<i<l

1
with the condition that whenever > a,(&)@.(£) = 0 with a,(é) € §, we have
i=1
> a/D)f{x) = 0. And conversely any such assignment defines a &,-homo-
morphism ¢: b — §(£2). Let us now recall the following criterion (ef. [7] p. 6) .
- A left §,-module F is injective if for every ideal b in §, and every
¢,-homomorphism ¢:b —F we can find fe F with o(p) =p-f, Vpeb.
From the above remark on the Hilbert complex it follows then that for £
open and convex the module &(2), as & ,,-modul'e, 8 injective.
In particular, denoting by & the sheaf of germs of ¢* functions on R~
and by §,, the subsheaf of & of germs of solutions of A,(D)u =0 we
have an exact sequence of sheaves

4y(D) o, AD) o, Ao(D)

(3) 0 84— &0 &7

0

which is a «resolution » of the sheaf §, by fine sheaves. This because a

Hilbert complex (1) admits the so called Poincaré lemma or equivalently

because for every x € R* the stalk §, = _lim, §(£2) is an injective §,-module.
Qs
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From de Rham theorem we then deduce that for any open set 2 c R»
we have

Hi(Q, SA,,) = Hj(a*(g)’ A*) =~ Ext’ (N, 8(-Q)) y §=0.

Note that these groups depend only on the §,-module N and not on the
particular resolution (2).

We shall say that an open set 2 is C°-convex for the Hilbert complex (1)
if H(Q,8,)=0 for j> 0.

b) We replace in the previous consideration the space &(£2) by the
space A(£2) of complex valued real analytic functions on . Then the
complex (1) is replaced by the complex

4.(D) 4,(D)

(4) (A*(Q),A*)E{Am(g) An(Q) 20 () 22 A, (D) }

Let us consider £(2) as a ,-module by letting p(&) € F, operate on f € A(L2) by
(5) - ) f=pD)f.

Then the complex (4) is obtained from the resolution (2) by application of
the functor Homg (-, A(2)). Now it is no more true in general (if n > 3)
that A(£) is injective if £ is open and convex. However, if we denote
by # the sheaf of germs of complex valued real analytic functions and by £,
the stalk of A at x € R* we can consider on A, the structure of §,-module
induced by (5) and we have the following

PROPOSITION 1. The F,-module #£, is an injective module.

Proor. We use the criterion for injectivity mentioned above. Let
b = T, (pu(&), ..., p,(§)) be an ideal of F,. Without loss of generality we
may assume x at the origin 0 € R*. Let
0:b — A,
be a §,-homomorphism. This is an assignment

o(p:) = fdw) € &

with the property that whenever > a,(&)@.,(&) = 0 with a,(&) € §, we have

2 a(D)fix) =0.
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Let us now consider R*c C* where 2 = ¢ 4 iy are holomorphic co-
ordinates. Denoting by O, the germs of holomorphic functions at the origin
in G and by &, the germs of C® functions at the origin in R*» = C» we
have natural inclusions of rings

Ay OQ,C 6.

Let §,, denote the ring of polynomials in the 2n-variables & = (&, ..., &,),
7 == (N1, ..., ) and consider the ideal

b= ﬂq‘2"((pl(5)7 vy @u8), &1 iy e, &+ ’i?’],,) .
‘We consider §, as a ,,-module by letting p(&, ) € F,, operate on f(x, y) € & by
(& n) (@, y) = p(Dsy D) f(, y)

where D, = (0/0%y, ..., 0/0%,), D, = (0/0Yy, ..., 0[Cy,). We define a ,,-homo-
morphism
6:6 > &
by setting
6(p:) = filw + iy)

1<
6(&; +1im;) =0 j

1<
1<j<n.

Indeed suppose that
1 n
lej(é, n@i&) + 2 q:(&n)(E 4 in;) = 0.
i= j=1

We have to show that

pr(Dm Dv)fi(x + @']/) =0

in order that & be well defined.

Now > p,(&, i€)p;(&) = 0; therefore as o is a §,-homomorphism we get
> pi(DyyiD,)fi(x) = 0. But for fi(z + iy)e O, we have D.fx -+ iy) =
= — iD,f{x + iy), i.e., ¢D,f;(x + ty) = D,fi(x + iy). Therefore we obtain
from the last identity > p,(D,, D,)fi» + iy) = 0 as we wanted.

Now &, is an injective T,, module, therefore there exists g(x, y) € § with
the property

&(1(57 "7)) = MD., D,)g(z, y)
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for every Aeb. Taking A =& + in; 1 < j<n we obtain that g is holo-
morphic, i.e., g € O, and g = g(x + iy). Thus g(x) € £, and therefore o(1(£)) =
= MD,)g(x) YAe€b. This shows that A, is an injective §,-module.

As a consequence from (2) applying the functor Homg (-, #£,) we obtain
an exact sequence of sheaves

(6) 0 > A, 'I AP 4(D) AP 4.(D) APs AZ(D,)
where A, denotes the subsheaf of A™ of germs w satisfying the equation
Ay(D)u = 0. In other words the resolution (6) admits the Poincaré lemma.

We now remark that for any open set £2c R* we have
HiQ,£ =0 VYj>0.

This is a consequence of a theorem of Grauert (1) that states that «every
open subset of R* admits in the complexification C" of R™ a fundamental system
of open neighborhoods which are open sets of holomorphy ». We can therefore
apply again the de Rham theorem and we obtain for £ open in R»,

Hi(Q, #£,) >~ H(#*(2), Ay) ~ Bxt’ (N, £(Q)), j=0.

We will say that the open set Q2 c R* is analytically conver for the « Hilbert
complex » (4) if HI(L2, £,) =0 for j> 0.

2. — Elliptic operators.

a) Lot Ay(£) = (a0,(£)) be a p,Xp, matrix with polynomial entries.
We consider t44(£) as a ,-homomorphism and denote by N its cokernel,
so that we have the exact sequence of ¥,-modules

tAo
(1) 0 N <— g ©) go

Let us introduce the following ideals of T,,

b = B(N) = ideal generated by the p,-rowed minor determinants of
the matrix A,(£) (the 0-ideal if p, > p,);

b'=1b'(N) = {p e T,|pN = 0} the annihilator-ideal of the module N.

(*) H. GRAUERT, On Levi’s problem and the imbedding of real analytic manifolds,
Ann. Math., 58 (1958), pp. 460-472.

20 - 4Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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One can show ([13] p. 5) that the first of these ideals depends only on
the module N and not on the presentation (1) we have considered. For the
second we remark that

b'(N) = {p € T.|pTp c Im*4,(&)} .

ProrosITION 2. We have

VB(N) = Vb'(¥) -

Proor. Let
1 _ 0
0 :
a=1.11-28 = 0
0 1

be the canonical basis of J7, so that Cy(§) = t4y(§)ey, ..., 0, (§) = *4o(§)e,,
are the column vectors of the matrix t4,(&).

Set L = (C; (&), ...y G, (&)), a minor of t4,(&) of order p,. From Cramer’s
rule we deduce that for aany

&,
X=]:)eg
xﬂ’
we have
det L X = Y C, (&) det (C; (&) ..., X, ..., C; (&) -
(%) *
Therefore, by the last remark, we deduce that
b(N)cb'(N).
Now if ueb'(N) we must have
1
0
ay . )= o3 (8) tAo(E)sl + ...+ 011,,,(5) tAo(S)ep,
0

© 0 = 01 (§) Ao (€) ey + oo 0y, (£) Ao(E) ey, -



ANALYTIC CONVEXITY 295

This gives the identity

1 0---0
0O 1---0

I3 :(“ii(‘g)) t4,(£)
0 0 - 1

and therefore taking determinants we get
ureb(N).

This proves our contention.
Let a = a(N) denote the asymptotic ideal of the ideal b, i.e., the homo-
geneous ideal of the principal parts of polynomials of b. We denote by

V = V(b), the characteristic variety of N (or A,), the variety of common
zeros in C* of the elements of b. With self-consistent notations we have
V(6) = V(b') because of proposition 2;

Vo = V(a), the asymptotic variety of N (or A,), the variety of common
zeros in C* of the elements of a. Note that V, is a cone, if £€ V, then
VieC, AeV,.

PROPOSITION 3. The following conditions are equivalent:

i) For some constants ¢,, ¢, > 0 we have
]| < e |Reé|+e,, VEeV.
ii) For some constant ¢ > 0 we have
€| < c/Re&|, VEeV,.

iii) If &€ V,, £€ R" then & = 0, i.e. Vo, R"C {0}.

iv) There exists a homogeneous polynomial p € a such that
pE)#=0 VéeR"—{0}.
v) There exists a polynomial q €b, and some constants ¢y, ¢, > 0 such that
l9(i)| = &|E|***—es VEeR",

where deg q denotes the degree of the polynomial q.
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Proor. i) = ii). For any &€V, we can find a sequence {5,},,:1,2”"(:17
such that &/v— &, as » goes to infinity. From the inequality i) we get

For » - oo we get |[£| < e |Re&| which is inequality ii) with ¢ = ¢,.
ii) = iii). If inequality ii) holds and &€V, then i eV, so that for
every £eV, we also have the inequality

6 < oTm ]

Thus if £V, R* then Im & = 0 and therefore & = 0.

iii) = i). By contradiction, assume that i) does not hold, so that for
everyv =1,2,... we can find & €V with

[&v] > v|Re&| +».

We necessarily have & 5= 0 so that we can consider the sequence {&/|5 |},
and since this is bounded we can extract a convergent subsequence

&,
15|

We must have |§| =1 so that &5£0. Moreover, since |&|>» we must
have &€ V,. Because lRe Ep/|£,|[< 1/v we must have Re & = 0. But then
i&c Vo N R and & = 0. This contradicts iii). Thus the statement is proved.

iii) <> iv). Lot ¢,(£), ..., ¢,(§) be a homogeneous basis of the asymp-
totic ideal a and let m; be the degree of ¢; (1< j <1).
Set with m = supm;,

(&) = 2 (E + - + EV"TFE) 9i(8)

where @,;(£) denotes the polynomial obtained from ¢,(§) by complex conjuga-
tion of its coefficients. Clearly p € a. If iii) holds and &e R» — {0} then
one of the ¢;(&) is different from zero, thus

PE) = X (& 4 . +F E)" " pH)F>0.

Hence iii) == iv). Conversely, if p € a verifying iv) exists, as p vanishes
on V,, we must have V, N R»c {0} i.e., iv) = iii).
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iv) => v). Let us select a polynomial q € b with principal part a poly-
nomial p satisfying condition iv), and let m denote its degree. Note that
for £ R — {0}, p(i&) = imp(&)# 0. Thus
p=1inf |p(i)| > 0.
1&]=1
§eR®

We do have therefore

p(i8)| = wlE|"

Set ¢ = p + p, with p, a polynomial of degree < m —1, so that for
some positive. constant ¢ > 0 we have

|P(i8)| < e(1 + |E]™Y)  VEe R-.
Since for every £ > 0 we can find a constant C(e) sufficiently large such that

1+ jEmt<clfl 4 C) VEeRe,
we obtain
lg(i€)| = |p(i&)| — |p.(i€)]
> (u— ce)[E[" — ¢C(e).

If ¢ is sufficiently small we obtain the desired conclusion.

v) = iv). Let ¢€b be a polynomial of degree m satisfying
lg(é6)| > cs|€m" — s VE€ R™.

If p is the principal part of ¢, p = q¢ — p, with p, a polynomial of degree
< m —1. Thus for some ¢'> 0 we have

[p(&)| = |p(i&)| > es[§|" — ¢'(1 + £|™Y)  VEe Re.

Replacing & by t& we get

)= aler— ¢ (5 + E50).

For t — oo we thus obtain

|p(&)] = 656"  Vée Rr.
But this implies iv).
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DEFINITION. A differential operator with constant coefficients
Ay(D): E(02) — () (£ open in R")

is said to be elliptic, if for the matrix of polynomials 4,(£) the equivalent
conditions of proposition 3 are satisfied.

b) We set for £ open in R

8,
#4,(2) = {u € A7(2)|4(D)u = 0} .

(Q) = {ue 8°(2)|4y(D)u = 0}

We have the following theorem (of Petrowski) (cf. [8] Corollary 4.4.1. p. 114).

THEOREM 1. «) If &, (R") =4, (R") then the operator Ay(D) is an elliptic
operator.

B) If Ay(D) is an elliptic operator then for any open set 2 c R»
84,(02) = #4,(9Q).

ProOF. «) The space &, (R") as a closed subspace of the Fréchet space
& (R") (with the Schwartz topology) is a Fréchet space.

Let us imbed in the natural way R” into C" and let 2 = x 4 4y denote
n

holomorphic coordinates on C=», and set jz]:( > [za]2)£. Let U(e) =

a=1
= {#€ C"||¢|< ¢} be the e-ball in C" and let O(U(e)) denote the space of
holomorphic functions on U(e) with the Fréchet topology of uniform con-

vergence on compact sets. For every &> 0 the space

8, = {(u,v) € &, (R*) X O(Ul(e)) f uw=wv on U(s) N R}

is a closed subspace of &, (R") x O(Ul(e)) and therefore it is a Fréchet space.
Let ©: 8, — &,,(R") be the natural projection on the first factor. It is a
continuous linear map. By the assumption that §, (R")= 4, (R"), each
element u e &, (R") admits a holomorphic continuation to U(e) for some
&> 0. Therefore

8, (R") = U Im{n: 8, — 8,4, (R")} .

n=1

Since &, (R") is of second category at least one of the sets on the right hand
side, say Im {n: 8, — &, (R")} is of second category. But then, by the
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Banach theorem,
w2 By, = 84, (R")

is surjective and open. For u € §, (R") let us denote by @ its holomorphie
extension to U(1/n,), let 0 < ¢ <1[m,, and set

@], = sup [d@(2)],
2€U(e)
|%|lm,r = sup sup [ Dou(x)] .

Jo]<m o] <r

As 7 is open from §,,, to &, (R"), for given ¢ we can find m and r and ¢ >0
such that

(€ Sy | [i1], <1} 2 {u € 8(RY)|[ullms < 03 -
From this we deduce that for any u e &, (R") we have the inequality

1@l < Cle]m,
where C = 1/o.

Now, given &€V, A,(£) has rank < p, and we can find y ¢ G with
|x] =1 such that

Ao(E)x = 0.
Set u = y exp [<&, #)], where

<§y w> - z Siwi .
i=1

1

We have Aq(D)u = exp [{&, x)]4,(&)x = 0 so that we &, (R"). The above
inequality yields then an inequality of the form

exp [el¢]] < C(1 + [§|") exp [r[Re &[] .
For C,> 0 large enough, we have 1 4-|§"< C, exp [¢&)/2], V&€ Cn, thus
we obtain
exp [£[€]/2] < CC, exp [r|Re&|] .
From this, taking logarithms, we get for every & eV the inequality

e|é]/2 < r[Re &| 4 log CC,

which is an inequality of type i) considered in proposition 3. Therefore
Ay(D) is elliptic.



300 ALDO ANDREOTTI - MAURO NACINOVICH

f) We divide the proof in several steps. We set for > 0

B(r) = {we R"||jx|<r} where |o| = (% m;"‘)*

1

and for u e §(B(r)) = {C* functions on B(r)} we set

I wreny = {ME< . ﬁ D“ulzdx}i.
B

StEP i) (Sobolev lemma). Let k be an integer, k> n/2. Given &> 0 we
can find a constant C,> 0 such that

[w(0)| < O, |u]prpeny Ve 8(Ble)) -

For any y C= with compact support in R* (y € D(R")) we can consider its
Fourier transform #(&) =fexp [— i<z, ED] () du.
Then x(0) = (27)~"| 7(§)dé and we have

3 3
(0] < (22) f 14(6)1a < <2n>—"{ f 1 +l§|2>~kds} { f (L + )" I;E(f)lzdé} :

Rn Rn Rn
Now g —>{ f (T + ER*1£E) lzalrf}fr and y — [xllpxrn are equivalent norms
Rﬂ
while, since 2k > n, the integral f (1 + |£]P) *a& is convergent. Thus
R®
2(0)| < Cllxlrme -

Now given ¢ > 0 let us choose ¢ € D(R") with supp ¢ c B(¢/2) and ¢(0) = 1.
Then for u € §(B(¢)) we have gu € D(R") and

[4(0)| = |@(0)u(0)| < Cllpu|pmn < C, "u”W"(B(s/2))

for some C,> 0.
Step ii). Let p(D) = > a,D* be a differential operator with constant

lol <m
coefficients and of order m (>1). Assume that for C;, C;> 0 we have

[p(i€)| > O,|¢|"— C, VEe R".
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There exists a constant C > 0 depending only on p such that, if r> 0 and
uE 8(B(r)) satisfies p(D)u = 0, then foranye>0,1> 6> 0 withe -} d<7r
we have

m
"““W(m)(B(s)) < C3o7|ul Wm-D(B(e +6))*
i=1

Let 9(t) be a real-valued C* function on R with

1 fort<1,
Ht) =

0 fort>2.

For every g 0> 0 set

o _p(lmetd) _[1 s
e, 08 = 5 “lo if pl>et o

and note that for 0 < 6 <1 we have, with a constant C, independent
of ¢ and 4,

|D*¢, | < 0711,

Set p*(£) = o1*Ip(&)/08*. We have for we §(B(r)) satisfying p(D)u = 0:
2 i

da:)

2 +

dx)

1
(%) ( f lp(D)(%,au)lzdﬂv) =( f lgﬂi—!D“%,ap‘“’(D)u
+8)

B(e+0) B(e

()
< —_—
047&006!

B(e+9)

< 0,21 0~ [ [pm-s(Bee + 0))
i

D= (ps’op(a)(_l)) u

for some constant C > 0 independent of ¢ and 4.
On the other hand

(2m) f 1D (D) (gosts) s — f [P (&) granu(8) [
B(e+06) Rn

= 01 lefmippu(e)ea — 20, 1p08) oo a5 — | goanie| ac.
R» Rn

n

From this inequality we deduce an estimate of type

2 3 A
dx) + O] e 0% |pm-(mn)

(**) "(p,,;,ouuw(m)(nn) < O'( f }p(D)((pg’ou)

B(e,0)
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with constants €', 0”> 0 independent of & and §. Now

m—1
I Pe,sU I Wm-n(Rn) < " 20: 07w ”W<m—1-1)(3(e+5))

with ¢"> 0 independent of ¢ and ¢, while

I Pe,sU | rom(mny = [lee]] w™(B(e))?

as ¢, =1 on B(s). From these inequalities and from (*) and (k%) we
deduce the desired estimate.

StEP iii). With the same assumptions of the previous step if ¢ - (14-1)d<<r
we have .

[% |l mn(zey) < C(C + Y1 + ) _215_’.—’”'“||W<m—:>(3(s+(z+1)a)) .
=

This inequality reduces to the one of step ii) for I = 0. We can thus prove
the statement by induction on I, assuming the statement true for I and
proving it for 1 + 1.

We have

n
[lo] W m+L+1(B(s)) ﬁhzl [ Dy Wm+D(B(e)) *

Since p(D) has constant coefficients, v = D, u is also a solution of p(D)v = 0
on B(r). Therefore by the inductive hypothesis we have

”Dh'“" W m+(B(e)) < O(C +1)Y1 + n) Z 5_j_ll|D“I| w0 (B(e+(1+1)3))
=1

j=

< O(0 + 1)1 + n) z 5~l_i||“” W m—3+)(B(e+(1+1)8))
i=2
+ O(C 4 1)'1 + 0) 67 |4 | rem((e +a+1)3)) -

We estimate the last term using step ii). We obtain

m

”‘Dhu”W("“"”(B(e)) <00 +1)1+ ’”')l{ Z 6—j_l”u"W("‘-“”(B(8+(l+1)6)) +

=2

+ 610 Y 57| u Wom-D(B(e+(I +2)¢’))}
=1

|| Wm=(B(e+(1+2)8)) *

< C(0 + 1)1 + n)H(C +1) > o1
i=1
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These inequalities for h = 1, ..., n, summed up term by term, give the desired
estimate.

STEP iv). Let now ¢ >0, r, >0, r,>0, e +r, 4+ r, <.

We apply the previous inequality with 6 = /(I 41) and & 4 r, in-
stead of ¢ so that we obtain

llullW(m*‘)(B(s+r,)) < mO(C + 1)1(1 + ")l(l + 1)m+l¢;m—l”ullw(m—l)(3(3+7-l+rz)) .
By the Sobolev lemma, if %> n/2, we obtain
sup [D*u(@) | < Ose | D¥% [worie+ry)) < Cse|® [lwesisn(pe+ry)

Mﬁ"z
< CoemC[(C 4 1)(n + 1)EH=m (% 4 |oe| — m + LY+ 75131 | | pann(B(et 1+ 12))

for m +1=Fk + |x| and || > m. In particular, taking into account that

! _
loeft < mllo! (nlkl =3 U%) and that {%kl! ~ |k|/e

lof =k &:
we obtain from the previous estimate an inequality of type

D=
sup [ 274@)

fai
o <r, ! = 0o

with convenient ¢ > 0 and ¢ > 0.
Lot now R,(x) denote the remainder of the Taylor expansion centered
at the origin of u(x) up to order h. We have for |¢| < r, that

| R, ()| < Cottilw ptiprtt

a8 there are (;’: i ;L) < a*! terms in the Lagrange expression of the re-
mainder.

From this it follows that in a neighborhood of 0 the Taylor series of
u(x) converges to u(x).

‘What we have said for # = 0 can be repeated for any other point. Thus %
is real analytic.

STEP V). If fe &(Q2) and A\(D)f = 0 then for every p(£) eb and every
component f; of f 1<1i<p, we have p(D)f, =0. As A, is elliptic there
exists a p €b with [p(i€)| > C,|&|**? — C,, Yé € R*. Thus each component f,
of f is real analytic.
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¢) We end this section by remarking that in the Hilbert complex of
the previous section (§%(2), Ay), if the first operator A,(D) is elliptic then
we have
8A‘. = -feA,.

as every germ of C*® solution is also real analytie. It follows that in this case
notions of (O®-convexity and analytic convexity coincide.

‘We mention here the following lemma, that will be used later on (ef. [4]
theorem 2).

LEMMA 1. Let Ay(D): §(R2) — &(2) be an elliptic operator with constant
coefficients. Consider R» imbedded in C" in the natural way. For any open
set Q2 R there exists an Q-conmected mneighborhood @ c C* such that any
u € 8(2) with Ay(D)u = 0 has a unique holomorphic extension % to 9.

3. — Formal Cauchy problem.

a) Let &,y ...p&ny Nyy.yi be N =n + k indeterminates and set
Ty = Cl&1yeeey Eny Nay ooy Mily, Tu = C[&4, ..., &,] and identify T, to the sub-
ring of §y of those polynomials independent of #,, ..., #,. By the inclusion
§,Cc Ty every Fy-module F can be considered as a §,-module; we denote
by (F), the module F with its structure as a ¥,-module.
Let us consider in R¥, where @y, ..., Z,, ¥y, ..., ¥ denote cartesian co-
ordinates, a Hilbert complex

8y(D)

M (@@, 8) =fo@) 28 guo) AP gy

defined on all opén sets £ c R». It is obtained from a Hilbert resolution

t8u(&, 1) t8,(&, n) s
(2) 0 M ¥ Iy Iy <

of the Fy-module M = Coker {¢S,(&,7): Tx — T3}
We set R* = {(», y) € R¥|y = 0}. We will say that R" is (algebraically)
non characteristic for the complex (&%, Sy) if (M), is a T,-module of finite type.
Assume that R~ is algebraically non characteristic for the complex (1).
Then we can consider a Hilbert resolution of the §,-module (M),:

Ry ‘R,
(&) - (£) gr

n n

3) 0<~— (M), Py
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Setting w = 2 N R» we can consider the Hilbert complex on R?,

Ro(D.) E\(D,)

(4) (&%(w), Ry) E{aru( ) e () e 8Tﬂ(w)————>...}
associated to (3). We will call (4) a complex of Cauchy daia for the given
complex (1) on RY and (1) a complex suspending the complex (4) from R=»
to R¥. Now we can consider ¥, as an infinite free §,-module (with gener-
ators n®, « € N*¥) and therefore the resolution (2) can be viewed as another
(infinite) free resolution of the §,-module (M),. It follows that there exist
J,-homomorphisms
irie O > Ty e IR =9y
(j =0,1,2,...) so that (2) and (3) factor each one through the other.
This means that in the diagram of ¥,-homomorphisms,

tSo(‘fa "7) 8,(&, "])
N

0 M 3‘;}' T
(%) ’ ‘ tToTtho tT{U@l \Hth
‘R, 'R,
0 (M), gre ) {Tzl ©) I

erasing the homomorphisms %o or !z, we get commutativity. In particular
the collection of homomorphisms {*p,0’7;} gives a factorization of the resolu-
tion (3) through itself, and similarly {ir,0%,;} gives a factorization of the
resolution (2) through itself as a resolution of (M), by infinite free §,-modules.
This implies that these maps must be homotopic as &,-homomorphisms
to the identity map.

Therefore there exist J,-homomorphisms

ty;r T — F3 and v §7 — O
for j = 0,1,2, ..., such that

togotTy = ldgm, —+ tRo(&) tvy
and
t0,0'7 = idgy; + W1 'R;_y(8) + 'By(§)'v; for j=1

and similarly
740700 = idgss + "So(&, 7)o 0
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and i
‘T;0%0; = id{rf‘; + 28 a(&m) + t8i(&, )y, for j=1.

b) Let I be a left §,-module and let us denote by p(D,)f the action
of the polynomial p(§) € ¥, on F. We can take for instance for ¥ any one
of the following spaces

&(w) = space of C® functions on an open set w c R»

A(w) = space of real analytic functions on an open set wc R»

&, = space of germs of O functions on R" at x e R

#; = space of germs of real analytic functions on R» at x e R»

C{{»}} = space of formal power series in z = (z,, ..., @,)

the polynomial p(£) operating on fe F as a differential polynomial:
p(€) f = p(D,)f.

Consider the space Homg (Fy, ). This has a structure of a §y-module
if we define for any f e Hom ¢ (F, F)

(p&n) (X)) =F(p&n)X) VXey.
The element fe Homg (Ty, F) is known as soon as we know the values
Jo) =fse P Vae N

We can therefore represent the element f with the formal power series with
coefficients in ' > (1/a!)fay* = f(y). We have thus defined an identification

() Homyg (Ty, F) =~ F{{y}}

of Homg (Fy, F) with the space F{{y}} of formal power series with coeffi-
cients in F in the indeterminates ¥ = (¥1y ...y Ys)-

Let f(y) € F{{y}} be the element corresponding to fe Homyg (T, F).
We have

70®) = D3f(y)ly—s -
Given p(&,7) € Ty, p(& 1) = 3 pa()y” we have

(&) (") = F(p& %)
= > H(ps &7
= 3 ps(D) f(rf )
= 3 ps(D) Dy P f(y) o
= D;(p(D,, D,)(¥))],-0



ANALYTIC CONVEXITY 307

therefore in the correspondence (5) we have

p(& ) = p(Dey D) f(y)
which exhibits the structure of F{{y}} as a Fy-module:
(6) P& 1) 1(y) = p(Day D)(y) -

Let t7: 9, — T} be a §,-homomorphism. Applying the functor Homy (-, F)
we obtain a homomorphism

(7N v: F{{y}}’ — F".
To describe v we proceed as follows. Let fe Homg_(Ty, F) and let
§ = fotr denote the corresponding element by 7. Let e = *(1,...,0),...,
e, = (0, ..., 1) be the canonical basis of ¥, and let ¢, = #(1,...,0),..., 0, =
= (0, ..., 1) denote the canonical basis of T3 so that ‘z(e;) = > 7:(§, 9)0;.
We set 7,4(&, 1) = 3 75(£)n” and define
B
1 -
fily) = 3 —Feoye.
Then
g: = §le;) = f(tt(ei)) = f(z 7:4(&, 77)0'9')
= (Z @) o)
= 3 Do )
= 3 (D) D) ly-o

= 2 T(Dyy D) (¥) |y=o -
Setting (D, D,) = (v:s(D., D,)) We thus have for f(y) € F{{y}}’
(8) 7(f) = ©(Dqy D,)f(y) lv=0 .

Similarly let to: 95 — 7 be a §,-homomorphism. Applying the functor
Homg, (-, F') we obtain a homomorphism

(9) o: I~ F{{y}}’ .
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With the same choice of canonical bases in 3 and 97 as before we will
have *o(n*o;) = 3 0{(£)e;. Given §e Homg, (87, F) we set f= gotp for
the corresponding element by p. Then, setting

fio=F(n"0:), 9;=9(e),
we have,
foo =0 0:) = Ze‘“’f)e
= 3 (D,

(""(D )g; -

‘w

It follows that, setting o™(D,) = (o(D.)), we have for ge F"
1
(10) 0(9) = 2 — (¢(D=)g) y*.

¢) Applying the functor Homg (-, F') to the diagram (%) we get from
the top line the complex

(@ (5}, 8:0) = (i 2B pigye B2 pigye —

where D = (D,, D,) = (D, ..., D, ,D,,..., D,). Its cohomology will be
denoted by Hi(F*{{y}}, S«(D)), j > 0. As the top line of (x) can be con-
sidered as a resolution of (M), by infinite free ¥, modules §§ (and hence
by projective modules) we must have

Hi(F*{{y}}, S«(D)) = Bxth, ((M),, F) .
From the bottom line of diagram (x) we obtain the complex

(7%, Ry) = Fro ZoD) pr, BiD)

where here D = D,. Its cohomology will be denoted by Hi(F*, Ry), j > 0,
and we must have
Hi(F*, R,) ~ Bxt}, (M),, F).

In particular we obtain the following

PRrROPOSITION 4 (Formal Cauchy problem). For every j >0 we have a

natural isomorphism
Hi(F*{{y}}, %) =~ Hi(F*, Ry).
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This is induced by the maps

7;: F{{y}}" — F"
and
0;: F" — F{{y}}”

given by the formulae (8) and (10) given above.

d) Let € R* and take F = #£, and set for j =0

(#:4{9}))s, = H(£A{}}" 8,) ()5, = H(A], R,).

According to the previous proposition 7, induces an isomorphism

Tp* (Am{{?/}})s.. = (g, -

Let A, denote the sheaf of germs fe A™ of real analytic (complex
valued) functions on RY satisfying 8,(D)f = 0. Similarly let Az denote
the sheaf of germs f e A™ of real analytic (complex valued) functions on R"
satisfying Ry(D)f = 0. For x € R" and (x,0) € R¥ we have (A,)z, = (#£g),
and we have an inclusion

(#s,) (5,00 > (#:A{y}}) 8o *

-

In particular 7, induces an injective map
Tot (#g)@,00=> (#g,)z
and therefore, for every open set w c R*, induces natural homomorphisms
7, Hi(w, #g) - Hi(w, £z) VYj=0.

If 2 describes a fundamental system of open neighborhoods of w in R¥

we have
Hi(w, #45) = lim H(Q, #s,).

Row

We want to investigate under which conditions the map 7o: (Ag,)( 0~
— (#g,), is an isomorphism for every x € R". Since the operators S, and R,
have constant coefficients this is the case if it is so for # = 0 € R».
Associated to the given differential operator So(D) = So(D., D,) we can
consider both the characteristic variety ¥V and the asymptotic variety V,.

21 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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If b is the ideal of minor determinants of order s, of the matrix Sy(&, 5),
(&,n) = (& «oey Eny M1y ooy Mi), and if B’ is the ideal b’ = {p € C[¢, 5]|pM = 0}
we have that Vb = /b’ is the ideal of polynomials vanishing on V. By
the same type of argument used in the proof of proposition 3 one establishes
the following.

PROPOSITION 5. Let V and V, denote the characteristic and the asympiotic
variety associated to the differential operator Sy(D). The following conditions
are equivalent

i) for some constants C,, Cy> 0 we have
< G|+ 0 V& meV
ii) for some constant C > 0 we have
i< 0l VEmeT,

iii) 4f (0,%) € V, then necessarily n = 0 (i.e. (0,7) ¢V, if 3£ 0).
ProoF. The implications i) = ii) = iii) are straightforward.
For the implication iii) =~ i) we remark that if i) does not hold, then for
every v =1,2,3,... we can find (&,n,) e V with

l"?ri> vlfvl + V.

We have 7,7 0. Thus we can consider the sequence (& |nw|, m/|ns]).
By passing to a subsequence {k,} we may assume that

(2 ) > 00 with =1 thus 52 0).

As |p»|>», we have (0,0) € V,. This contradicts iii). It is worth no-
ticing that the characteristic variety W of the operator R,(D,) is the variety
of the ideal b” where

V'={pefF.p(M), =0} =9F,Nb
therefore
W= {£eCp&) =0 VYpeb'} =
= {£ € C"|3n € C* such that (&,7)e V}.
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THEOREM 2 (of Cauchy-Kowalewska). The necessary and sufficient con-
dition for
To: ("‘eso)o - (-74"13,,)0

to be an isomorphism s that the equivalent conditions of proposition 5 be
satisfied.

PRrROOF. Necessity. Let (2, w) = (v + is,y -+ it) be holomorphic coordi-
nates in C¥; we identify C» with the subspace w = 0 and we set

¥ ¥ ¥
’ ’ .

ol ={Z ke + Sy = {Z e, o= {S

Let B = {z e Crlz| < 1}, and denote by g (B) the space of holomorphic
functions # in B, with values in C™ satisfying the equation Ry(D.)u = 0.
For ¢> 0 let U(e) :{(z, w) € CN|[(z, w)| < e} and let #g (U(c)) denote the
space of holomorphic functions » on U(e), with values in C* satisfying
So(D,, D,)v = 0. Let

Se = {(u, v) € A (B) X 05 (Ul(e)) | = 7o(v) on U(e) N C*} .

The spaces #Ap(B) and OS.,(U(S)) are Fréchet spaces with the topology
of uniform convergence on compact sets. The space S is a closed subspace
of a Fréchet space and thus it is a Fréchet space. Let m: 8¢ — Ay (B) de-
note the natural projection into the first factor; it is a continuous linear map.

By the assumption we must have

#g (B) = U Im{m: §,;, - #(B)} .
n=1

Therefore for some value of n, say n,, the set Im z: 8, — # (B) must be
of second category. But then by Banach theorem

7 8y, — £z (B)
must be surjective and open. Given wu € #Ag(B) let us denote by
ve Og (U(1/n,)) any element such that 7,(v) =u on U(1l/n,) N C". Let

0 < e <<1/m, and let K denote a compact set in B and set

lv]e=sup o[,  [ulz=sup |ul.
U(s) K
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Given ¢, we can find K and ¢ > 0 such that
n{(uy v) € 8y, [0]e < 1} {u € g (B)] Ju] < o}

From this we deduce the inequality

(+) ol <> Julx

with u = 7,(v).
Given (&,7) € V we can find X € C* with [X| = 1 such that Sy(&, ) X = 0.
Set

v = exp [<§, &) + (n, wH]X

50 that So(Da, Dy)v = exp [<& 2 + <17, w)]S8e(&, ) X = 0.
The inequality (%) yields an inequality (¢ = 1/0)
exp [e(I€[* + [n)!] < e[w(D:, Dy)v]k
< cexp [C;[¢]] [n(&, ) X| .
Now |7o(&, %)X | for [X| =1 grows polynomially in &, 5. Therefore we get

an estimate

exp [(¢/2) (& + In?)*] < ¢’ exp [C1[¢]]
or

exp [(¢/2V2) (€] + In)] < ¢ exp[C[E]] -
From this we deduce an inequality of the form

Iﬂlgﬁlfl + ¢
with ¢,, ¢;,> 0 for any (§,n)e V.
Sufficiency. Let us assume first that ¥ =1 so that N = n 4 1. Given

u € (£g,), there exists a formal power series » in y with coefficients real
analytic in # in a neighborhood of the origin such that 7,(v) = u.

Because of the assumption there exists in the ideal a a homogeneous
polynomial ¢(§,#n) of the form

q(&n) =9+ gqu(ﬁ)n"“”
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Therefore in the ideal b there exists a polynomial
m

p&m) =n™ + 2 pi&)ym
i=1

with principal part ¢(&, ) and thus with deg p;(§) < j.

Now each component v, of v satisfies the equation p(D,,D,)v; = 0
while the initial conditions Dfv;|,_, are all real analytic. It follows that
the germ of »; at the origin in C**' must be real analytic by virtue of the
existence and unicity theorem of Cauchy-Kowalewska.

We can then proceed by induction on k. Let

Ty1=C[&, ..., &,y M1y ooy Rieoa] -

If M as a §,-module is finitely generated so it is as a Fy_, module. We can
thus construct a commutative diagram of the form

50 ‘8o sy 8 482
0<— M Ty Ty Jog < ..
R
0<—— (M)y < Iy el I iﬁ”‘“ <~
N—-1 N—1 N—1 N—1
A
2o t}‘l[ ;tlz/{\
‘R, 'R,
0<— (M), T g t

We may assume that tr; = ‘u;oti; (as the action of 7, on A is inde-
pendent of the choice of the representative because of the homotopy rela-
tions). Let Vy_, denote the characteristic variety for the differential oper-
ator Ty(D) in N — 1 variables.

We have

Vies = {(E1y +rs Eny My +ovy Mey) € C¥1 3y, such that (&, ...,m) e V}.

Let (A7), be the set of germs u of analytic functions on C¥-* at the origin
with values in C* such that To(D)u=0.
As Vy_, satisfies the conditions of proposition 5 we have by the induc-
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tive hypothesis an isomorphism
Aot (HA,)0 = (#g)o+

Similarly by the case k = 1 treated above we have an isomorphism
Mot (#g,)o = (#r,)o+

Since on #Ag 7, = Ajou, we get thus an isomorphism
To: (Hg)o = (#g)o 5

this proves our contention.

COROLLARY. If the differential operator S,(D) satisfies the equivalent con-
ditions of proposition 5 then the natural map, for w open in R",

7t Hi(w, #g) — H' (o, #p)

is an isomorphism.

Given in R¥ = R x R*, where (z,y) are cartesian coordinates, a dif-
ferential operator

8o(Dzy D,): 87(Q) — Q)  (2cRY)

with constant coefficients, we will say that S,(D), D = (D,, D,), is an oper-
ator of Cauchy-Kowalewska with respect to R» if the matrix of polynomials
Sy(&, n) satisfies with its characteristic and asymptotic variety the equivalent
conditions of proposition 5.

We denote by & the sheaf of germs of elements fe & such that
So(D., D,)f = 0. As a consequence of the previous corollary and of the-
orem 1 we have the following.

PROPOSITION 6. Assume that the complex (1) is a suspension of the com-
plex (4). Assume that the first operator Sy(D., D,) of (1) is elliptic and of
Cauchy-Kowalewska with respect to R". Then we have for every open set
o C R* a natural isomorphism

Hi(w, &) — H'(w, #g,)
where, for Q deseribing a fundamental system of neighborhoods of w in R¥,

Hi(w, &,) = lim Hi(w, &,) .

Qow
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4. — Suspending a complex from R" to RY,

@) L2t us consider R* where (x,,...,®,) are cartesian coordinates as
a subspace of RY where (4, ..., %uy Y1y ..oy Y2)y N = n + k, are cartesian
coordinates; R* = {(», y) € R¥|y = 0}.
Let us consider a Hilbert complex of differential operators on R»

Ay(Ds)
—

(&%, Ay) = &7 (w) &%1(w) —J—E-(—,i))- & (@) —> ..., wcR,

associated to the Hilbert resolution of a certain §,-module N:

G

n

tA,(&
0 N &9 g,

D
To

where &, = C[&,, ..., &,].
We give now a Hilbert complex of differential operators on R¥

ByDsy D,) o,

l(Q) Bl(Dw’DV)

(8%, By) = {6%() gu(Q) —>..}, QcR,

associated to the Hilbert resolution of a certain §y-module M:

‘B, ‘B
0 u gao < o(£y 1) g (&5 M) ﬂ'j'\}’

where Ty = C[&;, ooy Eny Nyyeeey M)
We consider M as a §,-module via the natural inclusion ¢, > Ty,
M = (M),. We make the following

Assumption: M as a T,-module (M), is finitely generated and free:
(M), = 9,.
This means that R» is algebraically non characteristic for the complex
(8%, B,) and that a complex of Cauchy data for it on R" reduces to the

trivial complex
&(w)—>0.

In other words we have a set of free Cauchy data for B,(D,, D,).
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Let

trg: §, — Ty
be a §,-homomorphism such that the diagram

M <~—7Tp

|

(M), ~— 9,

commutes, then the Taylor series in y along ¥y = 0 of an element f e §%(£2)
with By(Dgy D,)f =0, f(y) = D (1/a!)f (#)y*, is uniquely determined by the
Cauchy data

To(f) = T6(Dys D)) ly=o

where 7,(&,7) = (75;(&, W))lgiscz,lgigv (cf. n. 3 b)).

b) We can consider the complex (4) as a complex of §,-modules and
we can take the tensor product, over ¥,, of the complex (4) with the com-
plex (2). We obtain as associated simple complex the complex

Dols

IQB,,
g‘g;ql <
I®By,  wu,@IN
(5) 0 M@g N3 L@ g ..
R AN
gae ,\
4, @I\
o

The same complex could have been obtained by taking first the tensor
product of (2) with § over §, to obtain the (exact) complex (as Ty is flat
over T,)

Aff) | y(E)
(2) 0 W@y, T, g3 g7 S ga <

and then taking the tensor product of (2’) with the complex (4).



ANALYTIC CONVEXITY 317

The complex (5) is associated to the complex of differential operators
with constant coefficients in R¥ '

I® B,\(D) , 8"*(Q)

I By(D) _» 8%(Q)

/\

®B,(D)

¥

/ Ay(D
(6) 8”"“’(@\ © 1DIOT™ gog)s..

A(D)®T > (@) <

/

4L(D)QT ™ 8(Q2)

THEOREM 3. Under the assumption (M), ~ P, we have that

a) The complex (6) is the Hilbert complex associated to a Hilbert resolu-
tion (5) of M®q, N.

b) The complex of differential operators on R®
@ A4o(D.) @ 4,(D.)

(8%())? —————> (§4(0))? ———> (§%(w))” — .

is a complex of Cauchy data for the complex (6) on R™.
PRrOOF. a) We have the commutative diagram

0 0 0

0<— Mg, N «— 2@, N <— 54 ®q, N

\ 4 ]«
0— M@y, T TH* —— T
h

0+— M®q, Tpt<— T3
with exact rows and columns. Now one has

ﬂ‘%o(h
M ®g, N = Torg, (M, N)= Coker{ @) —>‘.Tf;,“"°}
{]‘pqc
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and we deduce exactness of (5) in the first two places. The exactness of (5)
in the other places follows from the assumption, as the homology of com-
plex (5) is given by the module

Tory, (M, N) = Tory (F2,N)=0, j=>1.
Note that one has

TOI'?!’,. (M, N ®y, Ty) = Torg‘n ((21),,, N).

b) We have (M®g, N), =~ 5, ®g, N ~ N’ and this module has a
¥ ,.-resolution

@ 44(8) D 4i(é)
0 Nv, g\:av 1 5\3,1’ 1 g‘:,PJ

Therefore we obtain the statement b) of the theorem.
We note that the first homomorphism in the Hilbert resolution (5)

gr
NI ® ‘B,
\ Dol
@ /( JN
4,1

Py
J N

is represented by a matrix ¢*C = (U, V) with p,q, rows and p,q, + P14,
columns where U(V) represent the first (last) poq, (p14o) columns. By a
suitable arrangement of the rows we have

_ [*B,s.. 0 _[H4,.. O
U_.(O "‘tBo) and V_(O '"’tA.,)'

It follows that if M, is a minor determinant of the matrix !B, of order ¢,
then M7 is a minor determinant of the matrix *C of order p,q,. Similarly
if N, is a minor determinant of the matrix ‘4, of order p, then N} is a
minor determinant of the matrix !C of order p,q,. We deduce from this
the following

PROPOSITION 7. Let A denote the characteristic variety of the operator
Ay(D,) in C». Let W denote the characteristic variety of the operator By(D,, D,)
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wm CY¥ = CGrx Ck. Let Z denote the characteristic variety of the operator
Y /4

Co(D) = IR By(D)D 44(D)® I
in CV.
We have
Zc(AxCYyN W.

COROLLARY 1. If the operator By(D) is elliptic or of Cauchy-Kowalewska
with respect to R"c RY, then also the first operator

Co(D) = I1® By(D)D 44(D)® I

of the suspended complex (6) is elliptic or respectively of Cauchy-Kowalewska
with respect to R"c RY.

Indeed if for every (e W ((& %) e W) we have an inequality

IZ]< Ci[Rel|+ C. (| < a:l]+a),

the same is true for every point of Zc W.

COROLLARY 2. Let the first operator By(D) of the « suspending » complex (3)
be elliptic and of Cauchy-Kowalewska with respect to R*c R¥. Let &; denote
the sheaf of germs fe &% such that Co(D)f = 0.

For every open set o c R™ we have, for every j > 0

Hi(w, &,) ~ @ Hi(w, #£4,)

1
where if 2 describes a fundamenial system of neighborhoods of w in RY we have

Hi(w, 8) = lim Hi(w, &,) .

Qom
Proor. Since By(D) is elliptic Cy(D) is also elliptic so that with obvious

notations we have §; = . Since B,(D) is of Cauchy-Kowalewska with
respect to R" so is C,(D) and therefore we have an isomorphism

. o~ v
Tx s :/kca——> :fer

where 7, is induced by 7,&® I: &3% — (&))", &y denoting the sheaf of germs
of C* functions in N = n + k variables and similarly for §,.
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Combining these two facts we deduce a natural isomorphism
Te &g, % Ay, ;
this gives the isomorphism of cohomology groups stated in the corollary.

REMARK. For the validity of the isomorphism (j > 0)
Hi(w, 84,) = @ Hi(w, #£,4,)
1

one actually needs only that Cy(D) be an elliptic operator and of Cauchy-
Kowalewska with respect to R* c R¥.

Note that the above isomorphism reduces the study of the analytic
convexity with respect to the complex (1) to the study of the C® convexity
of a suspension (6) of the given complex (1).

¢) Let &, be the sheaf of germs of functions f € & such that By(D)f = 0.
Consider the double complex

Kr,s — 81»(1:(9)
with the operators induced by

B,(D): §%(2) — &%+(Q)
and
A,(D): &(R2) — &+ (92).

The simple complex associated to it is the suspended complex (6). By
considering the spectral sequence of this double complex we obtain in par-
ticular the following

PROPOSITION 8. Let £2 be an open set which is C° convex for the suspending
complex (3) (z'.e. such that (8%(2), By) is ewact).

Then the cohomology on Q2 of the suspended complex (6) is naturally iso-
morphic to the cohomology of the complex

Ao(D.) A,(D,)
s B (@) > By (> ...

°

8p,(2)"

d) Examples (x). Let N = n - 1 and consider on R*! as a suspending

complex (3) the complex

3) 8(2) —45 @) — 0




ANALYTIC CONVEXITY 321

where 4 = — > 9*/0x} — 0/0y® is the Laplace operator in n 4 1 variables.
1

This corresponds to the Hilbert resolution

4) 0 M Toia Tria 0
where

M = ﬂ‘n+1/(1i Ef + 772) ny1 ™= {OC (&) +nB(&), o B e Ta}

so that (M), ~ 2.
Suspending the complex (1) we obtain the complex

§0(0) —2> &11(0Q) 1>

e

(6) En(Q) ——> E4(2) - &H(Q) ——

Since (3) is acyclic on any open set (2 the cohomology of (6) is isomorphic
on any open set 2 to the cohomology of the complex

*

H(Q2)» TN H(Q)» & H(Q)p: — ...

where H({2) denotes the space of harmonic functions on £.
The suspending operator A is elliptic and Cauchy-Kowalewska with
respect to R». Thus for any wc R" we have

2
Hi(w, &) = @ Hi(ow, £,,)
v=1

where C, is the first operator of the complex (6).

(B) Let N = 2n and identify R** with C» where &, + iny, ..., & + i,
are complex coordinates so that R* = {(¢ + in) € C*|n = 0}. Consider on C*
as suspending complex (3) the Dolbeault complex

(3) CDO(Q) __5__> Col(Q) _a._>. Coz(Q) —_—
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where C%(£) denotes the space of C* forms of type (0,¢) on C» This cor-
responds to the Hilbert resolution

Ao

4) 0 > g AL NRAL.

> Jm M >0

where ) denotes the space of differential forms in d¢,, very dt, with coeffi-
cients in §,, = C[&;, ..., &ny N1y ..oy a] and where

oa = (51 + an)dtl + oo + (Eu + @nn)dt

If we identify 9™ with 9 the image of the last homomorphism in the
sequence (4) is the ideal of ® generated by (&, + i1y, ..y &n + i9).
Therefore we have

M ~ C[&y, ..., &, N1y ooy nn]/(fl + Mgy ey En Fimy)
~ C[&,y .-y &E] = Ta ™

Suspending by means of (3) complex (1) we obtain the complex

5 (002(.9 )m
L] @
(C”o(.Q))”" @) C‘” ,Q))m_____)
\ (Coo(Q y
\ (Ooo !)))p,

(6)

If Q is an open set of holomorphy, its cohomology is isomorphic to the
cohomology of the complex

(9/22)

ﬂ’(_a/iz))p(g, o)plﬂ___> rQ, oy —

(M) I, o)

where O is the sheaf of germs of holomorphic functions on C* and where
the operators 4,(D,) have been replaced by the operators A4,(0/cz) as they
have the same effect on holomorphic functions. In particular the sequence (7)
is exact if 2 is open and convex. We derive therefore the following

PrOPOSITION 9. Let w be open in R* and let fe A™(w) be such that
A,(D,)f=0. For any open relatively compact convex subset w, CC w we. can
find u € A *(w,) such that

Ay Dyu=7f, on w.
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Indeed we can find an open neighborhood 2 of w in C» and F e I'(22, O)™
with Flo = f. Let 2,c 2 be a convex neighbortood of w,. There exists
Uel'(2,0)" such that 4, ,(d/c2)U = F. It is enough to set u = Uw,.

Let Co(D) denote the first operator of the cor:plex (6). Since the first
operator 9 of the suspending complex is elliptic and of Cauchy-Kowalewska
with-respect to R", we have for any open set o c R»

Hi(w, &) =~ Hi(w, #£,4,) -

(y) Consider for n>2 R"*c C», the space C" being the minimal
complex subspace of C» containing R"+*, If 2z, = x; 4+ iy;, 1 <j < n are
complex coordinates in C* we may assume

R = C*xR* = {y,,, = ... = y, = 0} .

Set 2 = (¢/,2") With 2'= (21, ..., ), 2"= (Rpj1y .-y 2n) and let 0, 0" denote,
respectively, exterior differentiation with respect to the antiholomorphic
coordinates z' or z’.

We take as complex to be suspended the complex of the ¢’ along the
fibers C* of R*** (30 that now R~ is replaced by R~»t*),

1) 0%w) — 0"(w) —> (O2(e9) —> ... ——> (%(0) ——> 0 .

We take as suspending complex in R?* = C* (N = 2x) the complex

5” 8'//

(3)  0%(Q) — > 0) — s Q) —> ... —> (D) —> 0

where C°}(2) denotes the space of (® forms of type (0,1) on £ in the dif-
ferentials dz; 1y ..., d2,.

This last complex corresponds to a Hilbert resolution of a §,,-module
M = C[&,y eeey &y a1y oony iy Eigas vovy En] = Tupr,. Indeed M is isomorphic to
F, modulo the ideal generated by &, . 4 1y --ry En + M-

Suspending the complex (1) by (3) we obtain the Dolbeault complex in C*.
This has its first operator elliptic and of Cauchy-Kowalewska with respect
to R#tt, In particular we will obtain for «w c Rt*

Hi(w, 9) ~ Hi(o, &)

where O denotes the sheaf of holomorphic functions in C».
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5. — Sufficient conditions for analytic convexity.

a) Let a Hilbert complex be given on R», where x = (v, ..., #,) are
coordinates,

Ay(D A4(D.)

0 () A ={8w) ) TN (@) — ...}
where o is open in R”. Let us consider in R¥, N =» -+ k, where (x,y) =
= (Lyy eeey Tny Y1 ---y Yi) are cartesian coordinates an elliptic and Cauchy-

Kowalewska suspension of the complex (1);

(D Dy)

() 8y(D,, D,
(@) (@), 8) = {em(2) Sy Do),

&4(Q) &(0Q) — } .
By this we mean that (2) is a suspension of (1) and that the first operator
So(D) of (2) is an elliptic operator and of Cauchy-Kowalewska with respect
to R". Here  is open in R¥.
If we set Fy= C[&, ..., &Ny eeey i)y T = Cl&y, ..., ] the above
situation arises from a commutative diagram of ¥ ,-homomorphisms with
exact rows:

s 8o(&, 1) s *81(&5 )
0 M TR TR T3 <

Y

4, 4,
gro Al ),

0

n

Here the maps ‘r; define linear maps, for w = 2 N R~

ti(D., D,): 89(2) — & (w) j=0,1,...
by
f—> (Ti(Dm Dv)f) '1/=0 .

We consider w c R*, Q c R¥ with 2 " R* = w, and the Cauchy problem

S(D)u =0 ue A(RQ)
(%) wo(u) =0

AyD)v=0 e A (w).

and consider R*, R¥ naturally imbedded in C», C¥ respectively.
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The following lemma is a consequence of the inductive argument given
for the sufficiency part of theorem 2 and of the argument developed for
instance in [4].

LEMMA 2. Let Sy(D) be of Cauchy-Kowalewska with respect to R*. Let &
be a neighborhood of w in C™ and let v be defined and holomorphic in &. There
exists a neighborhood @ of w in C¥, depending only on & and not on v, such
that the solution u of the Cauchy problem (%) is defined and holomorphic in 0.

b) For an elliptic and Cauchy-Kowalewska suspension (2) of (1), for
any open set w c R*, we have

Hi(w, &,) = Hi(w, #£,,)

and if © describes a fundamental system of open neighborhoods of w in R¥

we have
Hi(w, &,)= lim H(£, &,).

Qow

We deduce from this the following proposition.

PROPOSITION 10. Let w be open in R". Asswume that for some j > 1

(4) for any open neighborhood £ of w in RY we can find an open
neighborhood A of w in Q such that the restriction map

vy H(Q,8g) — H(A, &)

has zero image.
Then Hi(w, £,) = 0.
In particular when Q = A we get the

COROLLARY. Let w be open in R*. If o admits a fundamental system of
open neighborhoods 2 of w in RY such that H/(2, &) = 0 then Hi(w, #£,) = 0.

Let § >1. A pair of open sets A c Q2 in RY is called j-compatible with
respect to the suspended complex (2) if

Im {r§: H/(Q, 8) — H'(4, &)} =0
so that condition (4) of proposition 10 can be stated as « w admits a funda-

mental system of j-compatible pairs of open neighborhoods in RY for the sus-
pended complex (2) ».

22 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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Consider now another elliptic and Cauchy-Kowalewska suspension in
some space R D> R" of the complex (1) where (#y,..., @n,ty, ..., 1,) are car-

tesian coordinates in RY, H = n - h,

Ly(Dqy Dy)

LO(D:H Dt) 81

3) (8*(G),L*)E{8lo(G) (@) &(@) »}

where @ is open in RZ. Similar to the map 7, on the Cauchy data we choose
a map
Ao(Dyy D,): 8%(@) - &"(w) =GN Rr

so that the corresponding first Cauchy problem for the complex (3) is given by

L(D)w=0 we A (G)
(k%) Ao(w) =

AyD)v =0 v €A (w).

PROPOSITION 11. Let w be open in R*. If w satisfies condition (A) with
respect to an elliptic and Cauchy-Kowalewska suspension of the givem com-
plex (1) then w satisfies condition (A) with respect to any other elliptic and
Cauchy-Kowalewska suspension of (1).

Proor. We assume that o satisfies condition (4) with respect to the
suspension (2) of (1). We want to show that it satisfies condition (4) with
respect to the suspension (3) of (1).

We choose a countable locally finite covering of w by convex open sets

o=Uw=Uo =U

ieN ieN ieN
with

w; CCw;cCw;ccor VieN.
For ¢ = {&;}ien, €:> 0 Vi, we set

UP() = {weod, t| <&},  WAe) = {U (e)}ien
W?)(E) = {'” € w(iv)7 li‘/l < 81'} ) ‘w(v)(e) = {W?')(s)}ie!\’

where o »=0,1,2 denote respectively w;, ®;, w;. We also set

U, =UPN...N U and similarly for W® and o®.

Go.aiy
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Let G be an open neighborhood of w in R%. By replacing G by a pos-
sibly smaller open set, we may assume that G = | U,(e) so that AU(e) is

ieN
a Leray covering of @ for the sheaf §, . We want to show that there is an
open neighborhood B of w in G so that

Im {H*(@, &) — H"(B, 8L.,)} =0.

Let {f;, <€ H G, &) ~ H'(U(e), &,) be a cohomology class repre-
sented by a cocycle f;, , with f, , eI'(U; ,(¢),&,) and (with loose no-
tations, suppressing the restriction maps) E(—l)"f%m,h._ﬁm = 0.

Because of lemma 1, since Ly(D) is an elliptic operator, f;, ; is defined
and holomorphic in a neighborhood U i &) of Uy i .(e) in CH, which is
independent of {f; ;} but depends Only on U, . (e) Therefore Ao(fi,..
defined and holomorphic in a neighborhood &;, . ;, of w;, ; in C" which is in-
dependent of {f; , } butdependsonly onU; ; (¢).Wehave Ay(D)A(f;, ;) =0.

Qo...ig

For every (iy, ..., %) we consider the Cauchy problem

iq

So(D)s;

Tge..ig

=0
() To(8i,...50) = AolFiy..i)

Ao(D) 4y(fs,....;,) = 0.

This can be solved with

Sivoic € LB € 04 _ipy W] < 03, 1}5 85,)
with o; ;. > 0 that can be chosen, by virtue of lemma 2 independent of
{iaoid and depending only on U; ,(¢). Since the covering {®ihien 18
Jocally finite we have

g; — inf Ciiy...ig > 0.
(iy...1q)

Therefore we have found a sequence ¢ = {0;};cn, With o; > O Vi, inde-
pendent of {f; ;} and depending only on W(e) and s, ;€ I'(W; _;.(0),8,)
solving the Cauchy problem (x). With loose notations, we must have
(2 (—1)*s;, 50..0) = 0 because {f, ,} is a cocycle, therefore also we
must have 2 (=18, 5 i) =0

Let 2 = (J W;(0). By assumption there exists an open neighborhood A
of w in Q such that

Tm {H*(2, §,) — H*(4, 85)} = 0.
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Without loss of generality we may assume 4 = {J W@f(r;) for some sequence
7 = {n}ien With 5, >0, ¥i. As W'(y) is a Leray covering of A for the
sheaf & and as {s; ,} is given on the covering W'(s) we can find
{v;,. i, With

Vig..iiq1 € F(Wi’n...i,,_,(ﬁ)y 83.,)

such that dv = s|W'(n) i.e., with loose notations,

2 ('— 1)"1‘1'0...&...@'4 = s’io,..iq on Wzo z,,(77) °
Because of lemma 1 v; ;  is defined and holomorphic in a neighborhood
le., iqa(m) of W“ e l(’7) in GV which is independent of v = {v, } and
depends only on W'(n).

Therefore 7y(v;, ;) is defined and holomorphic in a neighborhood
@;,..,., of o, in C which is independent of v and depends only on
W'(n). We have Ay (D) zy(v; = 0. For every (i, ...,1%,_,) we consider
the Cauchy problem

0-0.0g-1

tg...0q— 1)

Ly(D)w,, i, =0
(%) 10(“’1’,,...1'4_,) =70(0;,...i0,)
A(D)vy(v;,. ,.) = 0.

As before we realize that we can find a sequence u = {u};cny With
;> 0, Vi, which (by lemma 2) is independent of » and depends only on
W'(n) such that the Cauchy problem (%%) has a solution

w;, . €U . (), &) -

Torilg— Tyeniigm

We set B = |J Uj(u); it is a neighborhood of @ in G. With loose nota-
tions we have

2o(f) = 7o(s) o(w) = 7(v), §=0v,
thus
Ao(0w — f[‘ll;”(‘u)) =0.

Because of the unicity of the Cauchy problem (k%) we deduce that
ow = f|UW"(u) i.e., with loose notations,

S0 3 =l o0 Ui i (w).



ANALYTIC CONVEXITY 329

But this shows that Im {HY(G, 8,)—>H'B,§,)} =0 as we wanted
to prove.

¢) An application. Let & = (&, ..., &,) be n indeterminates and let
us consider a homogeneous ideal b in the graded ring Cy¢&,, ..., £,] of homo-
geneous polynomials in » variables. Let y,(£), ..., ¢,(&) be a set of (homo-
geneous) generators of b. Let

W(b) = {& € Pu_y(C)[1(&) = ... = y(§) = 0}

be the projective variety associated to b. We will make the following as-
sumptions:

i) W(b) is 0-dimensional so that it consists of finite many points
a® = (a9, ...,a¥) 1<s<pu

ii) each one of the points a® is simple for W(b) i.e.

a(wl(a,-.-,wz(s))} o
mnk{ 3y s En) Jeaw ML

For each point a'®) we define a linear map 7,: C* — C by 2 = (24, ..., 2,) —>

n
—>m(2) = Y, ags)z,.. This is defined up to multiplication by a complex number
i=1
different from zero. We will call the projection s, real or complex according
whether a® € P,_,(R) or not respectively.

Set t4y(&) = (i(&)y eey ¥(E)), Fn = Cl&, ..., &,] and consider a Hilbert

tA,(&
resolution of the ,-linear map ﬂ‘:,—il F, defined by t4,(&):
t
(4) 0 > Jt > JL Ao(d) T, N >0 .

To this corresponds a complex of differential operators

4o(D)

(5) 8(w)

(w) &(w) —> 0
for any o open in R». Here, if #,,...,#, are cartesian coordinates in R~,

(D)

. 0 0
AD) =| D= (—, ,—)
0 o,
w(D) =
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We consider now the d-suspension in C* of the complex (5). We obtain
in this way a Hilbert complex for any £ open in C»

(6) g(@) %)

§(Q)Hn —— ...

where, if z,, ..., 2z, denote complex coordinates in C”, we may assume that

)
a

2 o @ ?

Cy(D) = A D‘(a_%""’az,,’azl""’ﬁ,,)
7
£
7z

We denote by O, the sheaf of germs  of (holomorphic) solutions of the
equation Cy(D)u = 0. We denote by O, the sheaf of germs of holomorphic
functions in the variable ¢t = Y a(s) We have a natural linear map

14
11 0, ~0,
8=1

uw

given by (azy ..., ,) = > .. If £ is open in C* and Hi(R2,C) = 0, Yj> 0
s§=1

then we have ([4] Corollary 2 to proposition 14)

u

72,0 = DA (j>0).

. Let w be an open bounded set in R* and let g: R* —~ R be a (© defining
function for w, i.e. a C® function such that o = {we R"[p(z) < 0}. It will
be convenient to assume that po(xz) = 0 for 2 € R" — .
Set
B = {(@1, ..., @, 0) € RP[o(2) < — 0%

and let « denote the projection (z,, ..., x,, 0) — (6) of R**! on the §-axis R.
We will make on o the following assumptions

n
i)o for any real projection s,: (2;,...,2,) = > a¥z;, aeR,1<j<n,
i=1



ANALYTIC CONVEXITY 331

consider the linear map f,: R*** — R defined by

n
(wu AR xn, 0) - za:(;s)wj
i=1

then (&, o X f,|@, o X ,(®)) is a differentiable fiber space with convex fibers
for a convenient choice ¢ = o of the defining function of w.

n
ii)o for any complex projection 7,: (2, ..., #s) — > a2;, a’) ¢ P,_,(R),
i1
(e, 775|, 7w4(w)) is a differentiable fiber space with convex fibers.

iii)y Hi(w, C) = 0, Vj > 0.

Set w(0) = {x € R"|p(x) < — 62}. Condition i), implies that for any
real 7, (and for a convenient choice of g), 7, |w(0) has convex fibers for any 6.
Condition ii), implies that for any complex x,, 7;|w has also convex fibers.
By a differentiable fibre space we mean a fibre space which is loecally dif-
ferentiably trivial.

PRrROPOSITION 12. Consider the Hilbert complex (2) associated to a homo-
geneous polynomial ideal b on which we make the assumptions 1) and ii).

Let w be an open set in R*, bounded and verifying the assumptions i)o,
ii)w, iii)e.

Then w is analytically convex i.e. for any j=> 0 we have

Hi(w, #)=0.

PrOOF. Let h: R — R be a % function with h(t) < 0 if ¢t < 0, h(f) = 0
if t > 0 and which is strictly monotone inecreasing for ¢t << 0. Set z = o 4 iy
in C* and consider the sets

Q:{z:x—l—iyeC”]ny—|—h(g(a;))<0}.
1

These describe a fundamental system of neighborhoods of o in C=.
Each £ is fibered in n-dimensional balls over o and thus is contractible
onto w. Because of the assumption iii), we have thus Hi(£2, C)= 0 for

w
every j> 0; therefore Hi(Q, 0,) = @ Hi(2, 0,), (j > 0). It will be there-
8=1
fore sufficient to show that for every s, 1 < s < u, there exists an open
neighborhood A, of w in £Q such that

Im {H/(2, 0,) - Hi(4,,9,)} =0 (j>0).
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"
Indeed taking A = (] 4, we will have

8=1

Im {H/(2,0,) > HI(A,0)} =0 (j>0)

therefore by proposition 10 it will follow that H'(w, #£,,) = 0 for every j > 0.
We distinguish the case whether z, is a complex or real projection. To
simplify notations we will denote the function k(g) by o itself so that

Q:{w+iyeC"IZy§+g(w)<0}.
1

Let n, be a complex projection. Let a® = « 4 if and let (-,-) denote the
euclidean scalar product in R*. We can always multiply o/® by a non zero
complex number to have (x,f) = 0. We may also assume (o, )} =1,
(B, B)} = k, as &, being complex, o and f are linearly independent. ‘We can
find a real orthogonal matrix M so that the change of coordinates z = Mz’
in C* brings a¢® into the point ¢(1, ik, 0, ..., 0) € C». We will continue to
denote by p(«) the new defining function ¢(Mx) for w. Denoting by o + 0
the complex coordinate in the target space of x,, in these new coordinates 7,
will take the equations

z,—ky, = o

Y1+ ka, = 0.

Let X, 0= 7, (0 + 40). Then y,, ..., Yu, @, ..., &, can be taken as af-
fine coordinates on the complex hyperplane 24,0y for any choice of o and 6
and in these coordinates the open set X, 5y N £2 will be given by the condition

n 6_
(*) Sup+o(o+ k"M a1y ) <0

The left hand side of this inequality is given by a function (yy, ..., ¥.)

for any fixed choice of x;, ..., z,. Replacing ¢ by o with ¢ << 0 and suffi-

ciently small we may suppose that the Hessian of ¢ with respect to y,, ..., ¥»

is positive definite so that u(y,,...,¥,) is a C® strictly convex function.
If

. 0— . . .
P= (o‘ + ky, + wy,, % Y + Y,y s + Yy ey 2a + zyn) €2 N R
then
0
(P) E(o‘, ARLTERY w,,) € Lio,9) N = wy(0, 0).
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Indeed if this last point is not in w, then all derivatives of o must vanish
(by the way the defining function has been chosen). Therefore the gradient
of y(y) for y = 0 must vanish. Hence y = 0 must be the absolute minimum
of  so that y(y) > y(0) = 0. Hence no point P could exist over 7(P),
with Pe Q.

It follows that X, 5 N 2 is fibered by 7 over w,(c, 0) with convex fibers

defined by (%) for o,0, x,, ..., 2, given. By assumption ii)e, w,(c,0) is
convex, therefore X, , N £ is contractible for any choice of (o, 0) provided
2oy N 2+ 0.

From proposition 16 of [4] we derive then that, for the given choice
of Q, we will have

Hi(Q2,0,)=0 for any j>0,

provided we prove the following contention.

Let (oo, 0,) be such that 2, o,N 2 @ and let M be a sufficiently small
open spherical neighborhood of (a,, 6,) so that for (o, 0) € M, X, 0N 2+~ 0.
Then {X, oy N 2}s,00ear is a differentiably trivial fiber space over M.

Let us denote by Vy the gradient of y with respect to the coordinates
(Y19 «-vs ¥n) € R*. Let 9V, y® be two points in R*. We claim that

(Vyp(y®) — Vy(y®), y© — y) > 0

if ¥ y®. Indeed set f(t) = (Vy(y® + t(y® — Y ) — Vyy®), y@ — y).
We have f(0) =0 and f'(¢#) > 0 if yV=£ y» because p is strictly convex.
Therefore f(1) > 0 as we wanted to prove.

This shows that Vy: R* — R" is an injective map.

Let us now choose a C® function h(t) defined for ¢ < 0 which is convex
and increasing, such that

h(t)y>0, A(@)>1, A'({t)>0, h(t)— -+ oo fort—0-.

Replace the function y by exp [k(y)] and consider the map defined on
the fibers of 7 over w,(s,0) by Vexp [h(yp)] = h'(p)Vy exp [h(y)]. One
then verifies that this defines a diffeomorphism of the fibers of 7 onto R,
so that we get a differentiable isomorphism of fibered spaces

Vev: (2(6,0) N 2, 7, wy(0, 0)) = (w4(a, 0) x R™, PP o(0,0)r 01(0, 0)) -
This diffeomorphism depends differentiably on the parameters o, 6. By

assumption ii),, for M small, we have that {w,(a,0)} eecx is diffeomorphic to a
trivial fiber-space over M, with typical convex fiber F, F x M. Combining
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this fact with the previous diffomorphism we get a differentiable isomorphism
{Z6,00 N L oppem=> R XF X M.

This establishes our contention.

Let 7, be a real projection. By an orthogonal real change of coordinates
we may now assume a® = (1,0, ..., 0) so that z, has the equations », = o,
9y, = 0, o 4 i0 being the complex coordinate on the target space of .
Let X4 = 77 (o +i0); on it Yay ...y Yny oy ..., T, can be chosen as affine
coordinates and X, 4 N Q is given by

n
S Y7+ 0(0) Tay ey ) < — 02
2

Set wy(o, 0) = {(23, ..., #.) € R*o(0, ¥y, ..., ) < — 02}, Then X, 5 N 2
is fibered over w,(c, ) with fibers (» — 1)-dimensional balls. By the assump-
tion i)w, w,(c, ) is convex, therefore X, 5 N £2 is contractible for any choice
of (g, 06) provided X, q N L+~ 0.

From proposition 16 of [4] we derive then, that for the given choice of 2,
we will have

Hi(Q2,0,)=0 for any § >0

provided a statement on local differentiable triviality similar to the previous
one can be established.

By the previous remark X, N 2 as a fiber-space with ball-fibers is
differentiably isomorphic to the trivial fiber-space w,(a, ) X R*"! over w,(c, 0)
with a diffeomorphism which depends differentiably on ¢ and 0.

By assumption i)o {®,(0, 0)}(,0)ex is differentiably isomorphic to the trivial
fiber-space with convex typical fiber F, F x M over M. It follows that
{Z6,0) N 2}5,00en 1 differentiably isomorphic to the trivial fiber-space over M,
R1xFxX M.

This establishes our contention also in this case.

d) Analytic convexity on convexr open sets. We will call an open set
Qc RY a staircase if 2 is the union of a countable family W = {U;};_, ,, .
of convex open sets such that

U.NnU,cU,NU, whenever i<h<k<j.
For instance let N =n -+ k and let (z,y) = (@1, ...y Tny Y1y --ry Yz) D€

cartesian coordinates in R¥; let R = {y = 0} be considered as a subspace
of R¥. Let o be an open convex set in R” and let {®,;};_; , . be an increasing
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sequence of open convex subsets of o such that

i) w;ccw for every i =1, 2,...;
(o]

i) o = w;.
i=1

Choose a decreasing sequence {Ti}i=1,2,.., of strictly positive numbers
and set

Olw;,y T;) = {(wy y)eRz e v, ly| < Ti}

where |y| = (Xy;)}. Then U, = C(w,, T;) is an open convex set in R¥. Set
Q= U Olw;y T) .
i=1

Then £ is a staircase. Indeed for ¢ < h < k < j we have w; C w; C w; C w;,
T.>T,>T,>T; so that

Clw;, T;) N C(w;, T;) = Clw;, Tj) € Clwny T) = Clwn, Th) N Clwy, Th) .

Clearly £ is an open neighborhood of w in RY and when the sequence
{T}i_1,s,.. varies 2 describes a fundamental system of open neighborhoods
of £ in R~.

Consider any Hilbert complex in R¥

8y(D)

(1) goo(2) D) g, () 5ilD)

6%(2)

for  open in R¥. Let & denote the sheaf of germs we &* such that
Sy(D)u = 0. We have the following

PROPOSITION 13. For any staircase 2 c RY and for any Hilbert complex (7)
we have

Hi(Q,8,)=0 forj>2.
Proor. Let us consider a flabby resolution of the sheaf &,

0 & e % o C2

0

so that

. Ker {F(.Q, &) -2 re, em)}
Hi(D, &) = - .

Im {F(Q, ey 2=t 0, el
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Let &e H/(Q,8;) be represented by f;el'(2,€’) with ¢;f =0, and
let j>2.
Let 2 = |J U, be a staircase, with U, convex and open and U; N U, C
i=1
c U, N Ug whenever 1+ < h <k <j.
As the complex (7) is a Hilbert complex and as the U,’s are open convex

we have (since j > 1) that
flvx = 0;_1Uyy [|Uy = 0;_1Us, flU; = Oj_1tg, .

with w,e I'(U;, C1), i =1,2,3,....

On U,Nn U, we have 6;_,(#, — u,) = 0. Thus as U, N U, is convex and
j>2 we can find v,e I'(U, N U,, C-2) such that

Uy — Uy = 0;_pv, on U;,NT,.
Since Ci—2 is a flabby sheaf we can extend », to
P,e I(U,, C2), #|U;N U, =v,.

Set g, = u, on U,;. Set

Uy on U,
g: =

Uy + 6;_p9, on U,.
Then ¢, = ¢, on U, and g, I'(U, U U,, C-1) with
f=290;.9. on U,UU,.

On (U,uU,)NU,=U,Nn U, we have d;_,(g9, — us) = 0 so that we can
find ;€ I'(U, N U,, C-2) with

g:— Uy = 0;_yv; on U, N Us.

We can extend v; to #,€ I'(Us, C-2); #3|U, N Uz = 9.
Set
gs on U, UU,

gs =
ug + 0;_,%; on Us.

Then g, is defined on U, U U, U U, and g, =g, on U, U U, and

f=20;_.9s on U,V U,V Us.
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Proceeding in this way we define

¢el(U,V U,V ... T,, C1)
with
=g, on U,U..UTU,_,
and such that

f=20;_49» on U;U..UT,.

The collection of the g,’s defines a geI'(Q2, C-1) with f= d;_,¢
on . This proves that & = 0.

If we apply the previous proposition to the case where the complex (7)
is an elliptic and Cauchy-Kowalewska suspension of a complex (1) in R»
we obtain the following

THEOREM 4. For any Hilbert complex (1) in R* and for any open convex
set w c R* we have
Hi(w, £,) =0 for j>2.

Proor. Indeed o has a fundamental system of neighborhoods in R¥
(where the complex (1) is suspended by the complex (2)) which are stair-

cases. By the previous proposition each staircase is selfcompatible for j > 2.
Thus we can apply the corollary to proposition 10 for j > 2.

6. — Some lemmas on staircases.

a) Consider in R¥ a Hilbert complex

8,(D)

) gn(2) 22 () 28) o)
for £ open in R¥. Let & denote the sheaf of germs of functions fe &
such that So(D)f = 0. For £2 open we endow the space I'(£2, & ) with the
topology of uniform convergence of the functions and their partial deriva-
tives on compact subsets of £ (Schwartz topology). Then I'(£2, &5 ) be-
comes a Fréchet space.

We consider now an open set 2 c R¥ which is a staircase i.e. 2 = U U,
with U, open and convex and such that i=1

U, NU;cU,NU, wheneveri<h<k<j.
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Then W = {U;};_y,s, .. is a Leray covering of 2 for the sheaf & . We
denote by Z'(“W, &) the space of the alternate 1-cocycles of the covering W
in the sheaf & . Let f,;e I'(U;N U;, &) be such that {f,;} is a 1-cocy-
cle on the covering W i.e.

fo+fie=Ffx on UNU,NT,.

If i<j<k then UynU,NU,=U,NTU, as 2 is a staircase. We
deduce then that for ¢ < j we must have

i—1
fo= 2t on U;,NT;
h=i

as each f,,, for i < h<j—1 is defined in U, N U, ;2 U, N T,
One deduces from this the following

LEMMA 3. The linear map

n (U N Upyy 830) — ZY(UW, 83,,)

h=1

defined by
i—1
{fhh+1} = {fzf = thnH for i < 7}
h=i

i8 a topological isomorphism.
An element {fun.1} € [[1(Ur N Upp, &s,) represents a coboundary if and
h=1

only if one can find g, € I'(Uy, &) b =1, 2, ..., such that, for any h, we have
fh re1l = Gn — Gnya -

Proor. Indeed the alternate Chech 1-cocycles in Z!(, &g,) are re-
presented by the cochains {f.;} € [[ (U, N U;, &g,) such that for ¢+ <j <k

1<i
we have f;; + fi = fao o0 U; N U,. Thus the defined linear map is in-
jective and surjective. It is also continuous for the Fréchet topologies of
source and target space. By Banach theorem it is a topological isomorphism.

The last part of the lemma is straightforward.

LeMMA 4. Consider the map

[ I(RY, &,) L> T] I'(Uy AUy, &,)
h=1

h=1
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defined by {F:} Ls {fan,y with
RN
fh byl = Tona UIH-th

where r denotes restriction map.
Then Im § is dense in the target space and consists of coboundaries.

Proor. For every h =1, 2,..., the map
Tg:n Uh+1:F(RN7 850) - F( Uh N Uh+1’ 850)

has a dense image as U, N U, , is convex and as S,(D) is an operator with
constant coefficients (Theorem 7.6.14 of [10]). Then B as the product map
of the above restrictions has dense image. Set now

:.=20, go=—F, ¢g=—F—-F, g¢g=—F—F—F,..
Then g, is defined on U, and
h—0¢=Fi="fe, G—0=F,=fn, @s—9s=F;=Fs,-..

Therefore S({F}) is a coboundary.

LEMMA 5. Let Q = tJ U; be a staircase and let B c Q2 be open.
If i=1
dim¢e Tm {HY(, &;,)— HY(B, &)} < oo
then mecessarily
Im {HY(2, §,) - H(B, &)} = 0.

ProOF. Set V,= U, N B. Then VU = {V;};,_;, . 1is a covering of B.
The natural map HY(V, &) —H(B, &) is an injective map (by Leray
theorem). The covering W = {U};_;,,, . of 2 is a Leray covering; thus
HY(Q, &,) = HY(W, &,). If an element & € HY(W, & ) vanishes in H*(B, &),
it must vanish in HY(U, &) already.

We set C°(V, &) =[] I'(Vi, &,) and consider the space
i=1

G = {(u) v) €ZX(W, 8,5',) x (U, 8s,,)

w VU = 6cuv}:

where dqy represents the coboundary map day: C°(V, &) — CY(YV, &) in
Chech cohomology (CX(V, &) = [[ (Vs N Vs, &)). This is a closed sub-
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space of the space Z'(U, & ) X C°(U, &,) with its natural Fréchet topology.
Thus G is a Fréchet space.
Set
W = prpa, 6@ -

Then W represents the subspace of Z(W, &5) of those cocycles which be-
come coboundaries when restricted to B. By construction W is a continuous
image of a Fréchet space.

The assumption of the lemma states that

Z\(W, &,)

dim¢ W

< oo
i.e. that W is of finite codimension in Z*(U, &,). By the above remark we
must have that W is a closed subspace of Z'(W, &,).

By lemma 4 W, containing the coboundaries of Z(U, &, ), must be
dense in Z*(U, &). Therefore we must have W = Z*(W, &) and this
proves that Im {H(L, &) — HY(B, &)} = 0.

b) Set RY = R*XR*with N = n - kand (@, y) = (@1 cevy Tny Y1y oeey Y1)
as cartesian coordinates in RY. Let w be an open set in R* and let us as-
sume that

dim¢ HY(w, &) = d < co.

Then there exists an open neighborhood 2, of w in R¥ and d cohomology
classes
§,e H (8, 8) forl<j<d,

such that, under the natural restriction map
roe: Ho(£,, &s,) = H(w, &),

the classes ro'(&;) for 1 <j < d form a basis over C of He(w, ). Each
class &; will be represented by a function f;e &%(2,) with S,(D)f; =0,
&= {f 1}-

Let Q be any open neighborhood of w in R¥ and let ¢ denote the class
of closed subsets € c 2 with 0 N w = @. We have then the exact cohomology
sequence

> HY(Q, 85) > HUQ, &) B> Hi(w, &) — ...

where r? denotes the natural restriction map and where the suffix ¢ denotes
cohomology with supports in ¢.
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Let ¢'>1 and let {f} € Hy(, 8,) with fe §(£), S,(D)f =0. We can
find d complex numbers A,(f), 1< j < d, such that

a
ro{f} =5=§; A(f)rae{fs} .

We deduce then from the above cohomology sequence that

« There exists an open neighborhood By of w in 2, and a function u € §*(By)
such that we have on B,

a
f— 2 A(Nfi= Sea(D)u . »
=1

For w open in R* and any T > 0 we set, as usual,
Clow, T) = {(m7 yYeRzew, y|< T}

where |y| = (3 )%

In the following lemma w is not supposed to be convex. We will write
o = |J w; with o; open and relatively compact in o and w;Cw;.,,

i=1

for j =1,2,....

LEMMA 6. Let 2 = |J w; be an open set in R* as above. Let 2 be an

i=1

open neighborhood of w in RY.

Assume that
dimg HY(L, &) = d< oo.

We can find a sequence of positive numbers {T,;}, T;> 0, Vj, such that,
if we set

b
B, = U O(w;, T)
i=1

we have:
B,cQ for every h =1,2,...

dimg Im {H(RQ, &) — HYB,, &)} < d, for every h =1,2,....
ProoF. We use the notations and remarks made above. We set
Z4(2, 85) = {f € &4(Q)|8(D)f = 0} .

We denote by V, the subset of Z«(£2, &) of those fe Z%{2, &;,) such that
there exist an open neighborhood B, of w in 2, N 2 with C(wy, 1/n) C B,

23 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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and a function u € §%*(B,) such that

d
f—jz Af)f;i = 8, .(D)u on By.
=1
We have

742, 85) = UVa.
n=1

Therefore for some n, V, will be a set of second category. We denote by
V. the subset of Z¢(£2, &) of those fe Z*(L2, &) such that

there exist an open neighborhood B, of w in 2, N 2 with

1 1
C(wl, /'71) V) C((Dz, ’;L) Cc Bf
and a function w € &*(B,) such that

d
f— z Ai(f)fi = 841(D)u on B,.
j=1

J

We have V, = |J V,.,.. Therefore, for some integer n,, V, , will be of
second category. "=!

Proceeding in this way we define for every integer h > 0 subsets V, , . .,
of Z9(Q, &) of second category such that if fe V, , . there exist an open
neighborhood B, of w in 2, N 2 with

1 1 1
C(wl”ﬂ—l) v 0(602,',’72)\) WU C(wh,;{h)CBf

and a function u e &*(B,) such that
d
f— z 2i(f)fi= B¢a(D)u  on B,.
i=1

Let G=(
i

§%(£2,). We have G ~ C°. »
We choose T;=1/n; and set B, = J C(w;,1/n;). For every integer
k> 0, we consider the space i=1

d
> Ajf,) be the vector space generated by the functions f; on
=1

E(h) = {(f, u, 9) € Z4R2, &) X 8"*(B;) X G|f — g = Sga(D)u on By} .
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This is a closed subspace of the product space Z4(£, &) x §*(B;) X G and
therefore it is a Fréchet space. The projection of E(h) into Z#(£, & ) is a
continuous linear map whose image contains the set V, , . which is of
second category. It follows from Banach theorem that the projection must
be surjective. This means that for every fe Z%((, &5 ) there exist

an open neighborhood B, of w in Q, N 2 with B,> B,
a funetion u € &*(B;)
an element g = > A,(f)f.€ @

such that
f—2> AN fi= 8,i(D)u  on B,.

This shows that dim¢e Im{H*(Q, & )— H(B,, 850)} < d because that image
is generated by the classes {r‘,fhfj} for 1<j<d.

7. — Necessary conditions for analytic convexity.

a) We consider applications of the last lemma 6 to the following
situation.
The Hilbert complex in R¥ = R» x R*

So(D)

(1) (84(Q), 84) = {8(2) =3 8(9) 84(D)

£(Q) }

in an elliptic and Cauchy-Kowalewska suspension of a Hilbert complex
in R»

(2) (&%), 44) = {87(0)

AoD) 0,09y A1) 1 0y) — }

Let o be a given open set in R” and let 2 be an open neighborhood of
in RY, let ¢>1 be an integer and let us assume that HY(w, £,) =0,
where #, as usual denotes the sheaf of germs of analytic functions on R~,
u € A”, such that A,(D)u = 0. Because of the assumption that the sus-
pension complex is elliptic and Cauchy-Kowalewska we have that H%(w, &) =

= H%w, #4,,). Therefore by lemma 6, writing o = |Jw; with »; open,
i=1
©;CCw, 0;Cw;y, Vi, Wwe can find a sequence of positive numbers {T}};_, o .
so that if we set
h
B, = U Clw;, T))

i=1
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we have B,c Q, Yh =1,2,... and

3) Im {HY(, &) —~ HY(By, &)} = 0.

Set

Cs

B:

k)

Olw;, T) .

1

I

We can then ask if we can pass to the limit for h — co in (3) to obtain
(4) Im {H(L, &;) — H(B, 850)} =0.

In that case we will get the following

STATEMENT. A necessary and sufficient condition for having
HG(Q’ .fer) - 0

is that for any neighborhood £ of w in RY we can find a neighborhood B of w
in £ such that

Im {H(R2, &;,) - H'(B, &)} = 0.

In other words «a necessary and sufficient condition for w open in R¥ to
have analytic convexity in dimension ¢ (i.e. that H%w, £,) = 0) with
respect to the Hilbert complex (2) is that o admits a fundamental system
of g-compatible pairs of open neighborhoods in RY for the suspended com-
plex (1) of (2)».

The possibility to obtain a limit relation (4) from (3) is based on a Runge-
type approximation theorem.

b) We consider on R¥ a Hilbert complex (&*(£2),Ss). For 2 open
in R and for any j > 0 we set

7R, 8s,) = {f € &(2)|8;(D)f = 0} .

We endow this space with the topology of uniform convergence on com-
pact subsets of £ of the functions and all their partial derivatives (Schwartz
topology). With that topology Z/(L2, &) is a Fréchet space. Given a com-
pact subset K of 2 we denote by Z/(2, & )|K the space of all restrictions
to K of functions of Z/(£, &).

Let A be another open set in RY and let Qc A.
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We will say that the restriction map
Zi(A, &) — Zi(, &) K

bas a dense image if given ¢ > 0, for every fe Z/(Q2, § ) and for every in-
teger k> 0 we can find g, , € Z/(4, &) such that

> sup |[D*gep— Dofl<e.
l¢|<k K

We set as a notation |g, , — flg,= > sup |D*g,, — D*f|.
We have the following ol <t K

PROPOSITION 14. Let Q2 be open in RY. We suppose that we can find an
increasing sequence of open subsets B, of 2, B,cC By, for every h >1, such
that, for some integer q >1, we have

Im {H%(Q, &) —~ H(B,, &)} = 0.

Set B = |J B, and let K denote a compact subset of B.
h=1

We assume that for every K there exists an integer h(K) > 1 such that
1) .K C Bh( K);

ii) the restriction map Z=Y(B, & ) —> Z"Y(Byy,, &5,)|K has a dense image.
Then
Im {HY(Q, &) — H*(B, &)} =0 .

ProoF. We set B=|J K, with K, compact and K;c K, , for every j.
i=1

We have K;C By, for every j. By dropping some of the B,’s and
renumbering them, we may assume that K,c B; and that Z«*(B, & )—
— Z+(B;, &,)|K; has a dense image.

Let fe Z4(2,8;). By the first assumption we can find u;e §*(B))
such that

f=8.:.D)u; on B;.

We have

S a(D)(uy— u) =0 on By, Sy(D)(us—u,)=0 on B,,....
By the second assumption we can find g, € Z=1(B, &g ) such that

lue — wy — gallgg,,n < -
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Therefore replacing u, by u, — ¢, we may assume that
1
s — wallg,,n <%

Similarly we can find g, € Z*~(B, &,) such that

1
[us — Us — ga] gy < 5

so that replacing u, by u; — g, we may assume that

1
s — ts g, < 5
Proceeding in this way we see that under our assumptions we may

assume that
1
lwnir — unlmn < 53
for every h>1.

We consider the series

Un + (uh+1 - uh) + (uh+2 - uh+1) + oo

This defines a C® function U, on B,, because the series converges uniformily
with all partial derivatives on every compact set K, as [t — sl g, n <
<1/2" if h>1+4 m. Moreover U, = U,,, on B, for every h>1. Thus
we have defined a function U e §%*(B) such that f= 8, ;(D)U. This
proves our contention.

With few changes in the proof we obtain also the following

PRrOPOSITION 15. Let o be open in R* and let 2 be an open neighborhood
of w in R¥.
We assume that
dim¢ HY(w, &,) = d < oo

80 that, according to lemma 6, we can find an increasing sequence of open sets B,
in 2, B, C By, for every h >1 such that

i) dimg Im {H(RQ, &) — H%(B,, &)} < d;

ii) for B = (J B, we have o C B.
h=1
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We assume that for every compact subset K of B there exists an integer
h(K) >1 such that

i) K c By,

ii) the restriction map Z*Y(B, &) — ZY(Byg), &5,)|K has a dense image.
Then we also have

dim¢e Im {H9(Q, ;) —HY(B, &)} < d.

PrOOF. We use the same notations as in lemma 6 and in the previous
proposition. Let fe Z%(R2, &) and let & = {f.}, ..., § = {f;} with f; €
€Z(£2y, &), £, C 2, represent generators of H*(w, &,). Choose ,(f) € C so that

rofft = 2 M(Hrae{is -
Then we can find u, e &% *(B;) such that
=2 4(Hts = Sea(D)un  on B,.
By the same argument used in the previous proposition we can choose the

elements w, so that
1

”uh+1 — Uy ”K;.,h < g .

The sequence of compact sets {K.},_y, . being so chosen that
B =\ K., K, c Ks,,, Z*Y(B, &) has dense image in Z+(B,, & )|K,, Yh>1.
As in the previous proposition we construct U € §*(B) such that

f'— z)-f(f)fa = 8,1(D) U on B.

This achieves the proof.

8. — Analytic convexity on convex open sets.
a) We give a Hilbert complex in R"

Ay(D) ., Ay(D)

() (8%(0), A4) = {8(0) 2555 (o) 2555 g() —> .}
for all w open in R". By £, we denote as usual the sheaf of germs of real
analytic functions with values in C”, u € A" such that A,(D)u =0. We

are interested in the groups of analytic cohomology H(w, #£4).
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If we make the drastic assumption that w is a convex open sef in R™ then
by theorem 4 Hw, £,) = 0 if ¢ > 2. It remains then to study only the
group HYw, #4,)-

To this end we consider an elliptic Cauchy-Kowalewska suspension of
the given complex (1) in R = R"» xR (cf. section 4d) example («))

SO(D) gsx(g) _SA'D*Q SBI(Q) —_— ..-},

@) (@), 84) ={&(@)
for 2 open in R*+1. We choose as coordinates in R (2, y) = (£1y ..., Lu, Y).
For o open in R” we consider the set in R»+1

Q={(,y)eR*|zeo, ly|< o)}

where g: © — R is positive, o > 0, and upper semicontinuous. Then £ is
open and when p varies 2 describes & fundamental system of neighborhoods
of @ in R*1, .

We denote by &g the sheaf of germs of functions fe & such that
So(D)f = 0. For 2 open in R*+! we consider the space Z°(£2, &) = I'(L2, &)
endowed with the topology of uniform convergence on compact sets of the
functions and all their partial derivatives. We have the following appro-
ximation theorem

THEOREM 5. Let (2) be a Hilbert complex in R"t* with the first operator
So(D) elliptic.

Let w c R be open and convex and for o: w — R positive and upper semi-
continuous set

Q= {@y) eR"|rco,ly|< o).

Then the restriction map

ret: IR, &) = I'(2, &,)

has a dense image.

b) We admit for a moment the previous theorem. We derive then
the following consequence

THEOREM 6. Let o be open and convex. For any Hilbert complex (1) we
have that

either H'(w, #£,) =0 or dimg HY(w, #£,) = oo
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Proor. Write w = |J w; with w; open convex w;cCw and w; C w,,, for
i=1

every j. Let {T;} be a decreasing sequence of positive numbers. Then
B = C(w;, T;) (cf. section 6 b) for the notation) describes a fundamental
system of open neighborhoods of w in R"*1; moreover each B is a staircase
as the w; are convex. We take now any staircase neighborhood £ of w
in R*+!, By lemma 6 and theorem 5 we can apply proposition 15 for ¢ =1
provided we have

dim HY(w, &) = dim HY(w, £,) = d < co.
We then find a Bc 2 such that
dim Tm {HY(Q, &) — H'(B, &)} < d.

Since £ is a staircase we have then by lemma 5 that the restriction map
HYQ, &) — HY(B, &) is the zero map.
Therefore
HY(w, &,) = ligl HY (L, &,)=0.

This shows that necessarily d = 0. This proves the theorem. Assume
now that HYw, #£,) = 0 i.e. HY(w, &) = 0. Then we can apply proposi-
tion 14 to the conclusion of lemma 6 by virtue of theorem 5 for ¢ =1. We
obtain then the following

THEOREM 7. Let (1) be any Hilbert complex in R* and let (2) be any el-
liptic Cauchy-Kowalewska suspension in RY (N > n). Let w be open and
conver in R". Necessary and sufficient condition for HY(w, £,) = 0 is that

(A) for every open neighborhood 2 of w in RY there exists an open neigh-
borhood B of w in Q such that
Im {HY(Q, &,) > H(B, &)} = 0.

Proor. For N = -+ 1 this is what one obtains from the argument
given above. From proposition 11 we deduce then that condition (A4) being
verified by suspensions from R* to R+ must also be verified by any other
(elliptic and Cauchy-Kowalewska) suspension from R” to R¥.

¢) Proof of theorem 5. (o) Set

@ ={xyeRMren,y<o@)}; 2 ={=yeRM|sco,y>— o).
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From the Mayer-Vietoris sequence we deduce the exact sequence:
0>tV Q, &s,) —-1(Qr, 85,) D27, 85)>I'(2,85,) >H Q"L 27, &) .

Since w is convex Q% U Q7 is also convex. Therefore H(Q" U 07, §;) = 0
and hence the map

re, &)D (8, &) —I'(8, &)
given by
wrDu —>ut —u-
is a surjective map.
It follows that to prove that the restriction map

I'(R~, Ss,) - I'(Q, gs,,)
has a dense image, it is enough to show that the restriction maps
(R, gs,,) - I'(Q+4, gso) y I'(R™, 830) - (82, gsa)7

have dense image and for this it is enough to show that, for any choice of g,
the map

I'(R™1, &) — I'(2-, &5)
has a dense image.

(B) We imbed R"*+1in C"*+! where z; =, +iy; 1<j<mnand w=y 4 i
are complex coordinates.

Since the operator S,(D) is elliptic there exists an open neighborhood
O of Q7 in C* such that any u € I'(27, §5) extends to an element @ holo-
morphic in & (such that 8,(D)% = 0).

For any compact set K c C**! and any ¢> 0 we denote by K(e¢) the
e-neighborhood of K in C~*! i.e. the set of points of C**! whose polycylin-
drical distance from K is not greater than e:

3(2° u°) € K with sup |2, — 2| < &, |w—w°|£s}.

K(e) = {(z, w) € C*+1 Sup

Let now K c 2~ be a compact set and let 1,> 0 be so chosen that

Kc{#yeRwecw,y<i}="U.
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It will be enough to prove the following

STATEMENT. Given we I'(27, &), given 6 > 0 and given an integer k > 0,
we can find ve I'(U, &) such that

> sup [DiDS(u —w)|< .

le]+6<k K
Indeed as U is a convex set, the restriction map
I'(R, gs,,) - I'(U, 8su)

has a dense image because S, is an operator with constant coefficients
((10] theorem 7.6.14). It follows then that given we I'(27, &s), given a
compact set K c 027, given 6> 0 and k integer with ¥ > 0 we can find
ve I'(R*1, §5) such that
> sup |DiDEu — )| < d.
[l +8<k K

But this means that the restriction map I'(R"+, &s) — I'(27, &) has

a dense image.

(y) To prove the above statement we proceed as follows. Let
= ¥0, ..., 0,1) € C** be the unit vector in the y-direction. Given K c £~
compact we determine A, > 0 as before and set

F= |J (K—2e) = {(#,9) e R*|(x,y + A) € K for some 0 < A< 4y} .
0<I<A,

Then F is a compact subset of 02°.

We can find ¢ > 0 such that F(4¢), the 4¢-neighborhood of F in Crt1,
is contained in £7; F(4¢e)c Q". Then every ue (27, &) extends holo-
morphieally to a neighborhood of F(4¢). Let H be a compact set of C»t1
and let w = *(u,, ..., %, ) be a continuous function defined in a neighborhood
of H. We set

|u| = sup |u,| and |u|g= sup |u].
1<a<s, H

Let «ae N, e N, £¢>0 and let v =(»,...,,) be holomorphic in a
neighborhood of K(¢) (any K compact). From Cauchy integral formula
we deduce the estimate

(%) ID; Dl < a! Bre™ 1= v ey -
We deduce then that the above statement is a consequence of the following

LeEMMA 7. Let K be compact in C**1, let A, > 0, let

F= | (K—2).
0<<A<A,
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Let w = *(uy, ..., u,) be holomorphic in a neighborhood of F(4c) and let
us choose an integer k> 0 such that ¢ = (Afk) < e.
Let 6> 0 be given. We can find integers my(8) > 0, ..., my(6) > 0 such
that, setting
O'sl+ 8k

us(2y w)= > — Dsrtetoeg (2w — Ay)
08y Sml(‘s) S“1  Ske

0 gsk g mk(ﬁ)

we have

“u(z? ) - ua Z', ”K(s) < 6

Indeed the functions f = Dj**%y(z, w — 4,) for u e I'(Q", &s,) are de-
fined in O~ 4 A,e which is an open set containing U and moreover they
satisfy the equation S,(D)f = 0. The desired estimate with the partial de-
rivatives is derived from the conclusion of the lemma and estimate ().

(8) Proof of the lemma. Let f(z,w) and f(z,w — o) be both holomorphic
in a neighborhood of K(e + r) for ¢ < 0, » > ¢; then we have'

e w0) — 3 % DL, 0— o)

g\"™ o
=) S e 0= lxenn

In fact one has that the left hand side equals

oo

< o° g
;lgD:,f(z,w—o) K()< H;s'r“[l 2, W — 6) | ge+r)
m : & m

(552 160 — o)lern

by virtue of inequality (x).
We have then

my 8
lu(zy w) — ws(2y W) | x(e) < || ul2, w) — Z -—-D’ u(z, w — o) +
=0 1 K(e)
k—1 0-81+...+8_1 . Mi+y 0'3+1
-+ 2 e Dytetutu(z, w —jo) — > —— s Dimufe, w— (5 4 1)0’)} <
0<Hi<m,y Spi... 850 84120 Sit1! K(e)
0<3]<mj
k—1 . Mty g8 .
< 2> o |lulz,w—jo) — > = Dsu(z, w— (j + 1)o)
i=0 s=08: K(e+0)
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where ¢, =1, ¢, = 1, and in general

(81 + ... +85)!
!

for 1<j<k—1.
0<omsm, $1!...8;!

6,- =
0<sy<ms
By the previous remark, taking r = 20, we get

k—1 mj+1
[ ) = wate, )l £ 3 ea(5) " Tuley 0 G+ 1)) Lrerso

k—1 1\m+1
{5 a(3)" i .
i=0

Let » be a positive integer. We choose m; = v + 1. Then ¢, is defined
and we can choose m, = ¢, +». Then ¢, is defined and we can choose
my; = ¢, -+ ». Proceeding in this way we choose m; successively so that
m;., = ¢; +v. For every real o > 0 we have a << 2%, Therefore with the
above choice we have

k
[u(z, w) — us(z, w) | k) < 2 [u(2y )| Fese) -

It is enough to choose » large to get the conclusion of the lemma.

9. — Systems of homogeneous differential operators.

a) Consider a matrix B(£) = (b:i(£))1<j<p1<i<a Of tyPe ¢Xxp with
polynomial entries in the variables & = (£, ..., &v). We will say that the
matrix B(&) is a homogeneous matriz if integers r;, 1 < ¢ < gands;, 1 <j < p,
can be found such that for each choice of ¢ and j, b,;(£) is a homogeneous
polynomial of degree r, —s,. We will agree that the zero polynomial is
homogeneous of any degree =0. The integers r;, s; are determined up to
an additive constant so that it is not restrictive to assume, if need be, that
r; >0, s;,> 0 for every ¢+ and j.

Let § = C[¢,, ..., &] and consider the map

tB(£): T« — §7.

Let » = {(»(£), ..., %(£)) be an element of Ker'B(§):

bi;(E)v:(8) = 0 1<j<p.
=1

1
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It we set v,(£) = > »""™(&) where »!~" is homogeneous of degree I — r;,

1
we get that, for any I, {(»{™™,...,9¢"™)) is also an element of Ker ‘B(&).
It follows that in a Hilbert resolution

JDE) g 0 g, BE)

0—>9 HES N 0

of the morphism !B(§) (N = Coker :B) all matrices tC(£), ..., D(£) can be
assumed to be homogeneous. If & = C[¢,, ..., &y] is the graded ring of
homogeneous polynomials in the variables &, ..., &y, from a «homogeneous »
Hilbert resolution of !B(£) we obtain therefore an exact sequence of multi-
graded JE-homomorphisms

0 ges DEL ger 2CC) ge0 “BE) 50, N 0.

b) Let B(§) = (bu({:)) be a homogeneous matrix. Let w,,..., zy be
cartesian coordinates in RY and let us consider the system of differential
operators with constant coefficients

(1) bi(D)u; =f;, 1<i<¢q

it

i.e. B(D)u = f, where D = (0/0x,, ..., 0/0xy), in matrix notation.

We will call the system (1) a system of homogeneous differential operators.

‘We imbed RY into C¥ and we will consider in a neighborhood U of the
origin in R¥ a real analytic (valued in C?) solution # of the homogeneous
equation

(2) B(D)u =0.
There exists a neighborhood U of U in C¥ so that w extends to a holo-

morphic function (valued in C») defined on U.

LemmA 8. Lot w = (g, ..., w,) be a germ of holomorphic function in a
neighborhood of the origin in C¥, solution of the homogeneous equation

2) B(D)u = 0
where B(&) = (bi(&))1<i<q1<i<p 8 @ homogeneous matriz of type (ri,s;)-

Let
wy=ul® +u +uP .. 1<i<p



ANALYTIC CONVEXITY 355
be the Taylor expansion of u; at the origin, where ug.'“
nomial of degree k.

Then for every 1 integer

18 @ homogeneous poly-

u(l) — t(ugl—h), ey ug“%))
18 a polynomial solution of equation (2).

¥4
Proor. Let 3 b,(D)u; = ¢ + ¢V 4 ..., where ¢ is a homogeneous
=1

polynomial of degree k, be the Taylor series of the left hand side. For every k
we must have

b“(.D) u}k—s:+ﬂ) i (pik)

Ve

i

If u satisfies B(D)u = 0 then ¢ =0 for every i and every k. Thus
choosing k = k; such that k, +r, =1 we get

V4
SbiuD)ul = 0.

i=1

LEMMA 9. With the same assumption of the previous lemma, set for any «

with 0 < a<1
u®

; ra+4al)’
Then

i) u, is an entire function on CV
ii) w, satisfies the equation B(D)u, = 0

iii) givem € > 0 and K compact in C¥ we can find ly, = ly(e, K, o) such that

. lo u(l)(z)
S| = 2 T an)| < ¢

PrOOF. Only the first of these statements needs to be proved as the
given series is certainly the Taylor series of u,. Let

w= Y ag’.
Then there are positive constants ¢, B such that

lag| < Rl VB e NV,
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We thus have
[~ ()| < (1 — 85 + )Y B[

The function [I'(z) is an increasing function of x for x > 2; therefore
I'l+ o) > I'(1 + [«d]) = [od]!

if «l > 2, and where [«l] denotes the integral part of «l. For fixed « with
0 <o <1 we thus have

lug—o| Y e
{F(l Ty ==+ —rmym

As l-—>o00, we have that /(1—s;+1)" -1, R >R and
['~%/* — |¢| uniformly on compact subsets K of C¥, while

([ol]!) 1t = ([odd] )/
— {([ocl] !) 1/([o2] +1) + (1/ed—1/([x1] +1))}a¢

> {([])VE+D)s  (for ol >1)

|2

and therefore

lim ([od])¥ = Tim {([o])i0+0}* > Tim {(([od] + 1) U+l — 4 oo
l—>+ o0 I+ oo

>+ oo

because

[WIJVW ~ [ocl] 6+ 1 .

Thus, uniformly for z in a compact subset K of C¥, we have

y { lugt=2| }1/1 .
im{—1 11 —
1>+oo [ I'(1 4 al)

This proves that the series of u,’s converges uniformly on K. As K
is arbitrary it follows that for any «, 0 <« <1, u, is an entire function.

LEMMA 10. (cf. [1]) With the same notations as in the previous lemmas,
let us assume that u is defined and holomorphic in a starshaped open set E
(at the origin) in CP.

Let K be a compact subset of E and let e > 0 be given. We can find
oy = o(K, €) > 0 such that for 0 < « < inf (1, o) we have

sup |u(2) — u.(2)| < e.
K
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PrOOF. Let y be the curve in the plane of the complex variable w con-
sisting of the two segments

w=opexp[dtip] 0<Lp<L1
where ¢, is fized with 72 < @y < 7, and the arc
w=explip] —qu<op<gp.

We will orient y counterclockwise. We have the Hankel formula

TALp) " 2m Plulw -
4

For « > 0 sufficiently near to zero we have in E

] _F 1 i) %ay 1 1 d
5(2) ]"(]f _:;:‘js) ey (2) =5 J./wasj exp [E] 7:;0' {ui(2) — us(wa2)} .

14

Now for o — 0+, I'(1 + «s;) -1 and the integrand in the right hand
side is well defined and uniformly bounded in module for ze K and
converges almost everywhere (for w % 0) to zero as o — 0*. Therefore the
left hand side converges for « — 0+ uniformly to zero for z € K. This shows
that for o << (K, €) convenient, we have

SUp |uy(2) — usy(2)| < €
K

for 1<j<p.

Let K be compact in E and let 6 > 0 be so small that K(d) (= the set
of points of C¥ where polycylindrical distance from K is < §) is contained
(and compact) in E. Then for every multiindex f one has for any holo-
morphic function » in E

| DEv | < Bt o1 1] 2oy »

where the norm is the sup-norm. From this remark and the previous lemmas
we deduce the following

PRrOPOSITION 16. Let o C RY be an open starshaped domain around the
origin. Let w be a function defined in o, real analytic (complex valued in C?)
solution of the homogeneous system of differential operators

B(D)u=0.

24 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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Let K be a compact of o, let € >0 and let k > 0 be an integer. We can
find an entire function U in C¥ (with values in C») solution of the equation
B(D)U = 0 and such that

'Y | DPu—DPU|x<e.
18l<w

(=]

Proor. Write o = [J 0, Wwith ¢,CC o open and starshaped, o, C 03, for
h=1
every h. Let z; = w; | iy; denote the coordinates in C¥ 1 <j< N and

set for T, > 0
Olow, Th) = {ze C¥we oy, ly|< Th} .

For any choice of T,, C(oy, T,) is starshaped in C¥. For any choice of

a sequence {T},_, , . of positive numbers the set |J C(os, T5) is an open

h=1
starshaped neighborhood of ¢ in C¥ and when {T,} varies it describes a
fundamental system of neighborhoods of ¢ in C¥. Now u extends as a holo-
morphic function to an open neighborhood & of o in C¥. By the above
remark we may assume & to be a starshaped open set F in C¥. If 6> 0
is small then K(J)c E. By lemma 10 given &> 0 taking U = u,, for «
sufficiently near 0, we obtain an entire funection, solution of B(D)U = 0,
and such that

lu— Ulge <&

If we choose &> 0 such that ( > /3!5‘“3')8’<e we get the desired
18] <k
conclusion.

¢) We consider now a Hilbert complex in R¥

Sy(D) 8:(D)

(1) 8(2)

&2(2) — ..

&(0)

We will assume that
i) the first operator Sy(D) is an elliptic operator;

ii) the operators S;(D) are homogeneous i.e. the corresponding poly-
nomial matrices §8;(£) are homogeneous matrices (we will say that (1) is a
homogeneous Hilbert complex). With the same notation as in section 7 we
introduce the spaces Zi(£, &,) with their Schwartz topology.
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PrOPOSITION 17. Let E be open and starshaped around the origin in RY.
Under the above specified assumptions i) and ii) the restriction map

Tg”: Z(R¥, &;,) — Z(E, &)

has a dense image, for every q > 0.

ProOF. Let us first assume that ¢ = 0. Let fe Z°H, & ). As 8,(D)
is elliptie, f is real analytic (theorem 1). The assertion follows then from
proposition 16.

Let now ¢> 0. Since &; = #Ag we have an acyclic resolution of & in
the resolution

0 s by s o SD)  S(D)

e

Therefore given fe Z%(H, &) we can find g € &*(E) such that
f— 8 (D)g e A%(E).

Given K compact in F, given ¢> 0 and k> 0 an integer we can find
F e Z*(R¥, §s) such that

S IDP(f— Ben(D)g—F) | < e.
18I<k

This by virtue of proposition 16. Let y: E — R be a C* function such
that y|K =1, supp ycCc E. Then also

2 IiDﬁ(f_Sq—l(D)xg—F) ”K < E&.
18l <k

This shows that 8, ,(D) xg + F e ZY(R", &) c-approximates f on K
with all derivatives up to order k. This proves our contention.
Let j>1

B(Q,85) ={feZ(2,8;)Fge & () such that f = 8, ,(D)g}

this is the space of j-th coboundaries.

COROLLARY. Let E be open and starshaped in RY. For any ¢=>1 B(E, &s)
s dense in Z°(E, &s,).

Proor. Since RY is convex Z*(R¥, §s) = BR", &). By restriction
coboundaries go into coboundaries.



360 ALDO ANDREOTTI - MAURO NACINOVICH

d) We now assume that RY = R"xR* and that the Hilbert com-
plex (1) is an elliptic and Cauchy-Kowalewska suspension of a Hilbert
complex (2) in R»:

(2) & () 44D) & (o) 4D

8D|(w)

We will assume that (2) is a homogeneous Hilbert complex i.e. that the
polynomial matrices 4;(&) corresponding to the differential operators 4 ,(D)
are homogeneous. Then according to ». 4 d) examples «) and f), the sus-
pension of a homogeneous Hilbert complex (2) by a « homogeneous» el-
liptic operator (example «)) or the J-suspension of (2) (example f)) are
homogeneous Hilbert complexes, as one verifies directly. Moreover they are
Cauchy-Kowalewska and elliptic.
For w open in R” we are interested in the groups

HY(w, #,,) = H(w, &)

where we have used the usual notations.

THEOREM 8. Let (2) be a homogeneous Hilbert complex in R". Let ¢
be open and starshaped in R". For any ¢ >1 we have either H'(o, £,) =0
or dim¢ H%(o, £,,) = oo.

Proor. Let ¢ = |Jo, with ¢, open starshaped ¢,CCo, 0,C 0.y, Yh. Let
i=1 .

RY = R* x R* and let (@, y) = (@1, ++.y Zny Y1, --+y Y) be cartesian coordinates.
For wc R*, T'> 0, we set

Clo, T) = {(wy y) e RY

rzew ly|< T}

LAY
for |y| = (? %2) If o is starshaped then C(w, T) is starshaped. Given

a sequence {7} of positive numbers T, >0 we have that |J C(os, Th) is
r=1

a starshaped open neighborhood of ¢ in RY and that when the sequence
{T,} varies these neighborhoods describe a fundamental system of neigh-
borhoods of ¢ in RY.

Consider now an elliptic Cauchy-Kowalewska « homogeneous » suspen-
sion (1) of the complex (2) to RY and let 2 denote an open starshaped neigh-
borhood of ¢ in RY.

Assume that dim¢ HY(o, £,,) = d < oo. Then according to lemma 6
we can find a sequence {7T},.,.. . Wwith T,>0 such that, if we set
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n
B, = C(s;, T;) we will have B, c £, Vk, and

i=1

dimg Im {H"(.Q, 85«“) — HY(B,, 85,)} <d.

In view of proposition 17 we derive from proposition 15 that, setting

B = U G(O'J‘, T.‘i)?
i=1
dimg Im {Hq(.Q, 830) — H"(B, 850)} <d.
Set
6 = {(u, v) € Z(Q, &) X §**(B)| u= 8,_,(D)» on B}.

Then G is a Fréchet space. Set W = pry o, ,(G). Then W is the image
of a Fréchet space by a continuous linear mapn.

By the assumption
Z4Q, &)

dlmc %

<d

so that W must be a closed subspace of Z¢(£2, §s). But 2 is starshaped
and thus, by the corollary to proposition 17, W must be dense in Z2(£, & ).
Hence W = Z¢(9, &s,) and thus

TIm {He(Q, &) —> HY(B, §5)} = 0.

Since £ can describe (remaining starshaped) a fundamental system of open
neighborhoods of ¢ in R¥ we conclude that

HYg, £,4,) = HYo, 6s,) = lim HYR2, &) =0.

Qo0

THEOREM 9. Let (2) be a homogeneous Hilbert complex in R™ and let (1)
be any elliptic Cauchy-Kowalewska suspension of (2) in RY which is still a
homogeneous Hilbert complex.

Let o be open and starshaped in R" and let ¢ >1. Necessary and suf-
ficient condition for Hc, £, ) =0 is that

(4) for every opem mneighborhood 2 of o in RY there exists an open
neighborhood B of ¢ in Q2 such that

Im {HY(Q, §5) — He(B, §5)} = 0.

ProorF. We use the same notations as in the previous theorem. The
sufficiency of the condition was established in proposition 10.
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To establish the necessity of condition (4) we apply lemma 6 and pro-
position 14 in view of the density theorem given by proposition 17.

10. — Study of some examples.

a) Preliminaries. Consider the complex space C? where 2, = & + iy,
2, = 8 + it are complex coordinates and let

R = {(#;,2,) e C?t = 0} .

LeEMMA 11. Let f be a holomorphic function in the region

[l <R ll<e
[s| <e U (for R>0,1>¢>0).
t <0 l2.] < €

Then f is also holomorphic in the region
(! {]z1| < &R0 |2, + dg2| < 520} .
0<0<1 2

In particular f is holomorphic in the region

o] < esR'~e,

4 — s =20,

0£t<§(28—1).

Proor. Because of the assumption f is holomorphic in the union of the
two polycylinders centered at (0, — ie/2)

’zll<R lzll<€

e U . &
< = z2+z§ <e.

2

. &€
z2+z—2—

Therefore the Taylor series of f centered at the point (0, — ig/2) con-

verges in the region
21| < e R0

L& e\1=% ¢
zz—{—z§‘<a"(§) =§29

for any 6 with 0 <6 <1 (cf. [10] pg. 34).
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As 0<e<1 we can take in particular 0 = ¢ and we get over s = 0
the region for t > 0

& €
21| < &8 R'~e, t—|—§<§ 26

which is the region A, of the lemma.

LeEMMA 12. Let w be a non empty open subset of R3. No fundamental
system of neighborhoods of w in C? can be all of open sets of holomorphy.

ProoF. «) Without loss of generality we may assume that the origin
0=(0,0)cw. Let R> 0 (may be R = + oo) be so chosen that the disc
{2, = 0, |2,| < R} is the largest disc of this sort contained in .

We can choose sequences of positive numbers R, 7R and &,N0
(m =1,2,...) (with the precaution to take when R = -+ oo, R,<n and
&, <1/n) such that

D, = {|51| < Ra, 5| < tn,t =0} Cow.
Passing to a subsequence in the g we may assume that
& Pl—eg, & 1—e,y &3 Pl—e
RO R < g By < L
Let ¢ = ¢(2:, s) be a continuous function defined in D, with ¢ > 0. Set

A, = {(#1, 8) € Dy, [t| < (21, 8)}
A5 = {(21,8) € Dy, ¢ >—(p(z1,8)}
A7 = {(2y8) €D,y t < @(24,8)}.

We have A, = A N A, while A" UA, is a convex set and therefore a
domain of holomorphy.

Let O denote the sheaf of germs of holomorphic functions in C2. We
claim that: for any feI'(4,, O) there exist f* e I'(4,F,0) and f~ eI'(4, , 0)
such that

f=f—f on A,.

Indeed from the Mayer-Vietoris sequence we derive the exact sequence
0 _>H0(A: v 4,,0) %HO(A:y 0) (—BH“(A”_, 9) - H(4,, 9) >0,

the last 0 being given by HY(A, U 4, , 9) = 0.
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B) Let now £ be an open neighborhood of w in C2. We can choose
a continuous function ¢ defined on w such that, for every » we have

A, = {(2,8) € D, [t| < g(2,8)} c 2.

We can choose an integer n, = n,({2) such that for » > n, we have

[¢:| < R, [21] < &n
Is| <& U 3 is contained in 4,
t <0 [22] < €n
and
|2:]|< Ra |21] < €n
118 <en U is contained in 4, .
t >0 [22] < €n

From the previous lemma and point «) of this proof we deduce that any
function f holomorphic in £ must be holomorphic at all points of the set

o] < e By,

A, — s =20,

n

[tl<%‘(2en~1).

y) When R < co we may assume that on the circle {#, = 0, |2,| = R}
there is a point of dw and that this point is the point 2, = 0, 2, = R on the
real axis of the z,-plane.

Consider a function y(x)> 0 defined and continuous on 0 <z < R
having the property that

for £ R < o< BRI
we have
0< p(z) < fen(2—1).
Consider the strip

A={y=0,0<a<R,s=0}
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and on A the region
4,={y=0,0<z<R, s=0, [t|< ).

As the segment y =s=1=0, 0 <2< R goes from the origin to a
boundary point of w, we can choose an open neighborhood Q of w in C;
with the property

: QNnAcd,.

Now 2 cannot be an open se¢t of holomorphy. Indeed if Q is an open
set of holomorphy we can find n, = ne({2) integer such that for n > n,
£ contains the region A, described above. Now this conclusion is ruled out
by the condition 2N AcA4,. This completes the proof.

COROLLARY. Let Rv*cCr, n>2, k>1, and assume that C» is the
minimal complex subspace containing Rm*,

Let w be any non empty open subset of R

No fundamental system of open neighborhoods of w in C* can be all of open
sets of holomorphy.

ProoF. Let z; = z; + 7y;, 1 < j < n be complex coordinates in C». We

may assume that R** = {ze C"|ys,; = ... =4, = 0}. We can also as-
sume that the origin 0 of the coordinates belongs to w, 0 € w.
Set C? = {2, = ... = 2, = 2,5 = ... = 2, = 0}, so that (2, 2,,,) are com-

plex coordinates on C2. Then R N C2 = {(2,, #:,1) € C?|yr; = 0} = R®.
Let 0 = w N R3. Then o= 0. If {U,} is a fundamental system of open
neighborhoods of w in Cr all of open sets of holomorphy then {U, N C%}
is a similar system of neighborhoods of ¢ in C2. This contradicts the previous
lemma.
As usual we denote by O the sheaf of germs of holomorphic funections on C2.
We have the following

LeMMA 13. Let Bc A be open sets in C*. Assume that
dime Tm {H(4, ) — H(B, 0)} = d < co.

Let 7u: B — C2 be the envelope of holomorphy of B.

Then n(B)c A.

Proor. Let p be a point in the complement of A. We choose complex
coordinates z;, z, in C? with p at the origin. Set U, = {2, 0} 1 =1,2
and W = {U,, U,} as a covering of C?— {0}; we also set N A=
={U,n 4, U,n A} and U N B = {U, N B, U, N B}; these are open cov-
erings of A and B as 0¢ A.
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For r>1, s >1, 1/#25 € Z(W, O) the space of Chech 1-cocycles on the
convering U with values in 0. By restriction these give cohomology classes
in ZY(W N 4, 0) and ZY(W N B, O). We note now that the natural map
HY{(U N B, 9) — HYB, O) is injective; according to Leray theorem this is
a general property of the first Chech cohomology group. Choose r, << r, <
< e << 1y, 89 << 8y << ... < 83 With r and s positive integers. By the assump-
tion the d 4 1 cohomology classes represented by the d 41 cocycles
27 2%, 0 <14 < d, must become linearly dependent on H*(B, O) and thus
on HY(U N B, 9). This means that there exist constants ¢;,, 0 <i<d
" not all zero and holomorphic functions ¢, I'(U; N B, Q) j =1, 2, such that

on U, N U,N B. We may assume ¢; #* 0 (otherwise we replace d with the
maximal integer ¢ for which ¢, 0). Chasing denominators we get

0 F 0qoy AT T = 22 ) — 21(25' ) -

This shows that 2]*g, and 2¥g, are holomorphic on U; " B and U,N B
and thus are holomorphic on B. These functions therefore extend to holo-
morphic functions @,, @, respectively on the envelope B. We must have
moreover on BB

65+ cq_ 2Py L L =2 Gy, — 276, .
But this shows that 0 ¢ n(B) because setting 2, = 2, = 0 in the above
relation one would get ¢; = 0 and this is impossible.

We have thus proved that p ¢ n(B). This being true for any p¢ A
in C2 we deduce that n(B)c 4.

b) We consider now on R? the (homogeneous Hilbert) complex

(1) 8(w) L%

(o) >0.
Suspending it in C* = R* with the complex (homogeneous Hilbert)

(@) £2) L% g0) — 0
we get as a suspension the Dolbeault complex of C? (cf. n. 4d) example )
which is a new homogeneous Hilbert complex:

(3) Q) — % §1(02) ey,
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For every open set w in R® we thus have

v

A
HY(w,#4507,) )

@) O

THEOREM 10. For w open non empty and starshaped in R3 we have
dimc Hl(w, ‘7%6/621) =0 .

Proor. Let £ be any open neighborhood. If dimg H(w, #54z) < 00
then by theorem 8 we must have H'(w, £,) = 0. By theorem 9 we can
then find an open starshaped neighborhood B of w in 2 such that

Im {HY(Q, 0) — HY(B, 9)} = 0.

The envelope of holomorphy B of B is «shlicht » i.e. it is also an open
subset of C? as B is starshaped. By lemma 13 we should have B c 2. There-
fore w would have a fundamental system of neighborhoods in C? which
are domains of holomorphy. This contradicts lemma 12.

REMARK. Without invoking theorems 8 and 9 one can argue directly
through lemma 6, proposition 15 and using as approximation theorem the
Runge theorem of Laufer ([12] theorem 4.11) or the theorem of Behnke-
Stein [5] that says that an increasing union of domains of holomorphy
in C* is a domain of holomorphy.

¢) More generally let us consider R*** = C*xR**c C", n > 2, k >1,
C" being the complex span of R***. As in example y) of section 4 d) we
consider the Dolbeault complex along the fibers C* of R"t+*

0%(w) — O°Yw) —> 0%(w) —> ... —> C%(w) —> 0.

This we suspend in C* by the Dolbeault complex along the fibers C** of
C* = C*xC** We obtain as a suspension the Dolbeault complex in C=.
If O is the sheaf of germs of holomorphic functions in G we will have

Hi(w, A7) ~ Hi(w, 9).
We will have the following
THEOREM 11. For o open non empty and convexr in R™* we have

dimg H' (o, #5) = co.
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PrOOF. Let R"** = {z€ C"|y;,; = ... = Y» = 0} with the usual nota-
tions. We can proceed by induction on n because of theorem 10. We will
assume that the origin of the coordinates 0 is in w.

If k=n—1 we set C*1={¢, =0} and if k<n—1 we set C1=
= {2, = 0}. Set '=w N C~* and let & =2, or & =2, respectively so
that we have an exact sequence of sheaves

0 Ocn ¢ Ocn Ocn‘x 0.

We obtain an exact cohomology sequence
HY (0, O¢n) = H o'y O¢n1) = H*(w, Oca) -

By theorem 4 we must have H%*(w, O¢c:) = 0. Therefore dim¢ HY(w, Oc¢x)
is infinite if dim; H'(w’, O¢a-) is infinite. But this is the inductive assump-
tion since w’s~ @ is convex in a space R*t-1c C*! (we have for k =n —1

=n—2and for 1<k<n—1, l =k).

d) We end this section with an example of a non convex open subset
of R? c C* which presents analytic cohomology in dimension 2 while the C®
cohomology in that dimension vanishes.

We consider R? = C* xR c C* and the Dolbeault complex along the
fibers C* of R’
a'/ g/

0%() — > 0(w) ——> (%(e») AN Co%(w) —> 0.

We denote by &; the sheaf of germs of ¢ functions in R? with 9'f = 0.
We denote by #A; the sheaf of germs of real analytic functions on R’ with
0'f = 0. By O¢: we denote the sheaf of germs of holomorphic functions on C3.

We take o = (C*— {0}) xC xR. This is open but not convex.

ProPOSITION 18. We have for all j > 2

Hf(co, 85:) =0.

Proor. Set V = (C*>— {0}) XxC, M = R. Then V is an open set of C?
which has a Stein covering by 2 open sets U, = {z; % 0}, U, = {2, 0}
where z,, 2,, #, denote complex coordinates on C®.

Therefore Hi(V, Oc:) = 0 for j > 2. We can then apply proposition 7
of [2] p. 208 and conclude that Hi(V x M, &) = 0 for j > 2.
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Consider now the natural projection
7: (C*— {0}) x(CxR) - CxR

and set, for convenience of notation ¢ = C xR. We consider on ¢ the
Dolbeault complex along the fibers C of C x R:

C%(n) __?___> oY) —— 0

for  open in CxR. We denote by 2,2, 2,2, =t + is complex coordi-
nates in C*. We are going to define a linear map

Tty O¥3(w) — Cbs-Y(g) for s =1,2
as follows.
Set 8 = {(#1,2) € Cg' [21]2 + |22 = 1}.
Let first s = 2 and py e 032(w):

w = dz dz,dz, dz?.(a’l(zl? Ry %3y 1) A2, + @y(24, 22y %3, 1) dzz) +

+ dz,dz,dz;b(2,, 25, 25, t) dZ,dZ,
then set

T b = {J.a'l(zn Ry %3y 1) A2 AR, dZ, + @y(24, 22, 25, t)dzldzzdzz}dzadza .
S .

Let s =1 and ue C%Y(w):
m = dzldzzdza(“(zu Ray 5y V) A2, + B(21, 25y 24, t)dzz) + e, dz,dz,y(2,, 25, 23, 1) dZ,
then set

T b = {_—f“(zl’ Ryy B3y 1) A2y A2y 02, + P(24, 225 2, t)dzldzzdzz}dzz .
S

LeMMA 14. For 63! e C%Yw) we have
7% 0031 = ' 70,01 .
PrOOF. Set u = 0'6%! and let

B = dz,dz,d23(0,,02,dZ, + a13dZ,d2; + g3 dZ,dZ,) -
Let
0 = dz,dz,dzs(adZ, + pdz, + ydz,) .
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Then
- {— f (@ e ey 05, - azadzldz2d22)}dz3d23 .
S

As u = 0'0 we have

B Oa Oy O« oy OB

a 2 = = — A3 = == — Qo3 = 7= — .
T 0E, 0%, 0z, 02, B0z, 0%

Thus
Ty b = {3—23( foc dz,dz,dz, + ﬂdzldzzdég)} dz,dz,
s

oy .. 0y . =
— { f (a_;’l daz, + 5%’;olzz) dz,dz, } dz3dz; .
N

The second integral equals

fé(ydzldzz) =fd(ydzldz2) :fydzldzz —0.
S S a8

Thus
Tyt = {%( f adz,dz,dz, - ﬂdz,dz2d52)} dz,dz, .
: S
Now
Ty = { [ndesdeniz, + ﬁdzldzzdiz}dza .
S
Therefore

Ty b = 0/ 40 .

Consider now the form on w

_ Zdz, — Z,d7,
K= (7121 + 222,)* eyt
We have 0K = 0

Let A e 0vY(0), A = f(2s, t)dz;dZ,. Consider the form

7z, — 7,07,

A )zdzldzzdzadé3 .
11 242

u = EAa*(3) = (2, 1)

This is an element of C*%(w) and ¢ u = 0. Moreover if f(2;,¢) is real an-
alytic then u has real analytic coefficients. Also note that C%(¢) =~ C%*(0)dzs,
03s(w) =~ 0%%(w)dz,dz,dz, for any s> 0 are isomorphisms compatible with
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the operators 0’ on w and ¢. Thus

7: Ov1(g) - 0> w)
defined by
A = KAz*(A)

induces a homomorphism
v*: HY(o, A7) — H%(w, AZ)

where A; denotes the sheaf of germs of real analytic functions f on w or ¢
respectively with 0'f = 0.

LEMMA 15. For A€ CbYo) we have
7k (K A7*(R)) = (275)2A .

Proor. Indeed the right hand side equals

z dz, — z,dz . -
{ff 2ay ) — > 2-|- 5 );d dzz} dz,dzys = (270)2f (23, t)d23dZs .
1 1 242

As a corollary we obtain

PropPOSITION 19. The linear map

w*: HY(g, #7) > H*(w, AF)
is an injective map. In particular we have
dim H2(w, #Az) = oo

Proor. Indeed the map my:0®%(w) — C¥1(g) induces a homomorphism
75 H¥(w, #&5) — H'(o, #5). This because it transforms forms with real
analytic coefficients into forms with real analytic coefficients; and forms
which are 0'-closed into forms §'-closed and by lemma 14 it also transforms

forms which are o'-coboundaries into forms which are 0'-coboundaries.
Because of lemma 15 we have (up to a non zero constant)

myot* = identity .
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This proves that z* must be injective. Now o = C xR is starshaped

and therefore by theorem 10 H(g, #;) is infinite-dimensional. From this

the

(1]

(2]
(3]
[4]

[5]
(6]
(7]
(8]

91
[10]

[11]
[12]

[13]

[14]

second assertion follows.
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