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The @ Topology on Abelian p-Groups (*).

G. D’ESTE

Introduction.

In this paper we investigate the topology of an abelian p-group G which
admits as a base of neighborhoods of 0 all the subgroups X of G such that
G/X is a direct sum of cyclic groups. We call this topology the @ topology
of G. If G with the @,-topology is a complete Hausdorff topological group,
then G is said to be @,-complete. The Hausdorff completion of G with
respect to the @, -topology is called the @ -completion of G and is denoted by G.

In section 1 we prove that the @,completion G of a p-group @ is a
@,-complete group; moreover the completion topology of G and its own
@ .-topology are the same. The group G coincides with the completion of G
with respect to the inductive topology if and only if G is thick.

In section 2 we study the class of @,complete groups. This class of
separable p-groups is very large, containing the groups which are direct
sums of torsion-complete p-groups, as well as the groups which are the
torsion part of direct products of direct sums of cyclic p-groups. But the
most interesting result in this direction perhaps is that every separable
pe-projective p-group is @,-complete, There are a lot of these groups:
in fact Nunke proved in [12] that, for every ordinal ¢, there exists a
pe-projective p-group which fails to be p*-projective for every v << 0. More-
over the class of @,-complete groups has many closure properties typical
of both the classes of pe-projective and pe-injective p-groups.

In section 3 we study the @.-completion with respect to basic subgroups
and we prove the inadequacy of the socle in determining the @.-complete
groups; finally we give some applications in connection with the class of
thick groups.

(*) Lavoro eseguito nell’ambito dei Gruppi di Ricerca Matematica del C.N.R.
Pervenuto alla Redazione il 6 Febbraio 1979 ed in forma definitiva il 18 Giu-
gno 1979.
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suggestions.

1. — The @, completion.

All groups considered in the following are abelian groups. Notations
and terminology are those of [4]. In particular p is a prime number and the
symbol @, denotes a direct sum of cyelic p-groups. If @ is any group and @'
is a pure subgroup of &, then we write G'<<G. A p-group G may be equipped
with various topologies. The p-adic topology has the subgroups p"G
with » € N as a base of neighborhoods of 0; the inductive topology has the
family of large subgroups as a base of neighborhoods of 0. Throughout
the paper, for every p-group @, the group G stands for the completion of G
with respect to the inductive topology. If A is a limit ordinal, then the
generalization of the p-adic topology is the A-adic topology. This topology,
studied by Mines in [11], has the subgroups p°G with ¢ << 1 as a base of
neighborhoods of 0. In [13] Salce has studied the A-inductive topology
introduced by Charles in [3]; a base of neighborhoods of 0 for this topology
consists of all subgroups @(u) where G(u)= {ze G: k(p"z)>0,, neN}
and u = (0.),y i an increasing sequence of ordinals o, << A for all ne N.
In the following, unless otherwise indicated, every p-group G is endowed
with the @,,topology. If we are dealing with some other topology, then
the group G equipped with its @.topology is denoted by (@, ®,).

Let G be a p-group and let L be a large subgroup of G. Since G/L = @,
([4] Proposition 67.4), L is open with respect to the @,-topology of G and
so the @, -topology is finer than the inductive topology. The next statement
immediately follows from this result and the fact that a p-group @ is thick
if and only if G/X = @, implies L<X for some large subgroup L of G.

PROPOSITION 1.1. Let G be a p-group. Then G is thick if and only if the
@ -topology coincides with the inductive topology and a thick group G is
@ -complete if and only if it is torsion-complete.

Since quasi-complete groups are thick ([4] Theorem 74.1, Corol-
lary 74.6; [1] Theorem 3.2), the quasi-complete and non torsion-complete
group constructed by Hill and Megibben in ([7] Theorem 7) is an example
of a group which is not @,-complete. Let us note the following faects.

1) A p-group @ is discrete in the @,-topology if and only if @ =@,
and @ is Hausdorff if and only if p*G = 0.
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2) Every homomorphism f: @ — H with ¢ ard H p-groups is con-
tinuous with respect to the @,.topologies. In fact if H/X = @,,
the same holds for G/f'~(X).

3) For every p-group G the @ -topology of G'/p»G coincides with the
quotient topology of the @, -topology of G. By property 2, it is
enough to observe that the natural homomorphism & — G/pe@G
is open.

Therefore in the study of the @.-completion it is not restrictive to con-
fine ourselves to separable non thick groups. In order to show that the
@.-completion of a p-group is @,-complete, we need two lemmas.

LEMMA 1.2. Let G be a p-group. Then the @ -completion G of G is a
p-group.

ProOF. By definition ¢ = ](131 G/X where X ranges over the subgroups X
of G such that G/X =@,. Let @ denote the p-adic completion of G.
Since @ = lim G/p~G where neN, there is a canonical homomorphism
@: G— @G such that ¢((gx + X)x) = (g,n + " &). for all (g9x + X)zre G
Since the completion of @ in the inductive topology is the group G = lim G/L
with L running over the large subgroups of @, there exists a natural homo-
morphism y: G — @ that takes (gx + X)x to (g, + L), for all (9x + X)x€ G
To show that G is a p-group, it suffices to check that v is an embedding,
and this clearly holds if ¢ is injective. We shall now prove that if
(9x + X)x € Ker ¢, then gy X for all X. To see this, fix X. Let meN;
if Y=XnNpmG, then G/Y =@,. By hypothesis g ., € p™G and, by the
choice of Y, gy + p™@ = g,n; + p™G; consequently gy € p@. On the other
hand gx + X = g» + X and so the height of gx + X in G/X is at least m.
Since m is any natural number and G/X = @,, we conclude that gxe X,
as claimed. This completes the proof that G is a p-group. O

From now on we shall identify ¢ with the subgroup y(G) of G and, if ¢
is separable, then we shall view @ as a subgroup of G.

LeEMMA 1.3. Direct summands of @.complete groups are @ ,-complete.

PrOOF. Let G’ be a direct summand of a @,-complete group ¢. Since
the inclusion G'— G is continuous, every Cauchy net in @' is a Cauchy
net in G. Therefore the hypothesis that G is @.,-complete and the con-
tinuity of the projection of G onto G' assure that G’ is @,-complete. O

We are now ready to establish the main result of this section.

THEOREM 1.4. Let G be a p-group. Then the @ ,completion y of @ is
@ -complete.
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Proor. Without loss of generality we may assume that G is separable.
For every ordinal A we define a group G as follows: if A =0, then @), = @G;
if A>0 and A is not a limit ordinal, then G, is the @,completion of G,_,;
if A is a limit ordinal, then G, |J Gs. To prove the theorem, we shall
use three facts: o<i

(i) The @,-topology of G is finer than the completion topology.

Let 3 be the family of all subgroups X of G such that G/X = @,.

Then G = %ig}G/X and G with the completion topology is a topological
B
subgroup of the group [] G/X equipped with the product topology of the
XePH

discrete topologies on every G/X. Thus a base of neighborhoods of 0 for
the completion topology of @ consists of all subgroups U,= G N [] G¢/X
where F is a finite subset of $. Since XeB\F

GUu,~G+ [] ¢/x/ ] ¢/x< HG/X/ 1 ¢/x =a.,
XeB\F XeR\F XeP XeB\F

every U ,is a neighborhood of 0 for the @, -topology of &, and so (i) is proved.
(ii) @, is a subgroup of G for all A.

We shall prove by transfinite induction that Glg(j for all 2. If =0
the assertion is obvious. Let 4>0 and assume G,<G for every o << A.
If A is a limit ordinal, then evidently G,1§@. If A is not a limit ordinal and
A = o + 1, then the hypothesis that G < Gs <G implies that G <1 <Gs = G.
Since Gs<Gi, we get Gy = G <G, and therefore G:<.(, as required.

(iii) G, is a direct summand of G, for all A>1.

Assume by transfinite induction that G, is a summand of G, for all
1<o< A Write Gs = G,@® G, for all 1<o<A. If 1 is a limit ordinal,
G, is a direct summand of G;, because G; = | G5 = G1®( U G;) It 2

o<i 1<o<i

is not a limit ordinal and A = o 4+ 1 then, by the induction hypothesis,
Ge=6G® G;. Let #n: (G5, ®,) — (G4, B) be the canonical projection where
(Gy, B) is the @.,-completion of G&. To check that s is continuous, let U
be an open subgroup of (G4, B). Then, by property (i), there is some W< U
such that G,/W = @®,. Since Go/n (W) =G d G:,/W(Ja G; =~ G,|/W= @,
we see that s is continuous. This result guarantees the existence of a homo-
morphism 7 making the following diagram commute

(G5, ®,) —> (G4, T)

(Gi-, ‘G) — (G17 'G)
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where the vertical maps are the natural ones and (G., BG) is the @,-comple-
tion of (G4, ®P.). Consequently G; = G, @ Ker 7 and so G, is a direct sum-
mand of @, as claimed.

We can now show that G = @, is @,.-complete. Suppose this were not
true. Then, from Lemma 1.3 and property (iii), we deduce that G; is not
@.-complete for any A, and therefore the groups @, are all distinct. But
this is clearly impossible, because, by property (ii), they are all subgroups
of G. This contradiction establishes that G is @,complete and the the-
orem is proved. O

The next proposition describes the topological structure of the @®.-com-
pletions.

PROPOSITION 1.5. For every p-group G the @.-topology of G coincides
with the completion topology.

ProOF. It is not restrictive to assume p*G = 0. As before G denotes
the completion topology of G. By property (i) of Theorem 1.4 we know
that the @,-topology of G is finer than . On the other hand, by a well
known result of general topology ([2] Chapter III §3, No. 4 Proposition 7),
a base of neighborhoods of 0 for the completion topology T is formed by
the closures in G with respect to G of the neighborhoods of 0 for the
@.-topology of G. Therefore, to end the proof, it is enough to show that if U
is an open subgroup of (&,®,) and U’ = U N @, then the closure V of U’
in (G, B) is a subgroup of U. To prove this, let {g;} be a Cauchy net in
(@, ®,) with g, U’ for all . Since the natural embedding G — G is con-
tinuous with respect to the @®.-topologies, {g,} is a Cauchy net in G, ®,).
Thus, by Theorem 1.4, it converges to some z in (&, ®,) and clearly z € U,
because U is closed in (&, ®,) and g, U for all 4. Since G is smaller than
the @,-topology of @, the given net converges to x in (G, B); so ze V, by
the definition of V. This means that V< U and therefore the ®.-topology
of G coincides with the completion topology, as claimed. 0

COROLLARY 1.6. Let G be a separable p-group. Then G is a pure topological
subgroup with divisible cokernel of a®,-complete group.

Proor. By Theorem 1.4 and Proposition 1.5, ¢ is a pure dense topo-
logical subgroup of the @.complete group . Consequently & is a dense
subgroup of ¢ equipped with the p-adic topology. Hence G/@G is divisible
and the proof is complete. O

Before comparing the @,completion and the completion with respect
to the inductive topology, we prove the following lemma.

17 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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LEMMA 1.7. Let G be a separable p-group and let G <X <@. Then G<X
and X <@.

PrRoOF. Since G<X, we may assume G<X. To show that (<X,
select e G. Then, by Proposition 1.5, there exists a net {g,} with g,c &
for all ¢ which converges to § in (&, @®,). Since {gl} is also a Cauchy netin
(X,®,) and all the canonical maps G — @, G— X, X — X are continuous
with respect to the @®,-topologies, g is the limit of {g,} in (X ®.) and so
geX This proves the inclusion G<X. To see that X<G take T e X.
As Dbefore, there is a net {«,} with »,€ X for all ¢ which converges to Z in
(X ®.). Since {z,} is a Cauchy net in (@, ®,) and all the natural embeddings
X — X, G — X are continuous with respect to the @,,-topologles, z is the
limit of {x,} in (G,®.) and so ZeG. Consequently X <@ and the lemma
is proved. g

ProPOSITION 1.8. Let G be a separable p-group. The following facts hold:

(i) If G is not thick, then the group G/G has uncountable rank.
(i) If G is mot @, -complete, then the group é/G may have finite rank.

PROOF (i). We first show that ¢« (. Since @ is thick, it has the same
inductive and @,-topologies. Moreover, by ([13] Theorem 2.3), the indue-
tive topology of G induces on @ its own inductive topology. On the other
hand, by Proposition 1.5, the @,-topology of G induces on @ its own
@.-topology. Therefore, if G is not thick, then ¢ must be a proper sub-
group of G. We now prove that G/G is uncountable. Suppose this were
not true. Since G is a pure subgroup of G with countable divisible cokernel,
we deduce from ([10] Theorem 3.5) that @ is thick, and this is impossible.
In fact G is @,complete, but it is not torsion-complete. This contradic-
tion shows that G/G is uncountable.

(ii) Assume the rank of é/G is not finite. Choose a pure subgroup H
of ¢ such that @ <H and G/H ~ Z(p*). Then Lemma 1.7 tells us that H = @.
Since the rank of H /H is 1, the proof is complete. O

2. — @ complete groups.

In this paragraph we study the @,-complete groups. As the results of
section 1 suggest, the class of ®,-complete groups is very large.
First we prove a statement that we shall often use.

ProOPOSITION 2.1. Direct sums of @ complete groups are @ ,-complete.
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ProoF. Let @ = @ @G, where G, is @ .,-complete for all 7. To show that G
is @.-complete, we notice the following properties:

(i) The groups X = @ X, where X, <@, and G,/X, =@, for every ¢
i€l

are a base of neighborhoods of 0 for the @, topology of G.

This assertion is obvious.

(ii) @ is a closed topological subgroup of the group H G, equipped
i€l

with the box topology of the @.-topology on each component.

We recall that the box topology considered on [[ &, admits the sub-
iel
groups of the form nXi with X, <@, and G,/X, =@, for all ¢ as a base
iel
of neighborhoods of 0. Thus the conclusion that G is a topological sub-
group of H @, follows from (i). To complete the proof, let § = (g,);; With

iel
g; € G, for every i be an element of the closure of @ in H G,;. Let S be the
iel
support of g, that is let 8§ = {ieI:g, 0}. Then for each i€ S we can
choose a subgroup X, of G; such that g, ¢ X, and G,/X, = @,. Our assump-
tion on § assures that e G + (HX, + 11 G,-); consequently S is finite
'ieS ieI\S
and so § € G. This proves that @ is a closed subgroup of n G, as required.
iel
The hypothesis that every @, is @.,-complete implies that [] @ with
R i€l

the box topology is complete ([4] Proposition 13.3). Hence, by property (ii),
G is @.-complete. O

COROLLARY 2.2. Direct sums of torsion-complete p-groups are @ ,complete.

ProOF. Since torsion-complete p-groups are @,-complete, the corollary
follows from Proposition 2.1. O

We shall obtain another large class of @.-complete groups by means
of the next lemmas.

LEMMA 2.3. Let G be a separable p-group and let G' be a subgroup of G
with bounded cokernel. Then G is @ -complete if and only if G' is @ -complete.

ProoF. We first show that G’ is a topological subgroup of G. Let X
be a subgroup of G’ such that ¢'/X = @,. Since (G/X)/(G'/X) =~ G/G" is
bounded and ¢'/X = @,, we have G/X = @,. This proves that the restric-
tion to G’ of the @, topology of G is finer than the @.topology of G'.
Therefore the two topologies coincide, because the natural injection G’ — ¢
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is continuous. Assume now that G is @.,complete. Since G is a closed
topological subgroup of G, we conclude that G' is @,complete. Conver-
sely, suppose G' is @.-complete. Since G' is an open complete topological
subgroup of @, evidently G is @,-complete and the proof is finished. O

LeEMMA 2.4. Let G be a separable p-group and let P be a bounded subgroup
of G with separable cokernel. Then G is @.-complete if and only if G/P is
®.-complete.

Proor. Assume first G/P is @,complete and choose n e N such that
p"P = 0. Let us verify that G<G + G[p"]. Take je §; then there is a
net {g;} in G which converges to § in G. The hypothesis that G/P
is @.-complete guarantees that {g, + P} has a limit g + P e G/P. Since
the canonical homomorphisms G/P — p@ and p"G — G are continuous,
{pg.} converges to p"g in @ and obviously p"§ = p"g. Thus e G + G [p"]
and therefore <@ + G[p"]. By Theorem 1.4 and Lemma 2.3, this im-
plies that G is @.-complete. Conversely, suppose G is @.-complete; then
Lemma 2.3 says that p"G is @.,complete. Since (G/P)/(G[p"]/P) =~ p"@,
the first part of the proof assures that G/P is @-complete and the lemma
follows. U

Observe that the class of @,-complete groups is a full pe-class in the
sense of [6]. Indeed, by Proposition 2.1 and Lemma 2.3, the class of
@®.complete groups is a pe-class. Moreover, if G is separable and G/P is
@.-complete for some P <G[p], then, by Lemma 2.4, G is @,-complete.

We can now prove the following

THEOREM 2.5. Let o be any ordinal. If G is a po-projective separable
p-group, then G is @ ,complete.

Proor. The proof is by induction on ¢. If o<w the assertion is ob-
vious, because G = @,. Let ¢ > w and assume the assertion is true for all
A<o. By ([4] §82 Ex. 13), G is a summand of the group Tor (H,, @),
where H; is the generalized Priifer group of length ¢. To see that G is
@,-complete, we first suppose ¢ is a limit ordinal. Then, by ([4] §82 Ex. 2
and 8; Lemma 64.1) and by the induction hypothesis, G is a summand of
a direct sum of @,-complete groups. Hence the conclusion that @ is
@®.complete follows from Lemma 1.3 and Proposition 2.1. Assume now o
is not a limit ordinal. From the exact sequence

0 —>p°1H; >~7Z(p) > Hs > Ho[p°'H ~Hs_, >0,



THE @,TOPOLOGY ON ABELIAN P-GROUPS 249

one obtains the long exact sequence

0 — Tor (Z(p), ) =~ G[p] — Tor (Hs, G) % Tor (Hs_,, G) %
—>Z(p)® G ~GpGd >HiQ G —>Hs,Q G—0.

Thus the following sequences are exact:

1) 0 — G{p] »>Tor (Hs,G) —Ime—0,

(2) 0 —>Imge —Tor (Hs,,Gd)—>Imyp —>0.

Evidently in (2) the group Tor (Hs_,, G) is @.,complete, by the induction
hypothesis, and Im y is bounded; therefore, by Lemma 2.3, Im ¢ is ¢,com-
plete. From Lemma 2.4 and the exactness of (1), we deduce that Tor (Hs, G)
is @,-complete and, by Lemma 1.3, the same applies to its summand ¢. [

Proposition 2.1 indicates that the class of ®,-complete groups has a
closure property analogous to a closure property of the class of direct sums
of cyclis groups. This projective property can be regarded as dual of the
following injective property, which is similar to a closure property of the
class of torsion-complete groups ([4] Corollary 68.6).

PROPOSITION 2.6. The torsion part of a direct product of @®,-complete
groups is @ complete.

ProOF. Let G = t(H Gi) where G, is @,-complete for all i. Since G,§@i

el
for every 4, it is easy to check that @ is a pure subgroup of the torsion-
complete group 7 = t(H @i). Therefore, by the first part of Lemma 1.7,

i€l
we may assume G<T. Let now ¢ = (t,),;€ G with ¢,€ G, for all . Then ¢
is the limit of a net {g,},.; where g, = (g,;);;€ G and g,;€ @, for all i1,
jed. Fix ieI; to end the proof, it is enough to show that ¢, G,. Since
G<T and the canonical projection T — G, is continuous, {¢.1}ies cONVerges
to t, in @,. From the hypothesis that @; is @,-complete and g,; € G, for
all j, we get ¢, G;,. This completes the proof. ]

As the next corollary shows, Proposition 2.6 gives some information
about @ complete groups which is not contained in Corollary 2.2 and
Theorem 2.5.

COROLLARY 2.7. There is a @, complete group which is not a direct sum
of torsion-complete p-groups and po-projective separable p-groups.
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Proor. Let G = t(n G,,) where G, = (P Z(p*) for all n. By Proposi-
neN k>n
tion 2.6, G is @.-complete. We observe now the following facts:

(i) G is not a direct sum of torsion-complete p-groups.
This can be easily proved.

(ii) A proper pe-projective separable p-group G’ with ¢ > w cannot
be a direct summand of G.

Agssume the contrary. Then G’:t(H C’n) where C, =@, for all »
neN
([9] Theorem 3). Since o> w, there is no k€N such that p*C, =0 for

almost all n. Hence, by ([8] Proposition 1.6), G’ has an unbounded torsion-
complete group T as a summand, but this is impossible. Indeed, by ([12] Pro-
position 6.7), a po-projective p-group cannot contain an unbounded tor-
sion-complete group. This contradiction shows that (ii) holds.

The corollary is now obvious. O

Let us note that the group G defined in the proof of Corollary 2.7 is
pure-complete ([9] Theorem 2). Another application of Proposition 2.6
enables us to characterize all the @, -complete groups.

THEOREM 2.8. Let G be a p-group. The following statements are equivalent:
(i) G s @,-complete.

(ii) G is a closed topological subgroup of the torsion part of a direct
product of a direct sums of cyclic p-groups.

Proor (i) = (ii). By hypothesis ¢ = lim G/X where 3B is a base of
XeB '
neighborhoods of 0 for ¢ and G/X =@, for all Xe B. Let Il = [[G/X
XeHP
and let T' = ¢(II). If & and T are equipped with the @,-topology and II

is regarded as the topological product of the discrete groups G/X, then all
the natural inclusions in the commutative diagram

G
N
¥ N

T—II

are continuous. Evidently the groups of the form j-)(U) where U ranges
over the open subgroups of II are a base of neighborhoods of 0 for @. Thus
the same holds for the groups ¢-1(V) with ¥ running over the open subgroups
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of T. Hence G is a topological subgroup of T. Since G is @,-complete,
@ must be closed in T and (ii) is proved.

(ii) = (i). This immediately follows from Proposition 2.6. O

It is now clear that the class of @,-complete groups is the smallest class
of separable p-groups C with the following properties:

(1) 0 C and a group isomorphic to a member of C belongs to C.
(2) If S<0O[p] and G/S€eC, then GeC.

(3) C is closed under direct sums and the torsion part of a direct
product of groups of C belongs to C.

(4) C contains every group that, endowed with its @ topology, is a
closed topological subgroup of a group determined by the above
conditions.

3. — Some applications.

In this last section we discuss some consequences of the preceding results.
The next proposition investigates the connection between &®.,-complete
groups and basic subgroups.

ProprosITION 3.1. The following facts hold:

(i) If two separable p-groups have isomorphic @,-completions, then they
have isomorphic basic subgroups.

(ii) There emist 2™ pairwise nonisomorphic @,-complete groups with
ssomorphic basic subgroups.

PROOF (i). Let & and H be separable p-groups such that ¢ ~ H. Since G
" is isomorphic to H, we conclude that ¢ and H have isomorphic basic
subgroups.

(ii) Let B = @D Z(p"). We want to prove that there exist 2% pairwise
nz1 _
nonisomorphic @,-complete subgroups of B whose basic subgroup is B.
To see this, let I be a set of cardinality 2% and let {X,},.; be a family of
subsets of positive integers such that if i j then (X\X;) U (XN X))
is not finite. Let G, — t(nZ(p"))(-B(@Z(p”)) for all 4; then every @, is
nex; n=1
n¢X¢
a @.-complete group admitting B as a basic subgroup. To complete the
proof, it is enough to show that if | X\ X;| = ¥, then @, is not isomorphic
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to G;. Suppose this were not true. Then, by ([4] Theorem 73.6; Lemma 71.1 )
there exist an isometry ¢:G[p]— G;[p], a finite subset F C N\ X, and

some ke N such that qp(pk( QZ(p"))[p])<t( ]_}[KZ(p")) @ ((—BFZ(p")). Con-

sequently there is a finite subset F'C X, such that X\ F'C F U X,, while,
by hypothesis, X\ X, is not finite. This contradiction proves that @, is
not isomorphic to G;, as claimed. O

The following statement shows that socles, viewed as wvalued vector
spaces, do not give much information in the study of @®,-complete groups.

ProposITION 3.2. The following facts are true:

(i) There exists a @,-complete group whose socle is tisometric to the
socle of a mon @ ,-complete group.

(ii) There exist nonisomorphic @ ,complete groups with isometric socles.

ProoOF (i). Let G be a separable p-group which is neither @.-complete
nor thick (for instance, let G be an infinite direct sum of quasi-complete
non torsion-complete p-groups) and let § = G[p]. Singe é§6—¥, we can choose
zeG[pI\G. Let y be an element of order p? of G and let 2 = + y. Take a sub-
group A of G such that (@, 2) <A and 4/G ~Z(p*). Since A <G and A[p]< S8,
there exists a pure subgroup H of G such that A<H and H[p] = 8. We
want to prove that H is not @.-complete. Assume the contrary. Since
G <H <G and, by hypothesis, H is @,-complete, Lemma 1.7 implies that ¢
is a pure subgroup of H. Using this fact and the equality H[p] = § = G[p],
one obtains G = H. This is a contradiction, because x¢ &, ye H and
z=ua +yeH. Hence H is not @, complete and (i) is proved.

(ii) A result of ([5] Corollary 1) guarantees the existence of two non-
isomorphic groups &; and G, with isometric socles such that G, is a direct
sum of torsion-complete p-groups and @, is a pe+l-projective p-group. On
the other hand, by Corollary 2.2 and Theorem 2.5, ¢, and @G, are @,com-
plete. Therefore (ii) holds and the proof is finished. 0

Now we point out some relations between @,-complete groups and thick
groups. As Proposition 1.8 suggests and as we shall see in the following,
these two classes have completely different properties.

ProprosITION 3.3. Let G be a separable p-group which is neither @ -com-
plete nor thick. The following facts hold:

(i) There ewists a thick group K such that K + G=G; ENnG=@G
and K<G.
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(ii) Condition (i) does mot necessarily determine the group K up to iso-
morphisms.

Proo¥ (i). By Corollary 1.6 we can choose a subgroup K of G such
that G/G® K/G = G/G. Therefore K + G =G; KNG =@ and K<G.
It remains to check that K is thick. Since @ <K <@, Lemma 1.7 implies
that G<X and clearly G = K. Consequently ¥ — K and so, by Propo-
sition 1.8, K is thick, as required.

(ii) Let G = G, ® G, where ¢, = (PZ(p") and G, is a quasi-complete

n>1

non torsion-complete group whose basic subgroup is G, ([4] § 74 Example).
Then @ is neither @,-complete nor thick, G = @, ® G, and a suitable choice
for K is that of K = G, ® @,. We shall prove that there exist 2% pair-
wise nonisomorphic subgroups of G satisfying condition (i). To see this,
let I be a set of cardinality 2%. Take a subgroup H of @ with G <H and
elements @,, y., € G/G, where ne N, with the following properties:

1) G/¢ =<z,:neN)®H/G@ where {w,:neN) ~ Z(p~), pz, = 0 and
PLpyy = ®, for all neN.

2) EK/G=@Ym:neN) where (y;.: n€ N> =~ Z(p®), py;c = 0 and
m PYins1 = Yin for all neN; ¢€1,

For every J C1I, let K, be the subgroup of G such that G<K, and

KJ/G:®<?/M +mn:InEN>®®<yin:n€N> .

ie ieIN\J

We claim that every K, satisfies condition (i). In fact let J be any subset
of I. Since K,/G + G/G = (@, ym:neN,ieI> + H/G=K/G® GG =G/q,
evidently K, + ¢ = G. The definition of K, guarantees that K, <@, be-
cause G< K, and K,/G is a divisible subgroup of G/@. To verify that
K,N G = @, select ze K,/G N G/G. Then there exist ve H/G; n, n,eN
and a, a,€Z where 0<a, a,<p and a, =0 for almost all ¢ such that

e= Yy, +o,) + Say, =az, +v.

ied ieIN\J

Since K/G N G/G = 0, we get a,= 0 for all 4; hence z= 0. Therefore
K,/G N G/G@ =0 and so K, N G = G. Consequently every K, satisfies con-
dition (i) and it is easy to show that the groups K, are all distinct. To end
the proof, we apply an argument similar to that used in the last part of
([4] Theorem 66.4). Let B be a basic subgroup of &; then B is countable.
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Since |Hom (K, G)| < |[Hom (B, G)| = 2%, the subgroups of G isomorphic
to K are at most 2%, This means that 22¥ groups of the form K, are pair-
wise nonisomorphic and so (ii) holds. O

From Propositions 1.8 and 3.3 we deduce that, if G is neither @.-com-
plete nor thick, then there exist a lot of thick groups between & and G.
The following result indicates that, under the same hypotheses on @, there
exist also a lot of @,complete groups between G and G.

PROPOSITION 3.4. Let G be a separable group which is neither @,-complete
nor thick and let K be as in Proposition 3.3. The following are true:

(i) There exists an increasing sequence of @ ,-complete non thick groups

{X,.} with G< X, for all n such that G =] X..
neN

(ii) There exists an increasing sequence of mon @,-complete non thick
groups {Y,} with G<Y, for all n such that K =|J Y,.
neN
Proor (i). Let X, = & and let X, = ¢ + G[p*] for all n>1. Then, by
Lemma 2.3, every X, is @-complete and the other properties clearly hold.

(ii) Under the hypotheses of (i), let ¥, = K N X,, for all n. Then {Y,}

is an increasing sequence, G <Y, for every n and K =] Y,. To prove (ii),
neN
fix neN. Since G<Y, and é%Yn, Lemma 1.7 assures that Y, is not

@®.-complete. Moreover, since Y,/G is bounded and, by hypothesis, G is
not thick, it is easily seen that Y, is not thick. This completes the
proof. O

The next statement gives some properties of ®,-complete groups and
thick groups with respect to intersection and group union.

ProprosITION 3.5. Let G be a separable p-group. The following facts hold:
(i) Let X be a pure subgroup of @ and let X = X, where X, <@ for

all ©. If every X, is @ ,complete, then X is @ ,complete; if every X,
18 thick, then X is not necessarily thick.

(ii) Group umions of @.,-complete or thick subgroups of G are not neces-
sarily @,-complete or thick.

ProOF (i). Suppose X, is @.,-complete for every ¢. Then, by the first
part of Lemma 1.7, X <X, for all 4; hence X is @,-complete, as claimed.
Let now X be a @,complete group which is not thick and let G = X.
Evidently X is the intersection of all X,<G such that X <X, and G/X,; ~
=~ Z(p™). Since all these groups are thick ([10] Theorem 3.5), (i) is proved.
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(ii) First assume @ is not @,-complete. Then G = |J G[p"] and every
n>1
Gp"] is @,complete. Finally let G = P Z(p"). Since G[p"] is thick for
n>1

all n>1 and @ is not thick, (ii) follows. O]

This last proposition shows that in a @,complete group the cardinality
of nondiscrete @,-complete subgroups and that of non @®.-complete thick
subgroups may be as large as possible.

PROPOSITION 3.6. There exists a @.-complete group G with the following
properties:

(i) @ has 2!l @, -complete nondiscrete mon thick subgroups.

(ii) G has 2! non @,-complete thick subgroups.

PrOOF. We claim that the @,-complete group G = t(l—[G") where
G, = @Z(p*) for all n satisfies the above conditions. neN

k=1

(i) View @ as the group of all bounded maps f: N —[J G, such that
neN
f(n) € G, for every neN. If fe @, let Z(f) = {n e N: f(n) = 0}. For every

free ultrafilter ¢ on N, let G, be the @,-completion of the group
Z, = {feG: Z(f)e ¢}. Fix ¢; since Zp< G, the first part of the proof of
Lemma 1.7 guarantees that Gy, <G and clearly Gy +# @., because Xy~ D,.
Also note that every G, is a summand of Gy; consequently G, is not thick.
The next step is to show that if ¢ = y, then Gy~ Gy. To this end, pick
Feg\y. Let g be an element of G[p] with the property that Z(g) = F
and g(n) e G\ pG, for every ne N\ F. Obviously g€ Gy, but we claim
that g ¢ G,. Suppose this were not true. Then, from the hypothesis that
g € Gy, we deduce that g belongs to the closure of X, with respect to the
@®.-topology of G. Hence g = ¢, + pg, for some g, € =, and g,€ G. Since
Z(g9) ¢ v and Z(g,) € p, there exists n e Z(g;)\Z(g) and 50 0 5% g(n) = pgs(n),
contrary to the choice of g. This contradiction proves that g¢ Gy; thus
the groups G, are all distinct. Since N hag 22% free ultrafilters and |G| = 2%,
(i) holds.

(ii) This property immediately follows from the proof of (ii) in Pro-
position 3.3.

Indeed all the groups K, used in that proof can be embedded in the
group T :t(H(Z(p")GBZ(p"))) and it is easy to see that G has a direct
n>1
summand isomorphic to T. O
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