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Analytic Convexity.

ALDO ANDREOTTI (~) - MAURO NACINOVICH

De Giorgi [6] and Piccinini [12] were the first to make the following
observation. Consider the Laplace operator in two variables x, y:

as operating on functions of three variables x, y, t, and consider the equation

f or u and f functions of x, y, t. Then one has the following facts

(oc) for f E C°°(R3) there exists u E C°°(R3) such that du = f ;

({3) there exist some f real analytic in R3 such that the equation 4u = f
has no real analytic solution u defined on R3.

Let 8 denote the sheaf of germs of C’ functions on R3 and let A denote

the sheaf of germs of real analytic functions on R3. We consider the two
exact sequences of sheaves

where &#x26;,j and Aj represent respectively the kernels of the sheaves homo-
morphisms defined by the operator d on 8 or A. Then we deduce exact

(t) Scomparso il 21 Febbraio 1980.
Pervenuto alla Redazione il 21 Settembre 1978.
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cohomology sequences

as Hl(R3, 8) = 0 = HI(R3 , A). From the remark of de Giorgi and Piccinini
we derive that one has

indeed this statement is equivalent to their remark. This suggests the fol-

lowing generalization (section 1). We consider a Hilbert complex of sheaves

or

i.e., a complex of differential operators with constant coefficients on Rn

obtained by Fourier transform from a Hilbert resolution of a module over
the ring of polynomials in n variables and we let the complex of operators
act on Coo or real analytic functions to obtain the two exact sequences of
sheaves given above. Then given an open set Q in Rn we will say that it

is C°° or analytically convex if

or respectively

The example of De Giorgi and Piccinini shows that these two notions of
convexity may be different.

After some general remarks on elliptic operators (section 2) that we

need later on, we begin the study of analytic convexity by the following
procedure. We consider the given complex as the complex of Cauchy data
on a linear subspace Rn of a Hilbert complex in several more variables in
some RN (sections 3 and 4) ; this we call a suspension to RN of the given
complex. If the suspension complex has the first operator elliptic and if

Rn in RN is in a Cauchy-Kowalewska position (i.e., Rn is non characteristic
for the suspension complex) then we are able to reduce the study of the

analytic convexity of the given complex to the study of the C°° convexity
of its suspension.

We consider then sufficient conditions for analytic convexity in terms
of the suspension complex (section 5), we give some examples and we in-
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vestigate the case of a convex open set. We show that in this case all

analytic cohomology groups in dimension &#x3E; 2 vanish.
To turn the sufficient conditions into necessary conditions, one needs

an approximation theorem of Runge type (sections 6 and 7). We are able
to establish an approximation theorem of this sort for convex open sets

(section 8) or for starshaped op3n sets for operators represented by homo-
geneous m.atrices of polynomials (section 9). We end up our investigation
with the study of the tangential Cauchy-Riemann complex for a real space
R,+’, in some complex space Cn. S3tting z = x -p iy, since d = 4(’ð2(ðzoz),
we recover in a more precise cohomological form the example of de Giorgi
and Piccinini. Also we show with an example that for non convex sets

we may again have analytic cohomology in dimension &#x3E; 2 without having C°°

cohomology.
We hope to come back to this subject with an extension of the principle

of Phragmén-Lilldelöf of Hormander [8] to the situation we have considered.

1. - C- and analytic convexity.

a) Let Q be an open set in Rn and let &#x26;(,Q) denote the space of complex
valued C°° functions defined on S2. Set &#x26;P(S2) == &#x26;(S2) X ... X &#x26;(Q) p times.

Let

be a complex of differential operators with constant coefficients. Here Aj(D)
is a matrix of type pj+, xpj with entries differential operators with con-

stant coefficient. The assumption that (1) is a complex means that

Complexes of this kind can be obtained as follows. Let T,, = C[i,..., ]
be the ring of polynomials in the n indeterminates 1, ..., n. Let Ao($) =
(aoij($)) be a pi x po matrix with polynomial entries, let ’A,,($): S§§i - T.Po
be considered as a qn-homomorphism7 and set N = coker {’A,,($): T,2"i - qvl .
By a theorem of Hilbert (cf. [3]) we can continue this homomorphism by
a finite sequence of Tn-homomorphisms
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to obtain an exact sequence, i.e., a free resolution of N. We also can assume
that d  max (2, n).

Replacing the matrices ’Aj() by their transposed and the indetermi-
nates $; by alaxj we obtain a complex (1) of differential operators with
constant coefficients which moreover has the property of being exact on
open convex sets D.

The condition for the complex (1) to be exact on open convex sets charac-
terizes the complexes obtained from Hilbert resolutions (2) (cf. [3]). We
shall therefore call those complexes in the sequel Hilbert complexes.

The Hilbert complex (1) is obtained from complex (2) by the following
procedure:

a) we consider &#x26;(D) as a T,,-module by letting a polynomial p() c- T.,,
operate on f E 6(Q) by

where -

fl) We apply the functor Homy (’y8(D)) to the sequence (2).

Let b = TI()) be an ideal of Sn. Any T,,-homomorphism
or: b ---&#x3E;- &#x26;(,Q) is an assignment

with the condition that whenever we have

2 ai(D)fi(X) = 0. And conversely any such assignment defines a 5,,,-homo-
morphism u : b --+ 6(Q) . Let us now recall the following criterion (cf. [7] p. 6) .

A left n-module F is injective if for every ideal b in T,, and every
IT,,-homomorphism u : b - F we can find f c- F with or(p) == p - f, YpEb.

From the above remark on the Hilbert complex it follows then that for Q

open and convex the module &#x26;(S2), as J n-moduZe, is injective.
In particular, denoting by 8 the sheaf of germs of C°° functions on Rn

and by gAo the subsheaf of 6"° of germs of solutions of Ao(D) u = 0 we
have an exact sequence of sheaves

which is a « resolution &#x3E;&#x3E; of the sheaf BAo by fine sheaves. This because a

Hilbert complex (1) admits the so called Poincare lemma or equivalently
because for every x E Rn the stalk &#x26;x = lim 6(Q) is an injective T,,-module.

D3X
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From de Rham theorem we then deduce that for any open set Q c Rn
we have

Note that these groups depend only on the n-module N and not on the
particular resolution (2).

We shall say that an open set S2 is C°°-convex for the Hilbert complex (1)
i f Hj(Q, 8AJ = 0 f or j &#x3E; 0.

b) We replace in the previous consideration the space &#x26;(D) by the
space A(S2) of complex valued real analytic functions on S2. Then the

complex (1) is replaced by the complex

Let us consider A(,Q) as a J n-module by letting p ($) e Sn operate on f E A(S?) by

Then the complex (4) is obtained from the resolution (2) by application of
the functor Homs( . , A(Q»). Now it is no more true in general (if n ¿ 3)
that A(.Q) is injective if S2 is open and convex. However, if we denote

by A the sheaf of germs of complex valued real analytic functions and by A,,
the stalk of A at x E Rn we can consider on Ax the structure of 5,,-mod-ule
induced by (5) and we have the following

PROPOSITION 1. The  n-module Aae is an injective module.

PROOF. We use the criterion for injectivity mentioned above. Let

= gg,()) be an ideal of T,,,. Without loss of generality we

may assume x at the origin 0 E Rn. Let

be a T.,,-homomorphism. This is an assignment

with the property that whenever we have
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Let us now consider .Rn c C, where z = x + iy are holomorphic co-

ordinates. Denoting by 0,, the germs of holomorphic functions at the origin
in Cn and by 80 the germs of C°° functions at the origin in R2n --- Cn we
have natural inclusions of rings

Let T,,, denote the ring of polynomials in the 2n-variables
q _ (Ili ..., qn) and consider the ideal

We consider 80 as a T,,,-module by letting p (, 77) E T,,,, operate on ;

where. We define a T,.,,-homo-
morphism

by setting

Indeed suppose that

We have to show that

in order that 6 be well defined.

Now I pj($, i$)ggj($) = 0; therefore as or is a -homomorphism we get
I,pj(Dan iDx)lj(x) = 0. But for fj(0153 + iy) E 00 we have Dx f (x + iy) _
- - iD,,fj(x + iy), i. e. , idxfj(x + iy) = D,,fj(x + iy). Therefore we obtain

from the last identity I pj(D., D.) fj(x + iy) = 0 as we wanted.
Now 60 is an injective 2n module, therefore there exists g(x, y) E 80 with

the property
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for every A E 6. Taking A = -f- i’YJj f 1 - j:! n we obtain that g is holo-
morphic, i.e. , g E 00 and g = g(x -f- iy). Thus g(x) E A,, and therefore a(A()) =
A(Dx) g(x) V Â E o. This shows that A,, is an injective 5.,,-module. 

As a consequence from (2) a-pplying the functor Hom (*y A0153) we obtain
an exact sequence of sheaves

where A-4. denotes the subsheaf of A" of germs u satisfying the equation
Ao(D) u == 0. In other words the resolution (6) admits the Poincaré lemma.

We now remark that for any open set Q c Rn we have

This is a consequence of a theorem of Grauert (1) that states that « every
open subset of Rn admits in the con%plerificatio% Cn of Rn ac fundamental system
of open neighborhoods which are open sets of holomorphy)&#x3E;. We can therefore
apply again the de Rham theorem and we obtain for Sz open in Rn,

We will say that the open set Q c Rn is analytically convex for the « Hilbert
complex » (4) if Hi(Q, A,4.) = 0 for i &#x3E; 0.

2. - Elliptic operators.

a) Let A,,($) == (ao,,($)) be a Pl xpo matrix with polynomial entries.
We consider ’A,,($) as a T,,,-homomorphism and denote by N its cokernel,
so that we have the exact sequence of T,,-modules

Let us introduce the following ideals of T,,,, 

b = b(N) = ideal generated by the po-rowed minor determinants of
the matrix A,($) (the 0-ideal if po &#x3E; pi);

b’= b’(N) = (p E 5-’,, IpN = O} the annihilator-ideal of the module N.

(1) H. GRAUERT, On Levi’s problem and the imbedding of real analytic manifolds,
Ann. Math., 58 (1958), pp. 460-472.
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One can show ([13] p. 5) that the first of these ideals depends only on
the module N and not on the presentation (1) we have considered. For the
second we remark that

PROPOSITION 2. TVe have

PROOF. Let

be the canonical basis of T,.vi, so that
are the column vectors of the matrix iAo($).

Set L == (C;($) , ... , C; ($)) , a minor of IAO() of order po. From Cramer’s
rule we deduce that for any

we have

Therefore, by the last remark, we deduce that

Now if P, E b’(N) we must have
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This gives the identity

and therefore taking determinants we get

This proves our contention.

Let a = a(N) denote the asymptotic ideal of the ideal b, i.e. , the homo-
geneous ideal of the principal parts of polynomials of b. We denote by

V = V(b), the characteristic variety of N (or Ao), the variety of common
zeros in Cn of the elements of b. With self-consistent notations we have

V(b) = V (b’ ) because of proposition 2;

Vo = V(a), the asymptotic variety of N (or Ao), the variety of common
zeros in Cn of the elements of a. Note that Vo is a cone, if $ E V,, then
VÀEC, ÀEVo.

PROPOSITION 3. The following conditions are equivalent :

i) For somc constants c, c2&#x3E; 0 we have

ii) For some co&#x3E;ista&#x3E;et c &#x3E; 0 we have

iv) There exists a homogeneous polynomial pEa such that

v) There exists a polynomial q E 6, and some constants cs, c4 &#x3E; 0 such that

where deg q denotes the degree of the polynomiact q,
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PROOF. i) + ii). For any eV,, we can find a sequence {V}V=1,2,... cV
such that vw --* , as v goes to infinity. From the inequality i) we get

For ’V ---+ 00 we get I I S cIIRe I which is inequality ii) with c = c,,.

ii) =&#x3E;- iii). If inequality ii) holds and c-V,, then eVo so that for
every $ c---V,, we also have the inequality

Thus if $ E TTo n Rn then Im $ = 0 and therefore $ = 0.

iii) i=&#x3E; i). By contradiction, assume that i) does not hold, so that for
every v = 1, 2, ... we can find $v E V with

We necessarily have p =/:= 0 so that we can consider the sequence {/}y
and since this is bounded we can extract a convergent subsequence

We must have j==l so that $ 0 0. Moreover, since 1$,l &#x3E; v we must
have $ e V,,. Because I Re 11  1/v we must have Re $ = 0. But then

i$ c V, n Rn and i$ 0 0. This contradicts iii). Thus the statement is proved.

iii) -#&#x3E; iv). ,L3t CPl()’ ..., CPl() be a homogeneous basis of the asymp-
totic ideal a and let mj be the degree of ggj (1 ::;: j  1).

Set with rn = sup mj, ,

where gj() denotes the polynomial obtained from ggj() by complex conjuga-
tion of its coefficients. Clearly p E a. If iii) holds and E Rn - {o} then

one of the ggj() is different from zero, thus

Hence iii) =&#x3E; iv). Cc)nversely, if p E a verifying iv) exists, as p vanishes
on Vo, we must have Vo r1 Rn c {0} i.e., iv) =:&#x3E; iii)..
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iv) =&#x3E; v). Let us select a polynomial q c b with principal part a poly-
nomial p satisfying condition iv), and let m denote its degree. Note that

for E Rn - 101, p (i$) == i-p ($) :A 0. Thus

We do have therefore

Set q = p + p, with pl a polynomial of degree  n1 - 1, so that for

some positive. constant c &#x3E; 0 we have

Since for every 8 &#x3E; 0 we can find a constant 0(8) sufficiently large such that

we obtain

If 8 is sufficiently small we obtain the desired conclusion.

v) =&#x3E; iv). Let q E Ú be a polynomial of degree 1n satisfying

If p is the principal part of q, p = q - p, with pi a polynomial of degree
S m -1. Thus for some /&#x3E; 0 we have

Replacing $ by t$ we get

For t -&#x3E; oo we thus obtain

But this implies iv).
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DEFINITION. A differential operator with constant coefficients

is said to be elliptic, if for the matrix of polynomials A,($) the equivalent
conditions of proposition 3 are satisfied.

b) We set for Q open in Rn

We have the following theorem (of Petrowski) (cf. [8] Corollary 4.4.1. p. 114).
THEOREM 1. ex) If 6Ac(Rn) ==.aeAo(Rn) then the operator Ao(D) is a% ell,iptic

operator.

13) If Ao(D) is a% elliptic operator then for any open set Q c Rn

PROOF. oc) The space 6Ao(Rn) as a closed subspace of the Frechet space
f,Po(Rn) (with the Schwartz topology) is a Frechet space.

Let us imbed in the natural way Rn into Cn and let z = x -)- iy denote

holomorphic coordinates on Cn, and set

- {z E Cnllzl  ë} be the e-ball in Cn and let 0 (U(E)) denote the space of

holomorphic functions on U(e) with the Frechet topology of uniform con-
vergence on compact sets. For every e&#x3E; 0 the space

is a closed subspace of &#x26;,.(Rn) X O{U(ë») and therefore it is a Frechet space.
Let n: Be -7 BAo(Rn) be the natural projection on the first factor. It is a

continuous linear map. By the assumption that BAo(Rn) == AAJRn), each
element u e &#x26;A.(Rn) admits a holomorphic continuation to U(ë) for some
8 &#x3E; 0. Therefore

Since &#x26;_4,,(R,) is of second category at least one of the sets on the right hand
side, say Im {n: Sl/no - 6Ao(Rn)} is of second category. But then, by the
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Banach theorem,

is surjective and open. For u E 8AJRn) let us denote by ft its holomorphic
extension to U(l/no), let 0  E  1/no, and set

As x is open from 81/11,0 to &#x26;_4.(R,), for given s we can find m and r and a &#x3E; 0

such that

From this we deduce that for any u E &#x26;_4.(Rn) we have the inequality

where C = Ila.
Now, given $ E V, A,,() has rank  p,, and we can find X c C?° with

IXI=L such that

Set u = x exp [;, x)], where

We have Ao(D)u = exp [(8, x&#x3E;] A,,($) X = 0 so that u E &#x26;A (Rn). The above

inequality yields then an inequality of the form

For Ci &#x3E; 0 large enough, we have
we obtain 

-

thus

From this, taking logarithms, we get for every $ c- V the inequality

which is an inequality of type i) considered in proposition 3. Therefore

Ao(D) is elliptic.
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P) We divide the proof in several steps. We set for r &#x3E; 0

and for u E 6(B(r)) = {COO functions on B(r)) we set

STEP i) (Sobolev lemma). Let k be an integer, k &#x3E; n/2. Given e&#x3E; 0 we
can f ind ac constant C e &#x3E; 0 such that

For any X Coo with compact support in Rn (x E D(Rn)) we can consider its
Fourier transform x() =fexp [- i x, 8)] x(x) dx.

Then X(O) _ (2x)-nj£($)d8 and we have

are equivalent norms

while, , since 2k &#x3E; n, the integral is convergent. Thus

Now given e &#x3E; 0 let us choose 99 E Ð(Rn) with supp 99 c B(ej2) and q(o) = 1.
Then for u E 6(B(s)) we have cpu E 5)(Rn ) and

for some C,. &#x3E; 0.

STEP ii)..Let be a differential operator with constant

coefficients and of order m (¿I). Assume that for 01, C2&#x3E; 0 we have
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There exists a constant C &#x3E; 0 depending only on p such that, if r &#x3E; 0 and

u E E{B(r») satisfies p(D)u == 0, then for any e&#x3E; 0, 1 ¿ ð&#x3E; 0 with 8 + ð  r

we have 
,

Let 0(t) be a real-valued Coo function on R with

For every 8, ð &#x3E; 0 set

and note that for 0  ð  1 we have, , with a constant Ca a independent
of s and 6,

We have for u E &#x26;(B(r)) satisfying p(D)u = 0:

for some constant C &#x3E; 0 independent of 8 and 6.
On the other hand

From this inequality we deduce an estimate of type
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with constants C’, elf&#x3E; 0 independent of 8 and 6. Now

with 0"’&#x3E; 0 independent of F and 6, while

as CPs,(J = I on B(e). From these inequalities and from (*) and (**) we
deduce the desired estimate.

STEP iii). With the same assumptions of the previous step il e + (l + 1) ð r
we have .

This inequality reduces to the one of step ii) for 1 = 0. We can thus prove
the statement by induction on 1, assuming the statement true for 1 and

proving it for 1 -p 1.
We have

Since p(D) has constant coefficients, v = Dhu is also a solution of p(D)v = 0
on B(r). Therefore by the inductive hypothesis we have

We estimate the last term using step ii). We obtain
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These inequalities for h = 1,..., n, summed up term by term, give the desired
estimate.

We apply the previous inequality with 3 = r,/(l -[-1) and e + r2 in-

stead of s so that we obtain

By the Sobolev lemma, if k &#x3E; n/2, we obtain

for m + 1 == k + x I and lcx I :2:: m. In particular, taking into account that

we obtain from the previous’ estimate an inequality of type

with convenient C &#x3E; 0 and or &#x3E; 0.

Let now Rh(x) denote the remainder of the Taylor expansion centered
at the origin of u(x) up to order h. We have for ]r I  r, that

as there are

mainder.

terms in the Lagrange expression of the re-

From this it follows that in a neighborhood of 0 the Taylor series of

u(x) converges to u(x).
What we have said for x = 0 can be repeated for any other point. Thus u

is real analytic.

STEP v). I f f E f;1JO(Q) and Ao(D)t = 0 then for every p($) E b and every
,component f i of f 1:::;: i :::;: po we have p (D) f = 0. As .A. 0 is elliptic there

exists apE b with ] p (I$) ¿ C, I  Ideg,, - C2 , Y$ E Rn. Thus each component f i
of f is real analytic.
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c) We end this section by remarking that in the Hilbert complex of
the previous section (&#x26;*(D), .A.*), if the first operator Ao(D) is elliptic then
we have

as every germ of Coo solution is also real analytic. It follows that in this case

notions of C°°-convexity and analytic convexity coincide.
We mention here the following lemma that will be used later on (cf. [4]

theorem 2). 

LEMMA 1. Let Ao(D) : 8po(Q) -¿. 8Pl(Q) be an elliptic operator with constant
coefficients. Consider Rn imbedded in Cn in the natural way. For any open
set S2 c Rn there exists an S2-connected &#x3E;ieighborhood Q c Cn such that any
M E 8pO(Q) with Ao(D)u == 0 has a unique holomorphic extension it to S).

3. - Formal Cauchy problem.

a) Let $i i ... 9 $n , q,, ..., ?7, be N ii, + k indeterminates and set

5’N = C[$i , ... , $n , rji , q] , Sn == C[$i , ... , $n] and identify to the sub-
ring of 5, of those polynomials independent of ?11, ---,qk. By the inclusion
q’n c JN every N-module F can be considered as a Jn-module; we denote
by (F)n the module F with its structure as a ff n-module.

Let us consider in RN, where X, ..., Xn , yi, ... , y, denote cartesian co-

ordinates, , a Hilbert complex

defined on all open sets S2 c R,. It is obtained from a Hilbert resolution

of the T,-module
We set R- = ((r, y) E RNJy = 01. We will say that R, is (algebraically)

non characteristic for the complex (&#x26;*, S* ) if (M)n is a ff n-module of finite type.
Assume that Rn is algebraically non characteristic for the complex (1).

Then we can consider a Hilbert resolution of the T,,-module (M),,:
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Setting m = Q r1 Rn we can consider the Hilbert complex on Rn,

associated to (3). We will call (4) a complex of Cauchy data for the given
complex (1) on RN and (1) a complex suspending the complex (4) from Rn
to RN. Now we can consider S, as an infinite free 5n-MOdUle (with gener-
ators rtX, (X E Nk) and therefore the resolution (2) can be viewed as another
(infinite) free resolution of the J n-module (M)n - It follows that there exist

J -homomorphisms

( j = 0, 1, 2, ...) so that (2) and (3) factor each one through the other.
This means that in the diagram of 5,,,-homomorphisms,

erasing the homomorphisms IQ or I-r, we get commutativity. In particular
the collection of homomorphisms flejol-ril gives a factorization of the resolu-
tion (3) through itself, and similarly {t7:jotej} gives a factorization of the

resolution (2) through itself as a resolution of (lVl)n by infinite free J n-modules.
This implies that these maps must be homotopic as 5,,-homomorphisms
to the identity map.

Therefore there egist J n-homomorphisms

for i = 0, 1, 2, ..., such that

and

and similarly
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and

b ) Let F be a left T,,,-module and let us denote by p(D,,)f the action
of the polynomial p($) c 5,,, on F. We can take for instance for F any one
of the following spaces

&#x26;(a)) == space of Coo functions on an open xet m c Rn

A( úJ ) space of real analytic functions on an open set a) c R"

&#x26;" space of germs of Coo functions on Rn at x E Rn

A0153 space of germs of real analytic functions on Rn at x E Rn

C{{x}l space of formal power series in x = (x,, ..., xn)
the polynomial p($) operating on f c F as a differential polynomial:
p($) -f = p(Dx)f.

Consider the space Homa’n(N’ F). This has a structure of a J N-module
if we define for any I c- Hom x.(5’N, F)

The element I c- Homw. (5’,, F) is known as soon as we know the values

We can therefore represent the element f with the formal power series with
coefficients in F 2 (l/rx.!)ltXYCX = f(y). We have thus defined an identification

of Homg.. (S., F) with the space F{{yll of formal power series with coeni-
cients in .I’ in the indeterminates y = ( yl , ..., Yk).

Let f(y) E -F{{y}l be the element corresponding to i E Homn (TN, F).
We have

Given we have
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therefore in the correspondence (5) we have

which exhibits the structure of Fffy}} as a T,-module:

Let tí: S§ -+ SJ be a n-homomorphism. Applying the functor HOID!fn(.’ F)
we obtain a homomorphism

To describe r we proceed as follows. Let f c- Homg.. (T"N, F) and let
g == jot7: denote the corresponding element by r. Let el = t (1, ... 7 0), ...,
elf = (0y ..., 1) be the canonical basis of J n and let Oi = t (1, ..., 0) ..., erg =

Then

denote the canonical basis of JN so that
We set and define

Setting 7:(Dz, D,J == (7:ij(Dz, D,)) we thus have for

Similarly let te: TsN --&#x3E; T’ . be a n-homomorphism. Applying the functor
HomT. (-, y -F) we obtain a homomorphism
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With the same choice of canonical bases in JN and S§ as before we will
have Given g E Homg..
the corresponding element by e. Then, setting

we have,

It follows that, setting we have for

c) Applying the functor Hom:rn (., F) to the diagram (*) we get from
the top line the complex

where D = (Dx, D,) = (DXl’ ..., DXn’ DYl’ ..., D,,,). Its cohomology will be

denoted by Hj(-F*{{y}}, S*(D)), j 2 0. As the top line of (*) can be con-
sidered as a resolution of (M)n by infinite free 5,, modules Tj (and hence
by projective modules) we must have

From the bottom line of diagram (*) we obtain the complex

where here D = Dx . Its cohomology will be denoted by Hj(F*, B*), j &#x3E; 0,
and we must have

In particular we obtain the following

PROPOSITION 4 (Formal Cauchy problem). For every j &#x3E; 0 tve have a

natural isomorphism
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This is induced by the maps

and

given by the formulae (8) and (10) given above.

According to the previous proposition -r,, induces an isomorphism

Let As, denote the sheaf of germs f E A80 of real analytic (complex
valued) functions on RN satisfying &#x26;(D)f = 0. Similarly let ARe denote
the sheaf of germs f E Aro of real analytic (complex valued) functions on Rn
satisfying Ro(D)f = 0. For x E Rn and (x, 0) E RN we have (AaJRo = (AB.).,
and we have an inclusion

In particular T,,, induces an injective map

and therefore, for every open set ro c Rn, induces natural homomorphisms

If Q describes a fundamental system of open neighborhoods of (o in RN
we have

We want to investigate under which conditions the map To: (.aeSo)(z,O)-+
- (Ap,.),, is an isomorphism for every x e R". Since the operators So and Ro
have constant coefficients this is the case if it is so for x = 0 E Rn.

Associated to the given differential operator S,(D) = So(Dx, D,,) we can
consider both the characteristic variety V and the asymptotic variety Yo.
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If 6 is the ideal of minor determinants of order so of the matrix tSo(, ),
($7 71) _ ($7 ..., Sn , ri , ..., 7 nk), and if 6’ is the ideal 0’ == fp E C[S, q] JpM == ol
we have that Vb == V67 is the ideal of polynomials vanishing on V. By
the same type of argument used in the proof of proposition 3 one establishes
the following. 

PROPOSITION 5. Let V and Vo denote the characteristic and the asymptotic
variety associated to the differential operator 8,,(D). The following conditions
are equivalent

i) for some constants C1, C2 &#x3E; 0 we have

ii) for some constant C &#x3E; 0 we have

iii) i f (0, 27) E Vo then necessarily.

PROOF. The implications i) =&#x3E; ii) =&#x3E; iii) are straightforward.
For the implication iii) =&#x3E; i) we remark that if i) does not hold, then for

every v = 1, 2, 3, ... we can find ($,, rw) c V with

We have rv =1= 0. Thus we can consider the sequence (;v/ /1]v /, qr/)qr)).
By passing to a subsequence fk,} we may assume that

As lq, I &#x3E; v, we have (OyO’)eTo. This contradicts iii). It is worth no-

ticing that the characteristic variety W of the operator R,,(D.,) is the variety
of the ideal b" where

therefore
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THEOREM 2 (of Cauchy-Kowa,lewxka). The necessary and sufficient con-
dition for

to be acn isomorphism is that the equivalent conditions of proposition 5 be

satisfied.

PROOF. Necessity. Let (z, w) == (x + is, y + it) be holomorphic coordi-
nates in CN; we identify Cn with the subspace w = 0 and we set

Let B = iz E enllzl  1 , and denote by ARu(B) the space of holomorphic
functions u in B, with values in C", satisfying the equation Ro(Dz)u = 0.
For 8 &#x3E; 0 let . and let Aso(U(e») denote the
space of holomorphic functions v on U(8), with values in C’,, satisfying
So(Dx, Dy)v = 0. Let

The spaces ARo(B) and Oso(U(e») are Fréchet spaces with the topology
of uniform convergence on compact sets. The space §e is a closed subspace
of a Frechet space and thus it is a Frechet space. Let a: 8e --&#x3E; A.R,,(B) de-
note the natural projection into the first factor; it is a continuous linear map.

By the assumption we must have

Therefore for some value of n, say no, the set Im a: Sl/nu -+ ÁRo(B) must be
of second category. But then by Banach theorem

must be surjective and open. Given U E ABo(B) let us denote by
v E °so(U(l/no») any element such that -c,(v) - u on U(l/no) (") Cn. Let

0  ~  l/no and let K denote a compact set in B and set
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Given e, we can find K and a &#x3E; 0 such that

From this we deduce the inequality

with u = To(V).
Given ($, 17) E Tr we can find X c C’, with IX = 1 such that &#x26;($, 77) X = 0.

Set

so that

The inequality (*) yields an inequality (c == 1/cr)

Now )io($, q)X) I for IX = 1 grows polynomially in $, q. Therefore we get
an estimate

or

From this we deduce an inequality of the form

with f or any

S’ufficiency. Let us assume first that k = 1 so that N = n -f-1. Given

u c (aeRJo there exists a formal power series v in y with coefficients real

analytic in x in a neighborhood of the origin such that ro(v) = u.
Because of the assumption there exists in the ideal a a homogeneous

polynomial q(, ?y) of the form
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Therefore in the ideal b there exists a polynomial

with principal part q($, 17) and thus with deg p;($)  j.
Now each component vi of v satisfies the equation p(D,,, Dy)vi = 0

while the initial conditions D,,kvi 1,=, are all real analytic. It follows that

the germ of vi at the origin in C"’ must be real analytic by virtue of the
existence and unicity theorem of Cauchy-Kowalewska.

We can then proceed by induction on k. Let

If M as a J n-module is finitely generated so it is as a S,v_i module. We can
thus construct a commutative diagram of the form

We may assume that tij - tfljotÂj (as the action of To on Asu is inde-

pendent of the choice of the representative because of the homotopy rela-
tions). Let VN_i denote the characteristic variety for the differential oper-
ator To(D) in N - 1 variables.

We have

such that

Let (AT ), be the set of germs u of analytic functions on CN-1 at the origin
with values in C"° such that To(D) u = 0.

As VN-,, satisfies the conditions of proposition 5 we have by the induc-
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tive hypothesis an isomorphism

Similarly by the case k = 1 treated above we have an isomorphism

Since on Asu To == 2,op, we get thus an isomorphism

this proves our contention.

COROLLARY. If the differential operator So(D) satisfies the equivalent con-
ditions of proposition 5 then the natural map, for OJ open in Rn,

is an isomorphism.

Given in RN == Rn X Rk, where (x, y) are cartesian coordinates, a dif-

ferential operator

with constant coefficients, we will say that So(D), D = (Dx, DlI)’ is an oper-
ator of Cauchy -Kowal ewska with respect to Rn if the matrix of polynomials
So(, q) satisfies with its characteristic and asymptotic variety the equivalent
conditions of proposition 5.

We denote by Eso the sheaf of germs of elements f E E80 such that

So(Dx, Dy) f == 0. As a consequence of the previous corollary and of the-
orem 1 we have the following.

PROPOSITION 6. Assume that the complex (1) is a suspension of the com-
plex (4). Assume that the firgt operator &#x26;(Dx, D,) of (1) is elliptic and of
Cauchy-Kowalew.gka with respect to Rn. Then we have for every open set

to c Rn a natural isomorphism

where, for Q describing ac fundamental system of neighborhoods of ill in RN,
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4. - Suspending a complex from Rn to RN.

a) L3t us consider Rn where (Xl’ ..., Xn) are cartesian coordinates as
a subspace of RN where (x,,..., Xn7 Y17 ***7 Yk)g N = n + k, are cartesian

coordinates; Rn = {(Xg y) C RN ly = 0}.
Let us consider a Hilbert complex of differential operators on Rn

associated to the Hilbert resolution of a certain 5,,,-module N:

where Sn = C[$i , ... , $n].
We give now a Hilbert complex of differential operators on RN

associated to the Hilbert resolution of a certain T,,-module M:

where T, = Clsi , ..., Sn , ri , ... , 1’}k].
We consider M as a T,,,-module via the natural inclusion T. -&#x3E; T,,

M = ( M)n . We make the following

Assumption : M as a T,,-module (M)n is finitely generated and free:

This means that Rn is algebraically non characteristic for the complex
(&#x26;’, B* ) and that a complex of Cauchy data for it on Rn reduces to the
trivial complex

In other words we have a set of free Cauchy data for Bo(Dx, D,,).
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Let

be a T,,-homomorphism such that the diagram

commutes, then the Taylor series in y along y = 0 of an element
with is uniquely determined by the
Cauchy data

where

b) We can consider the complex (4) as a complex of 5,,,-modules and
we can take the tensor product, over Sn , of the complex (4) with the com-
plex (2). We obtain as associated simple complex the complex

The same complex could have been obtained by taking first the tensor
product of (2) with T, over ffn to obtain the (exact) complex (as ffN is flat

over T,,)

and then taking the tensor product of (2’) with the complex (4).
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The complex (5) is associated to the complex of differential operators
with constant coefficients in RN 

THEOREM 3. Under the assumption (M),, !2t P; we have that

a) The complex (6) is the Hilbert complex associated to a Hilbert resolu-
tion ( 5 ) of M@ffnN.

b) The complex of differential operators on Rn

is a complex of Cauchy data for the complex (6) on Rn.
PROOF. a ) We have the commutative diagram

with exact rows and columns. Now one has



318

and we deduce exactness of (5) in the first two places. The exactness of (5)
in the other places follows from the assumption, as the homology of com-
plex (5) is given by the module

Note that one has

&#x26;) We have
T.,,-resolution

and this module has a

Therefore we obtain the statement b) of the theorem.
We note that the first homomorphism in the Hilbert resolution (5)

is represented by a matrix t C = (U, TT ) with pogo rows and po ql + PIQO
columns where U(V) represent the first (last) po ql (PlqO) columns. By a
suitable arrangement of the rows we have

It follows that if Mj is a minor determinant of the matrix tBo of order qo
then M)° is a minor determinant of the matrix tO of order Poqo. Similarly
if Nj is a minor determinant of the matrix tAo of order po then Nf° is a
minor determinant of the matrix tC of order p,q,,. We deduce from this

the following

PROPOSITION 7. Let A denote the characteristic variety of the operator
.A.o(Da;} in Cn. Let W denote the characteristic variety of the operator Bo(Da;, DlI)
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in CN = Cn X Ck. Let Z denote the characteristic variety of the operator

in CN.

We have

COROLLARY 1. -If the operator Bo(D) is elliptic or of Cauchy-Kowalewska
with respect to Rn c RN, then also the first operator

of the suspended complex (6) is elliptic or respectively of Cauchy-Kowalewska
with respect to Rn C RN.

Indeed if for every Q E W c- W) we have an inequality

the same is true for every point of Z c W.

COROLLARY 2. Let the first operator Bo(D) of the « suspending » complex (3)
be elliptic and of Cauchy-Kowalewgka with respect to Rn c RN. Let f;oo denote
the sheaf of germs f E f;poao such that Co(D) f = 0.

For every open set OJ c Rn we have, for every j &#x3E; 0

where if Q describes a fundamental system of neighborhoods of w in RN we have

PROOF. Since Bo(D) is elliptic Co(D) is also elliptic so that with obvious
notations we have 800 = Ac(,. Since Bo(D) is of Cauchy-Kowalewska with
respect to Rn so is Co(D) and therefore we have an isomorphism

where 1’* is induced by -c. (D 1: &#x26;",", -+ (&#x26;v.’)v, 8N denoting the sheaf of germs
of C°° functions in N = n + k variables and similarly for 6n.
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Combining these two facts we deduce a natural isomorphism

this gives the isomorphism of cohomology groups stated in the corollary.

REMARK. For the validity of the isomorphism (j ¿ 0)

one actually needs only that Co(D) be an elliptic operator and of Cauchy-
Kowalewska with respect to Rn c RN.

Note that the above isomorphism reduces the study of the analytic
convexity with respect to the complex (1) to the study of the C°° convexity
of a suspension (6) of the given complex (1).

c) Let &#x26;Bo be the sheaf of germs of functions f E 8 such that Bo(D) f = 0.
Consider the double complex

with the operators induced by

and

The simple complex associated to it is the suspended complex (6). By
considering the spectral sequence of this double complex we obtain in par-
ticular the following

PROPOSITION 8. Let Q be an open set which is Coo convex for the suspending
complex (3) (i.e. such that (8*(Q), B*) is ezact) .

Then the cohomology on Q of the suspended complex (6) is naturally iso-
morphic to the cohomology of the complex

d) Examples (0153). Let N = n + 1 and consider on R-+’ as a suspending
complex (3) the complex
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where is the Laplace operator in n -}-1 variables.
1

This corresponds to the Hilbert resolution

where

so that

Suspending the complex (1) we obtain the complex

Since (3) is acyclic on any open set S2 the cohomology of (6) is isomorphic
on any open set D to the cohomology of the complex

where H(D) denotes the space of harmonic functions on Q.
The suspending operator d is elliptic and Cauchy-Kowalewska with

respect to Rn. Thus for any m c Rn we have

where Co is the first operator of the complex (6).

(p) Let N = 2n and identify R2n with Cn where $i + iq, 7... 7 n + iqn
are complex coordinates so that Rn = (($ + i,7) E Cn iq = 0}. Consider on Cn
as suspending complex (3) the Dolbeault complex
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where C°i(S2) denotes the space of C°° forms of type (0, i) on Cn. This cor-

responds to the Hilbert resolution

where (i) denotes the space of differential forms in dtl, ..., dtn with coeni-
cients in and where

If we identify (T with (T the image of the last homomorphism in the
sequence (4) is the ideal of (T generated by ($, + iqi , $,, -)- i?7.).

Therefore we have

Suspending by means of (3) complex (1) we obtain the complex

If S2 is an open set of holomorphy, its cohomology is isomorphic to the
cohomology of the complex

where 0 is the sheaf of germs of holomorphic functions on Cn and where
the operators .A.j{DaJ have been replaced by the operators Åj(o/èz) as they
have the same effect on holomorphic functions. In particular the sequence (7)
is exact if Q is open and convex. We derive therefore the following

PROPOSITION 9. Let w be open in Rn and let f E AIh (oi) be such that

Åh{Dx)1 == o. For any open relatively compact convex subset WI cc W we. can
fi%d u E Ph-1 (0),) such that
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Indeed we can find an open neighborhood Q of m in Cn and F E F(S2, O)lh
with Flw = f. Let S2, c S2 be a convex neighborl ood of mi. There exists

IT C T(Q, O)lh-, such that Ah-l(alaZ) U = F. It is enough to set u = UIWI.
Let Co(D) denote the first operator of the complex (6). Since the first

operator i of the suspending complex is elliptic and of Cauchy-Kowalewska
with respect to Rn, we have for any open set W c Rn

(y) Consider for n &#x3E;- 2 Rn+k c Cn, the space Cn being the minimal
complex subspace of Cn containing Rn+k. If zj==xj+iyj, 1 C j C n are
complex coordinates in Cn we may assume

Set z= (z’,z") with z’= (-’17 - - - I -k) , z"== (Zk+l,...,Z.n) and let á’, a’ denote,
respectively, exterior differentiation with respect to the antiholomorphic
coordinates z’ or z".

We take as complex to be suspended the complex of the j’ along the
fibers Ck of Rn+k (so that now R, is replaced by Rn+k).

We take as suspending complex in R2n = Cn (N = 2n) the complex

where OOZ(Q) denotes the space of C°° forms of type (0, 1) on Q in the dif-
ferentials dZk+l, ... , dzn .

This last complex corresponds to a Hilbert resolution of a S,,,-mod-Lile
M -- C[$,, ..., k’ Y1 , ..., ’Y)lc, $,+,7 ... 7 $,,,] -Indeed lVl is isomorphic to
q’,,, modulo the ideal generated by $,+l -+- ik+x, ... , 7 $- + irn .

Suspending the complex (1) by (3) we obtain the Dolbeault complex in C’n.
This has its first operator elliptic and of Cauchy-Kowalewska with respect
to Rn+k. In particular we will obtain for we Rn+k

where 0 denotes the sheaf of holomorphic functions in Cn.
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5. - SufEcient conditions for analytic convexity.

ac) Let a Hilbert complex be given on R n, where x = (xl, ..., xn) are
coordinates, 

where is open in Rn. Let us consider in RN, N = n + k, where (x, y) =

= (xi, ... , x. , y, 7 - .., y,) are cartesian coordinates an elliptic and Cauchy-
Kowalewska suspension of the complex (1) ;

By this we mean that (2) is a suspension of (1) and that the first operator
8,,(D) of (2) is an elliptic operator and of Cauchy-Kowalewska with respect
to Rn. Here S2 is. open in RN.

If we set 5’N = C[$,, ..., $n 7 2717 ... 7 27k]7 5n = c[sl I... I $nl the above

situation arises from a commutative diagram of T,,-homomorphisms with
exact rows:

Here the maps I-rj define linear maps, for

by

We consider cv c Rn, .G c RN with S2 r1 Rn = cv, and the Cauchy problem

and consider Rn, RN naturally imbedded in Cn, CN respectively.
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The following lemma is a consequence of the inductive argument given
for the sufficiency part of theorem 2 and of the argument developed for
instance in [4].

LEMMA 2. Let S,(D) be of Cauchy-Kowalewska with respect to Rn. Let Co

be a neighborhood of (J) in Cn and let v be defined and holomorphic in roe There
exists a neighborhood f2 of w in C’N, depending only on ro and not on v, such
that the solution u of the Cauchy problem (*) is defined and holomorphic in S2.

b) For an elliptic and Cauchy-Kowalewska suspension (2) of (1), for
any open set (j) c Rn, we have

and if Q describes a fundamental system of open neighborhoods of m in RN
we have

We deduce from this the following proposition.

PROPOSITION 10. Let (f) be open in W. Assume that for some j ¿ 1

(A) for any open neighborhood {J of ro in RN we can f ind an open
neighborhood A of ro in {J such that the restriction map

has zero image.
Then Hj(ro, A,4.) = 0.

In particular when Q = A we get the

COROLLARY. Let a) be o,pen in Rn. If (o admits a f undamental system of
open neighborhoods Q of to in RN such that Hi(Q, Bs) = 0 then Hi(W, AA.) = 0.

Let j ¿ 1. A pair of open sets A c Q in RN is called j-compatible with
respect to the suspended complex (2) if

so that condition (A) of proposition 10 can be stated as « w admits a f unda-
mental system of j-compatible pairs of open neighborhoods in RN for the sus-
pended complex (2) ».
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Consider now another elliptic and Cauchy-Kowalewska suspension in
some space R:) R" of the complex (1) where (017 ... 7 0-7 tl7 ... I th) are car-
tesian coordinates in R, .B’ = n + h,

where G is open in Rg. Similar to the map -r,, on the Cauchy data we choose
a map

so that the corresponding first Cauchy problem for the complex (3) is given by

PROPOSITION 11. Let o) be open in Rn. I f ro satisfies condition (A) with
respect to an elliptic and Cauchy -Kowalewska suspension of the given com-

plex (1) then w satisfies condition (A) with respect to any other elliptic and

Cauchy-Kowalewska suspension of (1).

PROOF. We assume that úJ satisfies condition (A) with respect to the
suspension (2) of (I) . We want to show that it satisfies condition (A) with
respect to the suspension (3) of (1).

We choose a countable locally finite covering of ro by convex open sets

with

For we set

where 0-)(v) v = 0, 1, 2 denote respectively Wi’ a)/, oill - We also set

and similarly for -W(v) and w(v).
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Let G be an open neighborhood of co in R. By replacing G by a pos-
sibly smaller open set, we may assume that G = U Ui(ë) so that U(e) is

i c- N

a Leray covering of G for the sheaf BLo . We want to show that there is an
open neighborhood B of m in G so that

Let {fio...iq} E Ha(G, ELO&#x3E; HQ{91(s), ELJ be a cohomology class repre-
sented by a cocycle fio...iq with fio...iq E T( Uio...iq(s), ELJ and (with loose no-
tations, suppressing the restriction maps) 2 (-l)hfio...ih...iq+l == o.

Because of lemma I, since Lo(D) is an elliptic operator, f2o...2q is defined
and holomorphic in a neighborhood Uio...iq(s) of Uio...iq(s) in CH, which is
independent of {fio...iq} but depends only on Uio...iq(s). Therefore ÂO(fio...iq) is
defined and holomorphic in a neighborhood Wio...iq of (Ùio...iq in Cn which is in-
dependent of {fio...iq} but depends only on Uio...iq(s). We have Ao(D) ÂO(fio...i’) = 0.

For every (io, ..., iq) we consider the Cauchy problem

This can be solved with

with &#x3E; 0 that can be chosen, by virtue of lemma 2 independent of
{fio...iq} and depending only on Uio...iq(ë). Since the covering t is
locally finite we have

Therefore we have found a sequence d = {ai}ieN, with ai &#x3E; 0, Vi, inde-
pendent of {fio...iq} and depending only on ’B1(8) and Sio...iq E F(WL...iq(a),tsJ
solving the Cauchy problem (*). With loose notations, we must have

To(:2 (-l)hsio...ih...iq) == 0 because {fio...iq} is a cocycle, therefore also we

must have :2 (-l)hsio......iq) =0.
Let Q = U Wi(a). By assumption there exists an open neighborhood A

of w in Q such that
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Without loss of generality we may assume A = U Wi () for some sequence
q = f?iaEN with q; &#x3E; 0, Vi. As ’ill’(r) is a Leray covering of A for the

sheaf &#x26;,,. and as {Srio...iq} is given on the covering ’W(or) we can find

{v.. } with. Zo...iq Z

such that w == s I’W’(77) i.c. , with loose notations,

Because of lemma 1 Vio...iq-l is defined and holomorphic in a neighborhood
W;o...iq-l(r) of WL...iq-l(r) in CN which is independent of v = {Vio...iq-l} and
depends only on ‘lU’ ( ) .

Therefore ’l’O(Vio...iq-) is defined and holomorphic in a neighborhood
WL...iq-l of w;O...iq-l in Cn which is independent of v and depends only on
W ’ (&#x3E;j ) . We have Ao(D) ’l’o(’l’io...iq_) == 0. For every (io,"., iq-l) we consider
the Cauchy problem

As before we realize that we can find a sequence a = {Pi}i,,N with
Iii&#x3E; 0, Yi, which (by lemma 2) is independent of v and depends only on
W’(q) such that the Cauchy problem (**) has a solution

We set B = U U,"(,u); it is a neighborhood of m in G. With loose nota-
tions we have

thus

Because of the unicity of the Cauchy problem (* * ) we deduce that

6w == 11’11"(11;) i.e., with loose notations,
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But this shows that Im

to prove.

as we wanted

c) An application. Let $ = (;1’ ..., $n) be n indeterminates and let
us consider a homogeneous ideal b in the graded ring CO[;I, ..., ; n] of homo-

geneous polynomials in n variables. Let Vyl($) be a set of (homo-
geneous) generators of b. Let

be the projective variety associated to b. We will ma,ke the following as-
sumptions :

i) T)(6) is 0-dimensional so that it consists of finite many points

ii) each one of the points a(8) is simple for W(b) i.e.

For each point a(s) we define a linear map : 

This is defined up to multiplication by a complex number

different from zero. We will call the projection a, real or complex according
whether a(s) E Pn-I(R) or not respectively.

and consider a Hilbert

resolution of the T,,-Iinear map defined by

To this corresponds a complex of differential operators

for any w open in Rn. Here, if x,, ..., Xn are cartesian coordinates in Rn,
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We consider now the i-suspension in Cn of the complex (5). We obtain
in this way a Hilbert complex for any Q open in Cn

where, if z1, ..., zn denote complex coordinates in Cn, we may assume that

We denote by 0... the sheaf of germs u of (holomorphic) solutions of the
equation Co(D) u = 0. We denote by 0, the sheaf of germs of holomorphic
functions in the va,riable t = I a’)z,. We have a natural linear map

given by If S2 is open in Cn and,

then we have ([4] Corollary 2 to proposition 14)

, 
Let oi be an open bounded set in Rn and let Q: R- --&#x3E;. R be a C°° defining
function for co, i.e. a C°° function such that co = fx E R, le(x)  o}. It will

be convenient to assume that Q(X) = 0 for X E Rn - w.
Set

and let a denote the projection (x,, ..., Xn, 8 ) - (0) of R,+’ on the 0-axis R.
We will make on ill the following assumptions

I)m for any real projection
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consider the linear map #,: Rn+l -&#x3E; R defined by

then (Co, oc x #,, ICo, cx x {:Js(w») is a differentiable fiber space with convex fibers

for a convenient choice e = e(8) of the defining function of (o.

ii). for any complex projection

is a differentiable fiber space with convex fibers.

Set m(0 ) = (z E Rn IQ (x) - 021. Condition i). implies that for any
real n, (and for a convenient choice of e), ns Iw(O) has convex fibers for any 0.
Condition ii)W implies that for any complex ns, ns Iw has also convex fibers.
By a differentiable fibre space we mean a fibre space which is locally dif-
f erentiably trivial. 

PROPOSITION 12. Consider the Hilbert complex (2 ) associated to a homo-

geneous polynomial ideal b on which we make the assumptions i) and ii).
Let w be an open set in Rn, bounded and veri f ying the assumptions i)ro,

ii)ro, iii)ro.
Then 0153 is analytically convex i.e. for any j &#x3E; 0 we have

PROOF. Let h : R - R be a Coo function with h(t)  0 if t  0, h(t) = 0
if t &#x3E; 0 and which is strictly monotone increasing for t  0. Set z = x -f- iy
in Cn and consider the sets

These describe a fundamental system of neighborhoods of (o in C,.

Each S2 is fibered in n-dimensional balls over (o and thus is contractible

onto ro. Because of the assumption iii)W we have thus Hj(S?, C) = 0 for

every j &#x3E; 0; therefore It will be there-

fore sufficient to show that for every s, I  s  p, there exists an open
neighborhood As of ú) in Q such that



332

Indeed taking - we will have

therefore by proposition 10 it will follow that Hj(co, A4.) = 0 for every j &#x3E; 0.

We distinguish the case whether n, is a complex or real projection. To
simplify notations we will denote the function h(e) by e itself so that

Let a, be a complex projection. Let a(s) = a + ifl and let (.,.) ) denote the
euclidean scalar product in Rn. We can always multiply a(’) by a non zero
complex number to have (a, fl) = 0. We may also assume (a, a)! = 1,
(fJ, fl)-l = k, as ’Jl:8 being complex, a and fl are linearly independent. We can
find a real orthogonal matrix M so that the change of coordinates z = Mzf
in C" brings a(s) into the point t (1, ik, 0, ..., 0) E Cn. We will continue to
denote by e(x) the new defining function o(Mz) for m. Denoting by or -f- io
the complex coordinate in the target space of 7r,, in these new coordinates
will take the equations

Let 2:’(a,O) = n;l((j -)- i6). Then yi , ..., I y. , x3, ..., Xn can be taken as af-

fine coordinates on the complex hyperplane E(,,,O) for any choice of u and 0
and in these coordinates the open set 2:’(a,O) n Q will be given by the condition

The left hand side of this inequality is given by a function 1jJ(Yl’...’ Y n)
for any fixed choice of X3’ ..., 9 -T- - Replacing e by ee with 8  0 and suffi-

ciently small we may suppose that the Hessian of y with respect to Yi ... , Yn
is positive definite so that 1jJ(Yl’’’.’ yn) is a Coo strictly convex function.

If

then
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Indeed if this last point is not in (o, then all derivatives of o must vanish
(by the way the defining function has been chosen). Therefore the gradient
of y(y) for y == 0 must vanish. Hence y = 0 must be the absolute minimum
of y so that VJ(y) ¿ y(O) = 0. Hence no point P could exist over z(P),
with PEQ.

It follows that L(a,o) n S2 is fibered by i over wl(a, 0) with convex fibers
defined by (*) for a, 0, X3’ ..., Xn given. By assumption ii)ro, (01(0’, 0) is

convex, therefore E(,,,O) (-) Q is contractible for any choice of (a, 0) provided
E(a,O) n Q =1= ø.

From proposition 16 of [4] we derive then that, for the given choice
of S2 , we will have

for any

provided we prove the following contention.
Let (do, 0,,) be such that L’(C10,00) (} Q =A 0 and let X be a sufficiently small

open spherical neighborhood of (oro, 0,,) so that for (a, 0) E M, L’(C1,0) n Q =1= 0.
Then {E(.,O) r) S?I(.,O),M is a differentiably trivial fiber space over M.

Let us denote by VV the gradient of y with respect to the coordinates
(yl, ..., yn) E Rn. Let yi&#x3E;, y(2) be two points in R". We claim that

if y(l) =1= y(2). Indeed set

We have f (0) = 0 and f I (t) &#x3E; 0 if y(l) =A y(2) because is strictly convex.
Therefore f (1) &#x3E; 0 as we wanted to prove. 

This shows that Vy: Rn - Rn is an injective map.
Let us now choose a C°’ function h(t) defined for t  0 which is convex

and increasing, such that 

Replace the function by exp [h(V)] and consider the map defined on
the fibers of r over CùI(O"O) by V exp [h(V)] = h’(1p)V’ljJ exp [h(’ljJ)]. One

then verifies that this defines a diffeomorphism of the fibers of r onto Rn,
so that we get a differentiable isomorphism of fibered spaces

This diffeomorphism depends differentiably on the parameters or, 0. By
assumption ii),,,, for X small, we have that foi,(or, 0)}(.,O).m is difleomorphic to a
trivial fiber-space over M, with typical convex fiber F, .F’ X M. Combining
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this fact with the previous diffeomorphism we get a differentiable isomorphism

This establishes our contention.

Let n, be a real projection. By an orthogonal real change of coordinates
we may now assume a(s) = t(1, 0, ..., 0) so that 1ls has the equations Xl = C1,
y, = 0, C1 -{- iO being the complex coordinate on the target space of ns.

Let ’-*’(,,,0) = 7s ’(or + iO); f on it Y2 7... I Y. X21 ... I X.11 can be chosen as affine

coordinates and E(,,O) r1 JO is given by

Set WI(a, 0) :::-- {(X2’ ... , I o.) E Rn-Ile(o’, X2, 7 ..., xn)  - 02}. Then -’(.,0) n Q
is fibered over a),(cr, 0) with fibers (n - I)-dimensional balls. By the assump-
tion i)ro, o),(or, 0) is convex, therefore E(,,O) n Q is contractible for any choice
of (a, 0) provided E(,,,O) n D =1= 0.

From proposition 16 of [4] we derive then, that for the given choice of Q,
we will have

for any

provided a statement on local differentiable triviality similar to the previous
one can be established.

By the previous remark Z(,,O) n S? as a fiber-space with ball-fibers is

differentiably isomorphic to the trivial fiber-space Wl(O" 0) X Rn-l over a),(a, 8)
with a diffeomorphism which depends di -fferentiably on a and 0.

By assumption i),, f(o,(a, 0)1(a,o),Em is differentiably isomorphic to the trivial
fiber-space with convex typical fiber F, F X 1Vl over M. It follows that

{E("O) (-) S?I(,,O),Em is differentiably isomorphic to the trivial fiber-space over M,
R,-’xFxX.

This establishes our contention also in this case.

d) Analytic convexity on convex open sets. We will call an open set

Q c RN a staircase if Q is the union of a countable family % == {Ui}i=1,2,..
of convex open sets such that

whenever

For instance let N == n + k and let (x, y) == (Xl’ ..., xn, yx, ..., Y1J be

cartesian coordinates in RN ; let Rn == fy == o} be considered as a subspace
of RN. Let (o be an open convex set in Rn and let {Wi}i=1,2,... be an increasing
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sequence of open convex subsets of OJ such that

for every

Choose a decreasing sequence {Tili=,,,,... of strictly positive numbers
and set

where Then is an open convex set in RN. Set

Then Q is a staircase. Indeed for we have

Clearly is an open neighborhood of w in RN and when the sequence

{Ti}i=1,2,... varies D describes a fundamental system of open neighborhoods
of S2 in RN.

Consider any Hilbert complex in RN

for S2 open in RN. Let Eso denote the sheaf of germs u E E80 such that

$,,(D) u = 0. We have the following

PROPOSITION 13. For any staircase Q c RN and for any Hilbert complex (7)
we have

PROOF. Let us consider a flabby resolution of the sheaf 880’

so that
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Let e Hj(Q, &#x26;,,,) be represented by Ij E F(Q, ei) with 6j f = 0, and
let j &#x3E; 2.

Let D == U Ui be a staircase, with Ui convex and open and Ui r1 U; c
i=1

c U,n U, whenever ihkj.
As the complex (7) is a Hilbert complex and as the Ui’s are open convex

we have (since j &#x3E; 1) that 

with Ui E F(Ui, CI-1), i = 1, 2, 3,....
On U, r1 U2 we have bj-,(u, -,u,) = 0. Thus as U, r1 U2 is convex and

j :2:: 2 we can find v2 E F( Ut n U,, Cl-2) such that

Since CJ-2 is a flabby sheaf we can extend v2 to

Set g, = u, on Ui. Set

Then g2 = g, on U1 and g2 E F( U1 U U2, Cj-l) with

On (UI U U2) n U3 = U2 n Us we have ðj-l(g2 - u3) = 0 so that we can
find ’V3 E F( U2 n U 3’ ei-2) with

We can extend

Set

Then g3 is defined on Ul U U2 U U3 and g3 = g2 on UI U U2 and
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Proceeding in this way we define

with

and such that

The collection of the g,’s defines a g c- F(S2, Ci-1) with f = bj-l g
on D. This proves that $ = 0.

If we apply the previous proposition to the case where the complex (7)
is an elliptic and Cauchy-Kowalewska suspension of a complex (1) in Rn
we obtain the following

THEOREM 4. For any Hilbert complex (1) in Rn and for any open convex
set m c Rn we have

PROOF. Indeed (0 has a fundamental system of neighborhoods in RN

(where the complex (1) is suspended by the complex (2)) which are stair-
cases. By the previous proposition each staircase is selfcompatible for j &#x3E; 2.

Thus we can apply the corollary to proposition 10 for j &#x3E; 2.

6. - Some lemmas on staircases.

a ) Consider in RN a Hilbert complex

for Q open in RN. Let Eso denote the sheaf of germs of functions f E &#x26;" 

such that So(D) f == 0. For Q open we endow the space F(S2, Eso) with the
topology of uniform convergence of the functions and their partial deriva-
tives on compact subsets of Q (Schwartz topology). Then -V(D, &#x26;s.) be-
comes a Frechet space. oo

We consider now an open set S2 c RN which is a staircase i.e.

with Ui open and convex and such that

whenever
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Then CLL == I Uili = 1, 2,... is a Leray covering of Q for the sheaf 8so. We
denote by Zl(cLL, 8sO&#x3E; the space of the alternate 1-cocycles of the covering ILL
in the sheaf 8so. Let lij E F(Ui r) U j, 8s) be such that ffij} is a 1-cocy-
cle on the covering U i.e.

If i  j  1 then Ui r1 Uj r1 Uk = Ui r1 Uk as JS is a staircase. We

deduce then that for i  i we must have

as each f,,+, for i  h  j - 1 is defined in

One deduces from this the following

LEMMA 3. The linear map

defined by

is a topological isomorphism.

An element represents a coboundary if and

only if one can find such that, for any h, we have

PROOF. Indeed the alternate Chech 1-cocycles in ZI(’B.L, &#x26;,.) are re-

presented by the cochains such that for

we have f ij + f j, == li, on Ui n Uk. Thus the defined linear map is in-

jective and surjective. It is also continuous for the Frechet topologies of
source and target space. By Banach theorem it is a topological isomorphism.
The last part of the lemma is straightforward.

LEMMA 4. Consider the map
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defined by with

where r denotes restriction map.
Then Im f3 is dense in the target space and consists of coboundaries.

PROOF. For every h = 1, 2, ..., , the map

has a dense image as U, r1 U,+, is convex and as S,,(D) is an operator with
constant coefficients (Theorem 7.6.14 of [10]). Then fJ as the product map
of the above restrictions has dense image. Set now

Then g, is defined on U, and

Therefore #({F,}) is a coboundary.

LEMMA 5. Let

If
be a staircase and let B c Q be open.

then necessarily

PROOF. Set Tri = Ui n B. Then ’BJ == {Vi}i=1,2,... is a covering of B.

The natural map HI(’tJ, Eso) -Hi(B, EsO&#x3E; is an injective map (by Leray
theorem). The covering U == {Ui}i=1,2,... of S2 is a Leray covering; thus
Hl(,Q, Eso) = H-(-LU, &#x26;s.). If an element $ E H’(U, Eso) vanishes in .91(B, &#x26;s,,),
it must vanish in HI(’tJ, &#x26;,.) already.

We set and consider the space

where 3qy represents the coboundary map
Chech cohomology This is a closed sub-
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space of the space Zl(’B.L, Eso) X CO(W, &#x26;s.) with its natural Fréchet topology.
Thus G is a Frechet space.

Set

Then W represents the subspace of Z’(U, &#x26;,.) of those cocycles which be-
come coboundaries when restricted to B. By construction W is a continuous
image of a Frechet space.

The assumption of the lemma states that

i.e. that W is of finite codimension in ZI(’B1, &#x26;so). By the above remark we
must have that W is a closed subspace of Z’(U, &#x26;so).

By lemma 4 W, containing the coboundaries of ZIL(U, g..), must be
dense in ZI(’B.L, EsJ. Therefore we must have W = ZI(’B.L, 8s) and this

proves that Im {Hl(Q, &#x26;so) - Hi(B, EsO&#x3E;} = 0.

b) SetRN == Rn xRk with N == n + kand (x, y) == (xl, ... I X-9 Y]LI ... yk)
as cartesian coordinates in RN. Let ú) be an open set in Rn and let us as-

sume that

Then there exists an open neighborhood Qo of ro in RN and d cohomology
classes

for

such that, under the natural restriction map

the classes roo($j) for 1::;: j d form a basis over C of .H’q(cv, 8s). Each

class , will be represented by a function /, E 8(J!?o) with S(l(D)/i = 0,
$; = {fj}.

Lot S2 be any open neighborhood of a) in RN and let 0 denote the class
of closed subsets C c Q with C n a) = 0. We have then the exact cohomology
sequence 

where rw denotes the natural restriction map and where the suffix. 0 denotes
cohomology with supports in 0.
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Let q’&#x3E; 1 and let {f} &#x26;s.) with f E tBa(Q), Ba(D)f = 0. We can
find d complex numbers ).j(f), 1  j  d, such that

We deduce then from the above cohomology sequence that

« There exists an open neighborhood Bf of ro in Do and a f unction u E &#x26;’,,-" (Bf)
such that we have on B f

For oi open in Rn and any T &#x3E; 0 we set, as usual,

where

In the following lemma m is not supposed to be convex. We will write

with Wj open and relatively compact in to and co j C (t) J+l ,

for

LEMMA 6. Let : be an open set in Rn as above. Let Q be an

open neighborhood of co in RN.
Assume that

We can f ind a sequence of positive numbers {Pj}, Pj&#x3E; 0, Vi, such that,
if we set 

-

we have:

PROOF. We use the notations and remarks made above. We set

We denote by Vn the subset of Zq(Q,88) of those f E Z’(S?, 8s.) such that
there exist an open neighborhood B f of (o in Do r1 D with 0(col, I/n) c B f
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and a function u E f/tl-l(Bt) such that

We have

Therefore for some n, V.,,,. will be a set of second category. We denote by
Vnln the subset of Zq(S2, g..) of those f E Zq(S2, &#x26;S") such that

there exist an open neighborhood B., of m in Qo r1 Q with

and a function u E &#x26;q-’(B,) such that

We have Therefore, for some integer n2, V nln. will be of
second category. 

"’"

Proceeding in this way we define for every integer h &#x3E; 0 subsets VnlnS...nh
of Zq(S2, 6s,) of second category such that if / e VnlnZ...nh there exist an open
neighborhood B f of (o in S2,, n Q with

and a function u E &#x26;’,,-’(Bf) such that

Let be the vector space generated by the functions f, on

gSq(.Qo). We have G ci Cd.
We choose Pj == lfn; and set

h&#x3E; 0, we consider the space

For every integer
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This is a closed subspace of the product space Zq(Q, &#x26;s.) X BSq-l(Bh) X G and
therefore it is a Frechet space. The projection of B(h) into Zq(Q, Bso) is a
continuous linear map whose image contains the set VnlnS...nl which is of

second category. It follows from Banach theorem that the projection must
be surjective. This means that for every f E Zq(g?, &#x26;s.) there exist

an open neighborhood B f of o in 92,, m S2 with B, D Bh
a function u E &#x26;g-,,(B,)
an element g == 2,Âi(f)/iEG

such that

This shows that dimc lm{Hq(Q, &#x26;s.)}  d because that image
is generated by the classes jr,,,fj} for 1:::;: j :::;: d.

7. - Necessary conditions for analytic convexity.

a) We consider applications of the last lemma 6 to the following
situation.

The Hilbert complex in RN = Rn X Rk

in an elliptic and Cauchy-Kowalewska suspension of a Hilbert complex
in Rn

Let a) be a given open set in Rn and let D be an open neighborhood of ro
in RN, let q &#x3E; 1 be an integer and let us assume that Hq(oj, A4") = 0,
where AAO as usual denotes the sheaf of germs of analytic functions on Rn,
’U E AVo, such that Ao(D) u = 0. Because of the assumption that the sus-
pension complex is elliptic and Cauchy-Kowalewska we have that Hq(w, Eso) -

Therefore by lemma 6, writing with Wj open,

(Oj CC ro, Wj c a)j+l Yj , we can find a sequence of positive numbers
so that if we set
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we have , and

Set

We can then ask if we can pass to the limit for h ---&#x3E;- oo in (3) to obtain

In that case we will get the following

STATEMENT. A necessary and sufficient condition for having

is that for any neighborhood Q of (0 in RN we can find a neighborhood B of (o
in S2 such that

In other words « a necessary and sufficient condition for w open in RN to

have analytic convexity in dimension q (i.e. that H,,(co, AAo) = 0) with

respect to the Hilbert complex (2) is that (0 admits a fundamental system
of q-compatible pairs of open neighborhoods in RN for the suspended com-
plex (1) of (2) ».

The possibility to obtain a limit relation (4) from (3) is based on a Runge-
type approximation theorem.

b) We consider on RN a Hilbert complex (8*(Q), S*). For Q open
in RN and for any j 2 0 we set

We endow this space with the topology of uniform convergence on com-
pact subsets of S? of the functions and all their partial derivatives (Schwartz
topology). With that topology Zj(,Q, Bs) is a Frechet space. Given a com-
pact subset K of Q we denote by Zj(Q, &#x26;s.) IK the space of all restrictions
to K of functions of Zj(D, &#x26;s.).

Let A be another open set in RN and let S2 c A.
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We will say that the restriction map

has a dense image if given c &#x3E; 0, for every f E Zi(Q, &#x26;,.) and for every in-
teger k:2 0 we can find gg,k E Zj (A, tso) such that

We set as a notation lii
We have the following

PROPOSITION 14. Let Q be open in RN. We suppose that we can find an
increasing sequence of open subsets Bh of Q, Bh c Bh+l for every h &#x3E; 1, such

that, for some integer q &#x3E; 1, we have

Set and let K denote a compact subset of B.

IVe acssume that for every K there exists a&#x3E;i integer h(K) &#x3E; 1 such that

i) K c Bh(K); ;

ii) the restrictio&#x3E;i map Zq-’(B, Eso) - Zq-I(Bh(K)’ Eso) IK has a dense image.
Then

00

PROOF. We set B = U K; with Kj compact and Kj c Kj+l for every j.
i=l

We have Xj c Bh(K,) for every j. By dropping some of the Bh’s and

renumbering them, we may assume that K; c B; and that Zq-’(B, &#x26;s.) ---&#x3E;-

--? Zq-I(Bj, Eso) IXj has a dense image.
Let f E Zq(Q, Eso). By the first assumption we can find ai; E &#x26;",-,(Bi)

such that

We have

By the second assumption we can find gi E Zq-’(B, Eso) such that
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Therefore replacing U2 by U2 - gl we may assume that

Similarly we can find g2 E Zq-’(B, &#x26;,.) such that

so that replacing u3 by U3 - g2 we may assume that

Proceeding in this way we see that under our assumptions we may
assume that

for every h ¿ 1.
We consider the series

This defines a Coo function U, on Bh, because the series converges uniformily
with all partial derivatives on every compact set K, as IIUh+l - Ul 
 1/2 h if h 2l + m. Moreover U, == Uh+l on Bh for every h &#x3E; 1. Thus

we have defined a function U E ¿;Sq-l(B) such that f 8,,-,(D) U. This

proves our contention.

With few changes in the proof we obtain also the following

PROPOSITION 15. Let ro be open in Rn and let Q be acn open neighborhood
of ú) in RN.

We assume that

so that, according to lemma 6, we can f ind an increasing sequence of open sets Bh
in Q, Bh c Bh+l for every h &#x3E; 1 such that

we have
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We assurrze that for every compact subset K of B there exists an integer
h(K) &#x3E; 1 such that

i) .g c B,(,)
ii) the restriction map

Then we also have

has a dense image.

PROOF. We use the same notations as in lemma 6 and in the previous
proposition. Let f E Zq(.Q, 8sJ and let = {f,}, ..., ,i = {/J with f c-
EZq(Qo, 8sJ, Qo c S2, represent generators of Hq(co, 8sJ. Choose Âj(f) E C so that

Then we can find Un E &#x26;q-’(B,) such that

By the same argument used in the previous proposition we can choose the
elements u. so that

The sequence of compact sets {Kh}h=1,2,... being so chosen that

B = U Kn, Kn c .Kh+1, Zq-I(B, Eso) has dense image in Zq-1(Bh, &#x26;s.) IKh, Vh ¿I.
As in the previous proposition we construct II E &#x26;Q-I(B) such that

This achieves the proof.

8. - Analytic convexity on convex open sets.

a ) We give a Hilbert complex in Rn

for all o open in Rn. By AAo we denote as usual the sheaf of germs of real
analytic functions with values in C",, u E Avo such that Ao(D) u = 0. We
are interested in the groups of analytic cohomology Hq(w, AAJ.
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If we make the drastic assumption that (o is a convex open set in Rn then
by theorem 4 Hq(co, AA.) = 0 if q &#x3E; 2. It remains then to study only the
group Hl(W, AA.).

To this end we consider an elliptic Cauchy-Kowalewska suspension of
the given complex (1) in Rn+l = Rn xR (cf. section 4d) example (a))

for Q open in Rn+-’. We choose as coordinates in

For (o open in Rn We consider the set in R-+’

where : o - R is positive, e &#x3E; 0, and upper semicontinuous. Then Q is
open and when e varies D describes a fundamental system of neighborhoods
of o in Rn+’.

We denote by 8so the sheaf of germs of functions f E 880 such that

Bo(D}f = 0. For Q open in R-+’ we consider the space ZO(D, 8so) = F(S2, &#x26;s.)
endowed with the topology of uniform convergence on compact sets of the
functions and all their partial derivatives. We have the following appro-
ximation theorem

THEOREM 5. Let (2) be a Hilbert complex in Rn+l with the first operator
So(D) elliptic.

Let (o c Rn be open and convex and for o : m - R positive and upper semi-
continuous set

Then the restriction map

has a dense image.

b) We admit for a moment the previous theorem.. We derive then
the following consequence

THEOREM 6. Let ro be open and convex..F’or any Hilbert coTnplez (1) we
have that
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. .

PROOF. Write w = U Wj with Wj open convex (oj cc ill and Wj c Wj+l for
i=1

every y. Let {Pj} be a decreasing sequence of positive numbers. Then
B = U 0(coj, Tj) (cf. section 6 b) for the notation) describes a fundamental
system of open neighborhoods of cv in Rn+1; moreover each B is a staircase
as the Wj are convex. We take now any staircase neighborhood 12 of co

in Rn+l. By lemma 6 and theorem 5 we can apply proposition 15 for q == 1
provided we have

We then find a B c S2 such that

Since Q is a staircase we have then by lemma 5 that the restriction map
H-(S2, &#x26;,.) - gl(B, Bs) is the zero map.

Therefore 

This shows that necessarily d = 0. This proves the theorem. Assume

now that Hl(oi, ÅAJ = 0 Le. HI(W, 8sJ = 0. Then we can apply proposi-
tion 14 to the conclusion of lemma 6 by virtue of theorem 5 for q = 1. We
obtain then the following

THEOREM 7. Let (1) be any Hilbert complex in Rn and let (2) be any el-
liptic Cauchy-Kowalewska suspension in RN (N &#x3E; n). Let (o be open and

convex in Rn. Necessary and sufficient condition for Hl(W, ÅAJ = 0 is that

(A) for every open neighborhood Q of ill in RN there exists an open neigh-
borhood B of 0) in Q such that

PROOF. For N = n +1 this is what one obtains from the argument
given above. From proposition 11 we deduce then that condition (A ) being
verified by suspensions from Rn to R-+’ must also be verified by any other

(elliptic and Cauchy-Kowalewska) suspension from Rn to RN.

e ) Proof of theorem 5. (a) Set
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From the Mayer-Vietoris sequence we deduce the exact sequence:

Since m is convex S2+ U Q- is also convex. Therefore.
and hence the map

given by

is a surjective map.
It follows that to prove that the restriction map

has a dense image, it is enough to show that the restriction maps

have dense image and for this it is enough to show that, for any choice of e,
the map

has a dense image.

(fl) We imbed Rn+l in C,,+’ where zj = z; + iyj 1::;: j ::;: nand w = y -E-- it
are complex coordinates.

Since the operator So(D) is elliptic there exists an open neighborhood
of Q- in Cn+l such that any u E -P(S2-, &#x26;so) extends to an element 11 holo-
morphic in f2 (such that So(D) 11 = 0). 

For any compact set K c Cn+l and any s &#x3E; 0 we denote by K(8) the

s-neighborhood of K in Cn+l i.e. the set of points of Cn+l whose polycylin-
drical distance from K is not greater than :

Let now K c.Q- be a compact set and let Âo &#x3E; 0 be so chosen that
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It will be enough to prove the following
STATEMENT. Given u E F(Q-, &#x26;,.), given ð&#x3E; 0 and given an integer k ¿ 0,

we can f ind v E F( U, Eso) such that

Indeed as !7 is a convex set, the restriction map

has a dense image because So is an operator with constant coefficients

([10] theorem 7.6.14). It follows then that given u E F(S?-, 8s), given a
compact set jBT c S?-, given 6 &#x3E; 0 and k integer with k &#x3E; 0 we can find
v E -P(Rn+l, &#x26;,.) such that

But this means that the restriction map F(R-+’, 88) --&#x3E; &#x26;,.) has
a dense image.

(y) ro prove the above statement we proceed as follows. Let

e = t(O, ..., 0, 1) E C-+’ be the unit vector in the y-direction. Given K c S2-

compact we determine lo &#x3E; 0 as before and set

for some

Then F is a compact subset of Q-.

We can find e &#x3E; 0 such that F(4s), the 48-neighborhood of F in Cn+’,
is contained in f2-; F(4e) c (J-. Then every u E T(Q-, Es) extends holo-
morphically to a neighborhood of F(4e). Let J? be a compact set of Cn+1
and let u = t(ux, ..., u,.) be a continuous function defined in a neighborhood
of H. We set

Let oc c- N,, # c- N, s &#x3E; 0 and let v = t(v,, ..., v,,.) be holomorphic in a
neighborhood of K(e) (any K compact). From Cauchy integral formula
we deduce the estimate

We deduce then that the above statement is a consequence of the following
LEMMA 7. Let K be compact in Cn+l, let Âo &#x3E; 0, let
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Let u == t(Ul’ ..., us) be holomorphic in a neighborhood of F(4s) acnd let
us choose an integer k &#x3E; 0 such that a = (Âo/k) :s: E.

Let ð&#x3E; 0 be given. We can f ind integers ml(ð) ¿ 0, ..., mk(ð) &#x3E; 0 such

that, setting

we have

Indeed the functions f = D+...+SkU(Z, W - Âo) for u E F(S2-, Bs) are de-
fined in D" + loe which is an open set containing U and moreover they
satisfy the equation So(D) f = 0. The desired estimate with the partial de-
rivatives is derived from the conclusion of the lemma and estimate (*).

(b) Proof of the lemma. Let f (z, w) and f (z, w - a) be both holomorphic
in a neighborhood of K(E + r) for E  0, r &#x3E; a ; then we have°

In fact one has that the left hand side equals

by virtue of inequality (4:).
We have then
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where co = 1, c1 = 1, and in general

By the previous remark, taking r == 20", we get

Let v be a positive integer. We choose m, == v + 1. Then cl is defined

and we can choose m2 = cl -(- v. Then C2 is defined and we can choose

m3 == 02 + v. Proceeding in this way we choose mj successively so that

i,nj+, = ei -{- v. For every real a &#x3E; 0 we have a  2". Therefore with the

above choice we have

It is enough to choose v large to get the conclusion of the lemma.

9. - Systems of homogeneous differential operators.

a) Consider a matrix B($) _ (b;;($))1;,i; of type q xp with

polynomial entries in the variables _ (1, ..., $N). We will say that the
matrix B($) is a homogeneous matrix if integers ri, I  i  q and s" 1 :::;: j  p ,
can be found such that for each choice of i and j, b;;($) is a homogeneous
polynomial of degree r; - s;. We will agree that the zero polynomial is
homogeneous of any degree £0. The integers ri, Sj are determined up to
an additive constant so that it is not restrictive to assume, if need be, that
Ti ¿ 0, s &#x3E; 0 for every i and j.

Let T = C[l’ ..., $,] and consider the map

Let be an element of Ker tB($) :
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If we set where vl-’*’) is homogeneous of degree 1 - ri,
we get that, for any is also an element of Ker ’B($).
It follows that in a Hilbert resolution

of the morphism IB($) (N = Coker tB) all matrices tC($), ... , ’D($) can be
assumed to be homogeneous. If JC== Co[$i, ..., $r] is the graded ring of
homogeneous polynomials in the variables $i , ..., $v , from a c homogeneous &#x3E;&#x3E;
Hilbert resolution of ’B($) we obtain therefore an exact sequence of multi-
graded X-homomorphisms

b) Let B($) === (bij($)) be a homogeneous matrix. Let x,, ..., XN be

cartesian coordinates in RN and let us consider the system of differential
operators with constant coefficients

i.e. B(D)u = f, where D = (alax,,..., O/OXN), in matrix notation.

We will call the system (1) a system of homogeneous differential operators.
We imbed RN into CN and we will consider in a neighborhood P of the

origin in RN a real analytic (valued in Cp) solution u of the homogeneous
equation

There exists a neighborhood U of U in CN so that u extends to a holo-
morphic function (valued in Cp) defined on U.

LEMMA 8. Let u == t( UI’ ..., 9 It,,) be a germ of holomorphic function in a

neighborhood of the origin in CN, solution of the homogeneous equation

where A’

Let

is a homogeneous matrix of type (ri, s j).
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be the Taylor expansion of uj at the origin, where Uk) is a homogeneous poly-
nomial of degree k.

Then for every l integer

is a polynomial solutions of equation (2).

PROOF. Let where cpk) is a homogeneous

polynomial of degree k, be the Taylor series of the left hand side. For every k
we must have

If u satisfies B(D)u = 0 then ggi (k) == 0 for every i and every k. Thus

choosing k = ki i such that ki -[- ri = I we get

LEMMA 9. With the same assumption of the previous lemma, set for any oc

with 0 C a ::;: 1

Then

i) ua is an entire f unction on CN

ii) ua satisfies the equation B(D)ux = 0

iii) given 8 &#x3E; 0 and K compact in CN we can f ind lo = 1,(8, K, ot) such that

PROOF. Only the first of these statements needs to be proved as the
given series is certainly the Taylor series of u(X. Let

Then there are positive constants c, R such that
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We thus have

The function r(x) is an increasing function of x for x &#x3E; 2; therefore

if al 2 2, and where [cxl] denotes the integral part of al. For fixed a with
Oal we thus have

As 1 -¿.oo, we have that clll(l- Sj + l)NIl -¿.1, Rl-Sj!l --&#x3E;. Rand

Izll-Sill - Izl uniformly on compact subsets K of CN, while

and therefore

because

Thus, uniformly for z in a compact subset K of CN, we have

This proves that the series of ua’s converges uniformly on K. As K

is arbitrary it follows that for any Lx, 0  a S 1, ua is an entire function.

LEMMA 10. (cf. [1]) With the same notations as in the previous lemmas,
let us assume that u is defined and holomorphic in a starshaped open set E
(at the origin) in CN.

Let K be a compact subset of E and let 8 &#x3E; 0 be given. We can find
ao = lXo(K, 8) &#x3E; 0 such that for 0  a S inf (1, oco) we have
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PROOF. Let y be the curve in the plane of the complex variable w con-
sisting of the two segments

where qo is fixed with n/2  cpo  n, and the arc

We will orient y counterclockwise. We have the Hankel formula

For a &#x3E; 0 sufficiently near to zero we have in E

Now for a ---&#x3E;- 0+, T(1 + oesl) -*I and the integrand in the right hand
side is well defined and uniformly bounded in module for Z E K and

converges almost everywhere (for w 0 0) to zero as oc --&#x3E; 0+. Therefore the

left hand side converges for cx -* 0+ uniformly to zero for z E K. This shows
that for a  ao(g, s) convenient, we have

for 1jp.
Let K be compact in B and let ð &#x3E; 0 be so small that K(3) (= the set

of points of CN where polycylindrical distance from K is : ð) is contained
(and compact) in E. ’Then for every multiindex fl one has for any holo-
morphic function v in E

where the norm is the sup-norm. From this remark and the previous lemmas
we deduce the following

PROPOSITION 16. Let a c RN be an open starshaped domain around the

origin. Let u be a f unction de fined in (1, real analytic (complex valued in Cp)
solution of the hoTnogeneou8 system of differential operators
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Let K be a compact of (1, let 8 &#x3E; 0 and let k ::2:: 0 be an integer. We can

find an entire function U in CN (with values in CP) solution of the equation
B(D) U = 0 and such that 

PROOF. Write or == U (Jh with ah cc or open and starshaped, or, c (Jh+l for
h= I

every h. Let zj == xj + iYj denote the coordinates in CN 1  j  N and
set for Th&#x3E; 0

For any choice of Th, C(ah, Th) is starshaped in CN. For any choice of
00

a sequence {Thih.1,2,... of positive numbers the set U C(ah’ Th) is an open
h=1

starshaped neighborhood of or in CN and when {Tj varies it describes a

fundamental system of neighborhoods of o’ in CN. Now u extends as a holo-
morphic function to an open neighborhood a of a in CN. By the above
remark we may assume a to be a starshaped open set B in CN. If 3 &#x3E; 0

is small then K(3) c E. By lemma 10 given E&#x3E; 0 taking ZI = UtX’ for oc

sufficiently near 0, we obtain an entire function, solution of B(D) TI = 0,
and such that 

If we choose s’&#x3E; 0 such that

conclusion.

we get the desired

c) We consider now a Hilbert complex in RN

We will assume that

i) the first operator S,,(D) is an elliptic operator;

ii) the operators Sj(D) are homogeneous i.e. the corresponding poly-
nomial matrices Sj() are homogeneous matrices (we will say that (1) is a

homogeneous Hilbert complex). With the same notation as in section 7 we

introduce the spaces Zi(,Q, gs.) with their Schwartz topology.
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PROPOSITION 17. Let E be open and starshaped around the origin in RN.
Under the above specified assumptions i) and ii) the restriction map

has a dense image, for every q &#x3E; 0.

PROOF. Let us first assume that q == 0. Let f E ZO(E, &#x26;s.). As So(D)
is elliptic, f is real analytic (theorem 1). The assertion follows then from

proposition 16.
Let now q &#x3E; 0. Since 8g = As,, we have an acyclic resolution of Eso in

the resolution

Therefore given t E Zq(E, &#x26;,.) we can find g E 8Sq-l(E) such that

Given K compact in E, given s &#x3E; 0 and k ¿ 0 an integer we can find

F E Zq(RN, Es) such that

This by virtue of proposition 16. Let x : E - R be a Coo function such

that X IK = 1, supp Xee E. Then also

This shows that 8,-,(D) Zg + F E Zq(RN, Eso) 8-approximates f on K
with all derivatives up to order k. This proves our contention.

Let j &#x3E;I

this is the space of j-th coboundaries.
..

COROLLARY. Let E be open and starshaped in RN..For any q &#x3E; 1 Bq(E, 6s)
is dense in Zq(E, 6s).

PROOF. Since RN is convex Zq(RN, 6s) = Bq(RN, 6s). By restriction
coboundaries go into coboundaries.
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d) We now assume that RN = Rn X Rk and that the Hilbert com-

plex (:L) is an elliptic and Cauchy-Kowalewska suspension of a Hilbert

complex (2) in Rn:

We will assume that (2) is a homogeneous Hilbert complex i.e. that the

polynomial matrices Aj($) corresponding to the differential operators A,(D)
are homogeneous. Then according to n. 4 d) examples a) and fl), the sus-
pension of a homogeneous Hilbert complex (2) by a « homogeneous » el-

liptic operator (example a)) or the a-suspension of (2) (example /?)) are

homogeneous Hilbert complexes, as one verifies directly. Moreover they are
Cauchy-Kowalewska and elliptic.

For cv open in Rn we are interested in the groups

where we have used the usual notations.

THEOREM 8. Let (2) be a homogeneous Hilbert complex in Rn. Let or

be open and starshaped in Rn . For any q &#x3E; 1 we have either Hq (a, AAO&#x3E; = 0
or dime Hq (a, A4.) =: oo.

PROOF. Let with Gh open starshaped

RN = Rn X Rk and let (x, y) = (Xl ... , 7 X., YI, ..., yk ) be cartesian coordinates.
For m c Rn, T &#x3E; 0, we set

for If (,) is starshaped then C(a), T) is starshaped. Given

a sequence {Ph} of positive numbers T,, &#x3E; 0 we have that is

a starshaped open neighborhood of a in RN and that when the sequence
fT,l varies these neighborhoods describe a fundamental system of neigh-
borhoods of (y in RN.

Consider now an elliptic Cauchy-Kowalewska «homogeneous » suspen-
sion (1) of the complex (2) to RN and let Q denote an open starshaped neigh-
borhood of J in RN.

Assume that dime Hq(a, AA) = d  oo. Then according to lemma 6

we can find a sequence {T,,I,=,,2,... with Th &#x3E; 0 such that, if we set
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we will have Bn c.Q, Vh, and

In view of proposition 17 we derive from proposition 15 that, setting

Set

Then G is a Frechet space. Set W = przq(D,&#x26;so)(G). Then W is the image
of a Frechet space by a continuous linear map.

By the assumption 
-

so that W must be a closed subspace of Zq(Q,88J. But Q is starshaped
and thus, by the corollary to proposition 17, W must be dense in Zq(Q, 880&#x3E;.
Hence W = Zq(Q, 6s,) and thus

Since .Q can describe (remaining starshaped) a fundamental system of open
neighborhoods of 6 in RN we conclude that

THEOREM 9. Let (2) be a homogeneous Hilbert complex in Rn and let (1 )
be any elliptic Cauchy -Kowalewska suspension of (2) in RN which is still a

honzogeneou8 Hilbert complex.
Let or be open and starshaped in Rn and let q ¿ 1. Necessary and suf-

f icient condition for H,7(a, AAo) = 0 is that

(A) for every open neighborhood Q of a in RN there exists an open

neighborhood B of a in Q such that

PROOF. We use the same notations as in the previous theorem.. The

sufficiency of the condition was established in proposition 10.
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To establish the necessity of condition (A) we apply lemma 6 and pro-
position 14 in view of the density theorem given by proposition 17.

10. - Study of some examples.

a) PrelinziJearies. Consider the complex space C2 where Zl == x -E- iy,
z2 = s -f-- it are complex coordinates and let

LEMMA 11. Let f be a holomorphic function in the region

Then f is also holomorphic in the region

In particular f is holomorphic in the region

PROOF. Because of the assumption f is holomorphic in the union of the
two polycylinders centered at (0, - ie/2)

Therefore the Taylor series of f centered at the point (0, - iE/2) con-
verges in the region

.

for any 0 with 0 £ 0  1 (cf. [10] pg. 34).
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As 0  E  1 we can take in particular 0 = e and we get over 8 = 0
the region for t ¿ 0

which is the region J. of the lemma.

LEMMA 12. Let ay be a non empty open subset of R3. No fundamental
system of neighborhoods of w in C2 can be all of open sets of holomorphy.

PROOF. a) Without loss of generality we may assume that the origin
0 = (0, 0) E cv. Let B &#x3E; 0 (may be R = + oo) be so chosen that the disc

{z, = 0, iz, I  R} is the largest disc of this sort contained in (o.

We can choose sequences of positive numbers R,, / B and sn%0
(n = 1, 2, ...) (with the precaution to take when = + oo, R,,  n and
en  l/n) such that 

Passing to a subsequence in the 8,, we may assume that

Let q = gg(z,, s) be a continuous function defined in Dn with (p &#x3E; 0. Set

We have An = A: r) A- while .A.: V An is a convex set and therefore a

domain of holomorphy.
Let 0 denote the sheaf of germs of holomorphic functions in C2. We

claim that: for any f c- F(A,., 0) there exist t + c- F(A’ , 0) and f - Er(A ,0)
such that

Indeed from the Mayer-Vietoris sequence we derive the exact sequence

the last 0 being given by
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fl) Let now S2 be an open neighborhood of (0 in C2. We can choose
a continuous function 99 defined on oi such that, for every n we have

We can choose an integer no == n,(S2) such that for n &#x3E; no we have

is contained in A-

and

is contained in An .

From the previous lemma and point a) of this proof we deduce that any
function f holomorphic in Q must be holomorphic at all points of the set

y) When B  00 we may assume that on the circle {z,, = 0, Iz, = BI
there is a point of 8cw and that this point is the point z, = 0, zi = R on the
real axis of the zl-plane.

Consider a function V(x) &#x3E; 0 defined and continuous on 0  x  B

having the property that

we have

Consider the strip
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and on A the region

As the segment y = s = t = 0, 0  x  B goes from the origin to a
boundary point of OJ, we can choose an open neighborhood S2 of m in C’6
with the property

Now cannot be an open set of holomorphy. Indeed if S2 is an open
set of holomorphy we can find no = no(Q) integer such that for n &#x3E; no
S2 contains the region J,,. described above. Now this conclusion is ruled out
by the condition Q r1 A c Ap 1. This completes the proof.

COROLLARY. Let Rn+k c Cn, n &#x3E; 2, k ¿ 1, and assume that Cn is the

minimal complex subspace containing Rn+k.
Let cv be any non empty open subset of Rn+k. 
No fundamental system of open neighborhoods of w in Cn can be all of open

sets of holomorphy.

PROOF. Let Zj = xj + iy" 1  n be complex coordinates in Cn. We
may assume that Rn+k = fZ E CnlYk+1 =... = yn = o}. We can also as-

sume that the origin 0 of the coordinates belongs to (t), 0 E (t).

Set C2 = IZ2 = ... == Zk = zk+2 = ... = zn = 0}, so that (ZI 9 Zk+l) are com-
plex coordinates on C2. Then Rn+k () C2 - --k+ll) E C2 lyk+ll = 0} = R3.

Let a = (o r1 R3. Then u =1= 0. If {U} is a fundamental system of open
neighborhoods of a) in Cn all of open sets of holomorphy then {U,,, n C2}
is a similar system of neighborhoods of Gin C2. This contradicts the previous
lemma.

As usual we denote by 0 the sheaf of germs of holomorphic functions on C2.
We have the following

LEMMA 13. Let B c A be open sets in C2. Assume that

Let a: B --&#x3E; C2 be the envelope of holomorphy of B.
Then a(-F3) c A.

PROOF. Let p be a point in the complement of A. We choose complex
coordinates z,, z, in C2 with p at the origin. Set Ui = fzi 0 o} i == 1, 2
and U = f U,, U2} as a covering of C2 - {o}; we also set ’B1 n A ==

{U,, n A, U, r) A) and flL r1 B = {U, r1 B, U2 () B) ; these are open cov-
erings of A and B as 0 ff A.
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For r ¿ 1, s ¿ I , 1/ZrZ, 1 2 c Zl(’LL7 0) the space of Chech 1-cocycles on the
convering ’IL with values in 0. By restriction these give cohomology classes
in ZI(’B.L n A, 0) and ZL(’LL n B, 0). We note now that the natural map
HI(’B.L m B, O) -&#x3E; HI(B, O) is injective; according to Leray theorem this is
a general property of the first Chech cohomology group. Choose ro  rl 

 ...  rd, so s,  ...  sci with r and s positive integers. By the assump-
tion the d -t-1 cohomology classes represented by the d + 1 cocycles
_,-riz-si, 0 C i C d, must become linearly dependent on H.I(B, 0) and thus
on H’(U r) B, 0). This means that there exist constants ci , 0  i  d

’ 

not all zero and holomorphic functions g, E F(U, r1 B, 0) j = 1, 2, such that

on U, r1 U2 r1 B. We may assume Cd =1= 0 (otherwise we replace d with the
maximal integer i for which Ci -=F 0). Chasing denominators we get

This shows that zld gl and z"g, are holomorphic on Ui n Band U2 n B
and thus are holomorphic on B. These functions therefore extend to holo-

morphic functions GI, G2 respectively on the envelope j5. We must have
moreover on B

But this shows that 0 tI n(B) because setting Zl = z, = 0 in the above
relation one would get cd = 0 and this is impossible.

We have thus proved that p 0 n(P). This being true for any p 0 A
in C2 we deduce that n(P) c A.

b) We consider now on R3 the (homogeneous Hilbert) complex

Suspending it in C2 = R4 with the complex (homogeneous Hilbert)

we get as a suspension the Dolbeault complex of C2 (cf. n. 4d) example y))
which is a new homogeneous Hilbert complex:
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For every open set (o in R3 we thus have 

THEOREM 10. For o-) oroen non empty and starshaped in R3 we have

PROOF. Let S2 be any open neighborhood. If dimc HI(ro, A,616- .,,)  o0

then by theorem 8 we must have Hl((o, Aal,,Z) = 0. By theorem 9 we can
then find an open starshaped neighborhood B of co in .,Q such that

The envelope of holomorphy B of B is « shlicht » i.e. it is also an open
subset of C2 as B is starshaped. By lemma 13 we should have B c 0. There-
fore ro would have a fundamental system of neighborhoods in C2 which
are domains of holomorphy. This contradicts lemma 12.

REMARK. Without invoking theorems 8 and 9 one can argue directly
through lemma 6, proposition 15 and using as approximation theorem the
Runge theorem of Laufer ([12] theorem 4.11) or the theorem of Behnke-

Stein [5] that says that an increasing union of domains of holomorphy
in C" is a domain of holomorphy.

c) More generally let us consider R,+k = Ck X Rn-k c Cn, n ¿ 2, k ¿ 1, 
Cn being the complex span of Rn+k. As in example y) of section 4 d) we
consider the Dolbeault complex along the fibers Ck of Rn+k

This we suspend in Cn by the Dolbeault complex along the fibers Cn-k of
Cn = Ck X Cwk. We obtain as a suspension the Dolbeault complex in Cn.
If 0 is the sheaf of germs of holomorphic functions in Cn we will have

We will have the following

THEOREM 11. For w open non empty and convex in Rn+k we have
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PROOF. Let with the usual nota-

tions. We can proceed by induction on n because of theorem 10. We will
assume that the origin of the coordinates 0 is in (1).

we set and if we set

and let respectively so

that we have an exact sequence of sheaves

We obtain an exact cohomology sequence

By theorem 4 we must have H2(W, Ocn) = 0. Therefore dimcHI(ro, Oc")
is infinite if dimc HI(W’, 0cn-» is infinite. But this is the inductive assump-
tion since (o’o 0 is convex in a space Rn+Z-1 c C’n-1 (we have for k = n -1
1 -n-2 and for lCkCn-1, Z=k).

d) We end this section with an example of a non convex open subset
of R7 c C4 which presents analytic cohomology in dimension 2 while the C°°
cohomology in that dimension vanishes.

We consider R7 = C3 X R c C4 and the Dolbeault complex along the
fibers C3 of R 7

We denote by &#x26;a, the sheaf of germs of C°° functions in R7 with jlf = 0.
We denote by Ai, the sheaf of germs of real analytic functions on R7 with
l’ f = 0. By OC3 we denote the sheaf of germs of holomorphic functions on C3.

We take cv = (C2 - {0}) X C X R. This is open but not convex.

PROPOSITION 18. We have for all j ¿ 2 

PROOF. Set V = (C2 - 101) x C, X = R. Then V is an open set of C3

which has a Stein covering by 2 open sets TI1 = IZI =A 0}7 U2 = {Z2 =A 0}
where zi, Z2’ Zl denote complex coordinates on C3.

Therefore HJ(V, Oc.) = 0 for j 2 2. We can then apply proposition 7

of [2] p. 208 and conclude that Hi(V X M, E8,) = 0 for j 2 2.
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Consider now the natural projection

and set, for convenience of notation d = C X R. We consider on a the
Dolbeault complex along the fibers C of C X R :

for q open in C X R. We denote by Zl’ Z2’ Z3’ Z4 = t + is complex coordi-
nates in C4. We are going to define a linear map

as follows.

then set

then set

LEMMA 14. we have

PROOF.

Let
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Then

we have

Thus

The second integral equals

Thus

Now

Therefore

Consider now the form on oi

We have

Consider the form

This is an element of C3,2(W) and j’lt = 0. Moreover if f (z,, t) is real an-

alytic then It has real analytic coefficients. Also note that Ci,8(J) ^ C"S((Y)dZ3,
03S(W) - CO,8(w)dzldz2dz3 for any s &#x3E; 0 are isomorphisms compatible with
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the operators ?’ on co and (1. Thus

defined by

induces a homomorphism

where A5, denotes the sheaf of germs of real analytic functions f on co or a

respectively with a’f = 0.

LEMMA 15. For A E C’, I (or) we have

PROOF. Indeed the right hand side equals

As a corollary we obtain

PROPOSITION 19. The linear map

is an injective map. In particular we have

PROOF. Indeed the map n*: 03,2(W) -¿.OI,I(O’) induces a homomorphism

Jl*: H2(W, A5,) -¿.HI((J, Aa,). This because it transforms forms with real

analytic coefficients into forms with real analytic coefficients; and forms

which are j’-closed into forms a’-closed and by lemma 14 it also transforms

forms which are J’-coboundaries into forms which are a’-coboundaries.
Because of lemma 15 we have (up to a non zero constant)
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This proves that -r* must be injective. Now a = C x R is starshaped
and therefore by theorem 10 Hl(f:1, Aä’) is infinite-dimensional. From this

the second assertion follows.
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