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Group Law on the Intersection of Two Quadrics

RON DONAGI

Introduction.

In [7] Reid studied linear subspaces contained in the intersection X of
two quadratic hypersurfaces Q, Q’ generally situated in a complex pr4jec-
tive space of arbitrary dimension. His main result can be described as fol-

lows : the maximal linear subspaces contained in X = Q r1 Q’ c P2n+1 are
(n -I)-dimensional; the variety A parametrizing all subspaces pn-l C X is
an n-dimensional abelian variety, y in fact the Jacobian of a hyperelliptic
curve E (of genus n) which arises naturally from the data in the pencil of
quadrics containing X. His proof gives a birational map from Sn E, the
n-th symmetric product of E, to A, identifying A birationally as an abelian
variety; and concludes by computing a numerical invariant which forces A
to be an abelian variety biregularly. The subject is also treated briefly
in [8], en route to a study of the intersection of 3 quadrics.

The case n = 2 (the « quadric line complex))) is studied thoroughly in
the old literature (Kummer, Klein, C. Segre, ...) in connection with Kummer
surfaces, line geometry, cyclides ... More recently it appeared (e.g. [6]) as
a moduli space for vector bundles on an algebraic curve. The isomorphism
of A with J(E) (n = 2) is also proved there.

The purpose of this paper is to exhibit the group law on A explicitly
using geometric constructions analogous to the standard addition on an
elliptic cubic plane curve. Following preliminaries on linear spaces in quadrics
(Section 1) the construction is carried out in two steps in Section 2. First

a partial addition is defined (where one of the terms is in special position)
using the inclusion relations of quadrics and linear subspaces (Section 2.2).

(*) Preparation of this paper was partially sponsored by NSF Grant

MCS77-03976.
Pervenuto alla Redazione il 26 Ottobre 1978 ed in forma definitiva il 16 Mag-

gio 1979.
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It is extended over all of A X A by a decomposition lemma (2.6) allowing to
break a general subspace into sum of ones in special position. A surprisingly
important role in making this work is played by the right choice of origin
for the group, as explained in Section 2.

In Section 3 we reprove the standard isomorphisms of A with J(E)
and J(X), the middle-dimension intermediate Jacobian of X. The explicit
group-law allows us to construct directly an isomorphism

(without passing through SIE which is birationally equivalent to both) and
to factor the isomorphism

through rational equivalence, showing that on X all cycles (in the middle

dimension) are generated by subspaces (mod rational equivalence) and that
on the set of subspaces, rational equivalence is generated by the equations
of the group-law. we conclude with an analogue of Torelli’s theorem.

The direct geometric approach to the problem developed out of my
thesis [3] which dealt with a skew-symmetric analogue of the intersection
of quadrics. I would like to thank Joe Harris and my advisor Phil Grif-

fiths for introducing me to the subject and discussing some of the questions
involved. My thanks also to H. Knorrer who read an earlier version and
made some valuable remarks, and to the referee for pointing out some
inaccuracies and suggesting improvements, especially in §§ 1.3, 2.3.

1. - Spaces in quadrics.

The material in this section is rather standard. Most of it can be found,
from slightly differing viewpoints, in either [1], [5] or [7].

Let TT be an n-dimensional vector space over the field C of complex
numbers. A quadric Q in pn-l == P(V) is given by a symmetric n X n

matrix M(Q). The rank r of Q is that of M(Q), and we let

Q is a cone over a smooth quadric in pr-l, with a pn-r-l for vertex. We
shall be interested mainly in quadrics which are smooth (r = n) or have
a unique ordinary double point (r = n - 1), so we shall call these quadrics
« general ».

The symmetric quadratic form determined by M(Q) defines a linear

map V -B V* which is an isomorphism for Q nonsingular. After projectivizing,
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this associates to a point p E P(F) its polar p.L, or (p’)Q, which is a point
of P(V*) or a hyperplane in P(V). For an arbitrary Q this is still defined

for p not in the vertex of Q. The hyperplane (p’)Q contains the point p if
and only if p E Q, in which case (p’)Q = TpQ, the projective tangent space
to Q at p. We note that (p-L)Q depends linearly on Q, so that when Q varies
in a pencil (and p is fixed) the points (p.L)Q E P(V*) trace out either a line
(general case) or a fixed point. The latter happens if and only if p is in the
vertex of one of the quadrics, as can easily be verified.

1.1. One quadric.

We discuss the existence of linear spaces contained in a quadric Q,
generalizing the two families of lines on a smooth quadric surface in P3.

LEMMA 1.1. Let V be a vector space of dimension 2n + 2, respectively
2n + 1. Let Q be a general. quadric in P(V). The maximal linear subspaces
in Q have dimension n (respectively n -1 ). Their collection can naturally be
made into the underlying set of an algebraic variety S of dimension (n + 1)n/2.

PROOF. Q smooth. Take p E Q. Any linear subspace s c Q through p
is contained in the intersection

of Q with its projective tangent space at p. Q’ is a corank-one quadric in
T pQ with vertex at p, so it is a point-cone over a smooth quadric Q" in p2n-I
(respectively, P2n-2). Thus the maximal linear subspaces in Q have dimen-
sion one larger than those in Q", proving inductively the first assertion.

Let G(k, l) denote the Grassmannian of subspaces Pk-1 in a fixed PI-11.

The subset

(respectively, /S(Q) c G(n, 2n + 1)) of the subspaces on which the quadratic
form associated to the matrix M(Q) is identically zero, is clearly algebraic.
We find its dimension from the following diagram:

where I c S X Q is the incidence correspondence
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mapping onto either factor. The fiber of pi is a space P" (respectively, pn-1),
the fiber of P2 is s(Q"), of dimension n(n -:L)/2 by an induction hypothesis,
and dim Q = 2n (respectively, y 2n - l ). Putting these together we find:

Q of corank 1. Q is a point-cone over a smooth Q’, with vertex at the sin-
gularity p. A maximal subspace in Q is the j oin of p with a maximal sub-
space in Q’. Q.E.D.

LEMMA 1.2. 8(Q) has one or two components, according as rank (Q) is

odd or even. Each of these is a unirational variety.

PROOF. As in the second part of the previous proof, y we may reduce to
the case where Q is smooth. p, has irreducible fibers so that the components
of S(Q) correspond to components of I. P2 is a fiber-bunble map with simply-
connected base Q (By the Lefschetz hypersurface theorem, cf. [4]) and thus
the components of I correspond to those of S(Q’), the fiber. By induction
we are reduced to a smooth quadric in Pi (two points) or P2 (an irreducible
conic).

For the unirationality, let so be a generic point of the irreducible com-
ponent oc of S(Q), and fix a generic complementary subspace pn+l C P(V)
intersecting so in a unique point. Setting

we obtain a rational map

sending s E a c 8(Q) to its unique point of intersection with Pn+l (which is
in Qo). (II is defined outside the proper algebraic subvariety of subspaces s
intersecting Pn+l non-transversely.) 77 is surjective since the map P2 (in
Lemma 1.1) is. (This also follows from the existence of a group of auto-
morphisms of the configuration, transitive on the quadric Qo . ) The generic
fiber of H is (a component of) S(Q’) which is unirational by induction.
Thus S(Q) is, birationally, a bundle with unirational fiber and base, and is
therefore unirational. Q.E.D.

LEMMA 1.3. Let Q C P2,n+l be a general quadric, x c Q a linear subspace
of dimension n -1, not through the vertex if Q is singular. For each irreducible
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component oc c S(Q) there is a unique n-dimensional subspace s=s(a, x) such that

PROOF. If Q is singular, s is the join of x with the vertex. So assume Q
smooth, and let T = TxQ be the projective tangent space to Q along x,

We first note that T r) Q contains x, in fact it is a cone with vertex x since
each T,Q r) Q is. Let the points qiEx, (1  i  n) span x. Then

(polar hyperplanes)

and since the qi are linearly independent, so are qt, so T is a P"+’. By
Lemma 1.1,

so that T n Q is a quadric cone in T with vertex x of codimension 2, so
rank (T n Q)  2 and it is the union of two subspaces sl, S, _- Pn in T.

Applying the proof of Lemma 1.2 successively to the n points qi shows that
T r1 Q is actually a cone over a non-singular quadric in Pl (thus union of
two distinct hyperplanes in T) and that its two components si belong one
to each component of S(Q). Q.E.D.

1.2. Pencil of quadrics.

We consider a generic pencil of quadrics in PN== P(V) generated by Q, Q’
and consisting of Q,&#x26;&#x3E;, A E Pi where

By « generic » we mean that

which is a polynomial in A of degree N +:L = dim V, has N +1 distinct
roots
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This requirement immediately implies (and in fact is equivalent to) either
of the following:

a) Each Qi is general (in the sense of 1.1) and the Qi are the only
singular ones. 

’

b) The base locus = Q n Q’ of the pencil is smooth.

In fact, x is the transversal complete intersection of any two Qi in the
pencil. This implies that the vertex pi of the singular Qi, is not in X. More-
over, the pi are the (projectivized) eigenvectors of the matrix

corresponding to the distinct eigenval-aes 2i and therefore are linearly in-
dependent. Choosing a basis vo , ... , vN of V such that p, is the projectiviza-
tion of v i , we find a simultaneous diagonalization of the matrices M(Q;.).

LEMMA 1.4. In p2n, ..iY contains subspaces pn-l (but no pn).

PROOF. We have to show that in G(n, 2n + 1) the two subvarieties
S(Q), S(Q) do intersect. For this it suffices to check that the class of S(Q)
in the middle-homology

has positive self-intersection. We recall (cf. [3] or [4] for notations and
rules of the game) that H is a free abelian group having for basis the Schu-
bert cycles

where

with respect to this basis, the bilinear form given by intersection is nor-

malized, so that

unless (Jb1...bn is the dual cycle to (Jal...an’

for all i
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in which case the product is 1. Of particular interest is the self-dual

Choosing a chain of subspaces

where A i is a P2?-1 in P2n, J is

(In particular, x intersects the line A, and is contained in the hyperplane A..)
Define

the intersection number of cr with the class of S(Q). We claim:

For, A, intersects Q in two points PI’ p2, and maximal subspaces through pi
correspond to spaces on a quadric in p2n-2, as in Lemma 1.1, while spaces
through p, in (}n,n-I,...,I are those that come (via intersection with Tpi Q
and projection from pi) from an-I,...,I.

Now Ci = 2 (the intersection of a plane conic with a line), so Cn = 2n
and we have

by the self-duality of or. Thus

Note: With a little extra work we could check that:

3) The intersection S(Q) (} S(Ql) is transversal and consists of 4n

distinct points. We shall not need any of these facts. (cf. [7]).

COROLLARY 1.5. In P211+1 7 X contains no spaces pn. The subvariety
A c G(n, 2n + 2) of spaces x c X has dimension &#x3E;n. Moreover, there is an x

through an arbitrary point p of X.
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The proof is again by intersection (with TpX = T pQ r) T pQ’ ) and pro-
jection (from p), reducing to an X in P2n-2 as in Lemma 1.4. By the pre-
vious observation there are actually 4n-1 spaces x through a generic p E X.

1.3. Hyperelliptic curve.

We shall construct the hyperelliptic curve j67 which underlies the geo-
metry of X. From now on we work in projective space of odd dimension
N = 2n + 1. Let

The generic fiber of

has two components, which define a double cover E of Pi, smooth outside
the 2n + 2 points 2i. More precisely, we apply the Stein factorization the-
orem to Pi, obtaining maps

where p§ has connected fibers, n is a finite morphism, and

LEMMA 1.6. E is a hyperelliptic curve of genus n. Each Åi is a simple
rami f ication point for yr.

PROOF. At each Åi there are only two possibilities: either x has a simple
ramification point, and E is locally irreducible there, or else the two sheets
of E intersect at li without interchanging, and E is locally reducible. We
shall show that the first is the case, thus E is an irreducible double cover

of PI with 2n + 2 ramification points, hyperelliptic of genus n.

The nature of n at Ai can be checked by (fairly complicated) local analysis.
Instead we appeal to the homogeneity of the situation, as follows. Let

I 

parametrize all quadrics in P2n+l ; DcP be
B ,

the (singular) hypersurface parametrizing singular quadrics (D is given by
the vanishing of the determinant. In particular, D is irreducible.) The

pencil {Qal is given by a line .L in P intersecting D transversally,
LEG(2, M + 1).
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1) The behavior at all li is the same. For the variety Yc G(2, if +1) x D,

is irreducible (maps onto D with fiber Pm-1) and remains so after deletion
of the closed subvariety of non-generic pencils. Thus any two pairs

can be deformed into each other through generic pencils, and the local
behavior is preserved along the deformation. Apply this to

2) E is locally irreducible at Åi. For otherwise E would be globally
reducible, as a nowhere-ramified cover of Pl. But in the global setting we
have a double cover p : F - P, smooth outside of D with fiber over Q E "
corresponding to the two families of spaces on Q. In P2n+1 there is a pro-

jective automorphism mapping Q to itself and interchanging the two families
of spaces on Q, which can be deformed in PGL(2n + 2) to the identity,
thus F is irreducible. Since E = p-’(L) c F, E has to be irreducible too,
for generic L. Q.E.D.

We identify a point e e E with the corresponding component of S(Q),
some Q E L, that is with the fiber of I over e. For x e A we define a map

cpx: E -&#x3E; A by the formula

where s = s(e, x) is the unique Pn in the family e containing x (Lemma 1.3).
If Q’o Q is any other quadric in L, then s n X = s r) Q’ is a quadric in s
containing x and therefore also another hyperplane which we call cprAe).
We can think of q; as a map

the following is immediate from Corollary 1.5.

LEMMA 1.7. 99 is a morphism. For fixed e E E, the restriction f/Je: A - A

is a biregular isomorphism, in tact an involution (hence its own inverse).
For fixed x E A, cpx is injective.

EXAMPLE. In the case n = 1, X = Q (1 Q’ is an elliptic curve embedded
in p3 as a quartic curve, base locus for the pencil QÂ of quadric surfaces.
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A generic Qi contains two families of lines, each pax°ametrized by Pi. There

are 4 singular QI, which are ordinary cones. A is trivially identified with X,
and choosing a base point x E X gives an isomorphism

(sending a family e to the residual point of intersection with Jr of the unique
line in e through .r.)

2. - The group law.

2.1. Origin

In principle, any point on an abelian variety can serve as origin, that is,
as neutral element for the group law. However, for a « natural » group-law,
a propitious choice of origin must be made. To illustrate this, consider the
smooth elliptic cubic curve in P2. The familiar relation:

if x, y, z are collinear »

requires that the origin o be taken at one of the nine flexes, so that

Let X = Q n Q’ where Q is a smooth quadric in JP&#x3E;2n+1 and Q’ a point-
cone with vertex p. Let eo E E be the (unique) family S(Q’) of spaces in Q’.

LEMMA 2.1. There is an n-dimensional subspace s E eo intersecting Q
(tangentially) in an (n -I)-dimensional subspace o, so that

PROOF. We use the facts discussed in the first paragraphs of Chapter 1
and of Section 1.2. The vertex p is not in Q (nor in Qa for Qa =/= Q’ in the

pencil) so its polar hyperplane

is nowhere tangent to QA. Since H does not depend on A we can restrict

everything to H:
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We claim L is a generic pencil in H:

1) ) The generic Q;. is smooth, since Qi is sn ooth and H is nowhere

tangent to QA.

2) Let Qa, i == 1, ..., 2n + I be the singular quadrics in L other than Q’,
with vertices p i . Then pi c- H. (In fact, for any q E P2n+ll, (q-L)QAi:3 Pi).
Therefore QI, is still a point-cone, as the intersection of Qa, with a hyperplane
through its vertex. Thus, the pencil L has 2n + 1 distinct singularities
and is therefore generic.

Now we can apply Lemma 1.4 to X, to obtain an (n -I)-dimensional
linear subspace o which is contained in X (and thus in X). We take s to
be the span of o, p. To conclude, we need to verify that s is tangent to Q
(and to each Qi) at each point of o. But by polarity, if

then

In particular, p is in

Since o is linear, o c ToQ, so that

and s is tangent to Q along o. Q.E.D.

COROLLARY 2.2. There is a subspace pn+l C p2n+1 whose intersection with X
is four times o. (Namely, TsQ’.)

EXAMPLE. For n = 1, this says that the projection of X from o is a

smooth plane cubic on which the projection of o itself is a flex. Thus we

get a group-law on X (or A, or E) via :

are coplanar » .

2.2. Partial addition.

We want the group law to be induced by rational equivalence. Thus

we define, for e E Eo, x E A :
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so that the cycles

and

are cut out on X by spaces P" varying in the same unirational family 99 0 -1 (e) E E’
(of spaces of complementary dimension on some quadric QÂ(À = x(e)))
and are therefore rationally equivalent. (We use the notation [ix] for the
cycle represented by a subspace a.)

We note that the special property of o is that

and in fact

thus we can restate the case e = o of our definition as

(treating o as the origin-to-be of A.) This leads to the definition

Lemma 2.1 says that

and corollary 2.2 implies that under any group-law + which is consistent
with rational equivalence, ,

where 0 is the origin for +.
In the next section we show that this partial addition extends naturally

over A &#x3E;C A .

2.3. Extension.

LEMMA 2.3. Let x, y c A be two subspaces pn-l intersecting each other in
codimension r. Then there are (at least one and at most r) subspaces yi E A,
i === 1 ... , 7 k  r such that
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PROOF. Assume first x r1 y = 0. For e E E, recall that s(e, x) denotes
the unique Pn in the family e through x.

Claim : not all the s(e, y) intersect x.
For otherwise, they would all be contained in v = span (x, y) = P2n-1;

but for the singular e i , s ( e i , y ) contains the vertex p i , contradicting the
linear independence of the p i .

Claim : for generic A, TyQ). r) x = 0. (TyQ). is the tangent space to Qa,
along y.)

For this, note that

where «, # are the two families on Qi ; thus the intersection is empty for
all but finitely many Ä, by previous claim.

For such a generic A, let QA = Qt r1 v be the restriction to span(x, y).

Claim: QA is smooth.
T ’YQA is a linear subspace of v containing y and disjoint (by previous

claim) of x, thus

since a larger subspace would intersect x by dimension argument. This

shows that y is a maximal subspace contained in QA, so Qi is general. Since

x c Qi is another subspace, disjoint of y and of the same dimension, Qi must
be smooth.

We restrict the polarity with respect to Qa, to the disjoint maximal sub-
spaces x, y. This induces a linear isomorphism.

(y* is the dual space of y) sending a hyperplane h c- y* to the unique point
in ThQ;. n x. If Iz E pI is also generic, we have another isomorphism

such that the Pn-1 joining h c y with x,, E x is in X if and only if h is an

eigenvector (= fixed point) for

and x,, = Ta,h. (We can think of y* as a vector subspace of V, or as its

projectivization. Accordingly, , x,, is an eigenvector or a fixed point, etc.)
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Over C, at least one eigenvector always exists. We show next that all eigen-
spaces are one-dimensional, hence we can attach to each fixed point. its
multiplicity, , that is the dimension of its generalized eigenspace, or size of
block in the Jordan canonical form of T; 1 T Â . The sum of the multipli-
cities is r = n.

Claim : there are at most n fixed points, or non-proportional eigen-
vectors.

Otherwise, there would be a continuous family (a projective subspace)
of them, say Yn t E Pi.

Now y, yt are contained in a unique n-dimensional subspace st (their
span) which in turn is contained in a unique Qt, belonging to the family
e E E. This gives a map

which is necessarily constant! We now have a contradiction since in a

given family e there is a unique s containing y.
This proves the lemma for r = n. In general, we repeat the above proof,

replacing x, y by their (r -I)-dimensional projections from their intersec-
tion u = x r1 y and similarly for v = span (x, y). Q.E.D.

On A there is the natural involution

p(x) is the unique pn-l which is contained together with x in a Pn of the

family eo.
On Eo there is an involution Toy obtained from the hyperelliptic involu-

tion T: B --* E through the isomorphism cpo . We need a comparison of these
involutions.

PROOF. The fourtuple e - x, x, lt(x), To(e) - lt(x) is the complete inter-
section of the pn+,, spanned by them with X. In fact, e - x, x sit on a

unique S E S(e), in the quadric Qn(e). The residual intersection of Qn(e)
with pn+l, (spanned by e - x, x, p(x)) is an s’E S(Te). s’ contains p(x),
therefore its residual intersection with X is zo(e) - p(z).

Now apply the same logic in reverse to Qo: It contains a P" joining x,
p(z) ; its residual intersection with Pl+l is another pn which must contain

e - x, lt(e - x). (This proof works for generic e, x. The lemma extends to

all e, x by continuity.) Q.E.D.
For r elements
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we define their repeated sum

inductively by

COROLLARY 2.5.

(3) If x is a repeated sum of r elements of Eo, so is fl(x).

PROOF.

(1) Take x = o in Lemma 2.4.

(3) For r =: 17 2 this follows from parts (1), (2). Use induction and (2). Q.E.D.

DECOMPOSITION LEMMA 2.6. For y E A such that

there is an r-tuple

unique up to permutaction, such that

Further, the ei can be arbitrarily permuted.

PROOF. Eziste%ce. When r = 0 then y == o and there is noth’ng to
prove. We claim that when r == 1, Y E Eo. Indeed, let s denote the pn
spanned by y, o ; s is necessarily contained in some Qa, . (Let p E s be a point
not in o, y. There is a Qi containing p ; its intersection with s contains the
reducible quadric y uo and an extra point p, thus s c QA -.) Therefore

a being the family on Qi containing s. This proves the lemma for r = 1.
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Note: The above argument actually shows more: If y, y’ E A inter-
sect in codimension 1, then y== cpy(0153) E E.,, for some a E E.

We complete the proof by induction, assuming existence up to r -1.
By Lemma 2.3 (applied to x = o) there is some yl e A such that

By the above note, there is al E E and corresponding el E Eo such that

By Corollary 2.5 (3), we can decompose

as required.

Conenzutativity. It suffices to show, for el, e2 E Eo , , x E A, ,

The argument parallels Lemma 2.4: The three subspaces

span a P"+i since the middle one intersects each of the other two in codi-

mension 1. The first two are contained in a unique s E S{p(e2»), in the

quadric Qn(ez). The residual intersection of Qn(ez) with P,+’ is an

S’ E S{if.l(e2)) == S(e2). s’ contains lz(e,) - x, therefore its residual intersec-

tion with X is

By symmetry this also equals el + e2 + x. (Again this proof works gener-
ically, whenever no two of the three subspaces coincide; the result holds in
all cases by continuity.)

Uniqueness. Let y = e, -+- ... -t- er satisfy 
’

To show that the ei are all uniquely determined, we check that the number ki
of times ei appears in y equals the dimension mi of the generalized eigen-
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space (== multiplicity) in the transformation T;l T). of Lemma 2.3, corres-
ponding to the eigenvector y = e, 2013 y. Since g£ k = Y m = r, we show
Icimi.

When all ki = 1, this is clear from the proof of Lemma 2.3. To handle

the general case, we observe that the transformation T;l T). (for fixed ),, P)
depends continuously on y, hence on el, ..., er. For simplicity, y we replace
it by its conjugate

acting on the (fixed) space o. The corresponding eigenvectors are

We let el, ..., e,. vary in a family

such that for t =A 07 the ei(t) are distinct, and ei(O) = eie If, say, ei ==

e,(,, =... = ej(k) where k = ki andj(l)  ...  j(k), then consider the space
Pk-1 = Pk-1(0) in o which is the limit position of the Pk-l(t) spanned by
Xj(l) ... , Xj(k). (The limit position exists since the Grassmannian is a com-

plete variety.) Clearly Pk-1(0) is contained in the generalized eigenspace
of xi , for it is invariant and contains no fixed point other than x i . Hence

ki = k  m i as required. Q.E.D.
This completes the construction: To find x -E- y, y is decomposed into

little pieces which are added one-by-one to r.
We could now verify directly that A becomes an abelian group under

addition. Instead, we shall interpret the proposed group-law via rational
equivalence of cycles. Let

and let - be the subgroup in A generated by o (i.e. the function on A which
is one on o and zero elsewhere) and by the relations

(Interpretation as above.) Consider the natural map
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The results in § 2.3 imply the surjectivity of i. By construction, addi-

tion is preserved by i ; to show that A is a group it will therefore suffice

to check that i is injective.
Clearly r- is consistent with rational equivalence (cf. § 2.2) so there is

a group-homomorphism

rational equivalence) .

We shall prove in Chapter 3 that the composition

is injective, thus an isomorphism. We obtain our main result:

THEop.EAi 2.7. The variety of (n - 1 )-dimensionallinear subspaces of p2n+l
contained in the smooth intersection X of two quadratic hypersurfaces is an

n-dimensional abelian variety with a natural group-law. With a proper choice

of origin in A, the group-law is consistent with rational equivalence of cycles
in- X, and can be executed explicitly using a family of embedding

of the hyperelliptic curve E in A, as iYi, §§ 2.2, 2.3.

We conclude with a recipe for adding two lines x, y on the quadric line
complex: The Pk spanned by o, y contains two other lines ll, lo . Translate

them from o to x (i.e. construct 1, - x, Z2 - x) and find the fourth line in the
P3 these three span. This involves solving quadratic equations at worst

(finding eigenvectors of T-’TA) so can be done in the plane with com-

pass and ruler, given e.g. the entries of M(Q), M(Q ’ ) , and the coordinates of o.

3. - Isomorphisms.

In this chapter we compare A with J(E), the Jacobian of the hyper-
elliptic curve E, and with J(X), the intermediate Jacobian of X. (cf. [2]
for definition and properties.)
3.1. Hyperelliptic Jacobian.

THEOREM 3.1. The map
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extends naturally to an isomorphism

PROOF. We construct cp by steps as follows. In J(E) we have the
filtration

where yYi is the locus of sums (in the group J(E)) of i points of E (representing
a divisor on E of degree I.) Analogously we define

so that we have

We construct inductively isomorphisms

starting with CPI = cpo . Let Do be the hyperelliptic class on E.

LEMMA 3.2. If D is a divisor on E such that

then

(In other words, any divisor of degree :n which moves on E is the sum of Do
and an effective divisor.)

PROOF. By Riemann-Roch,

K being the canonical class on E. Therefore

and K - D is effective. Since h°(E, Do) = 2 we have
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so by Riemann-Roch again,

Note that as a point of J(B), Do = 0, since the base point eo was chosen
as a ramification point for ?r: E -+ P’, so that 2eo E IDol. In terms of de-

composition, the lemma says therefore that if D E Wi i can be written in
more than one way as a sum of i points then actually D E -W,-,.

We define (pi initially on Wi" Wi-2: a point D E WiBWi-2 is a sum,
in a unique way, of i points of .E: we define cpi(D) to be the corresponding
sum in A. This clearly defines a biregular map

By induction, CPi-l: -VVi-, -&#x3E;- Ai-, is a well-defined isomorphism, restricting
to CPi-2: ’VVi-2 A i-2 - We claim

Indeed, for

the unique interpretation of D as a point of Wa is

by the lemma; therefore

Thus, the restriction of ggi to TVi-IBWi-2 extends over Wi-I. By standard
extension theorems, ggi extends to a biregular map

Extending CPi-l. Q.E.D.

RIF,MAP.K. 99 was constructed as an isomorphism of varieties, but clearly
respects addition, thus proving that A is an abelian variety. (and 99 becomes
a group-isomorphism.)
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3.2. Intermediate Jacobians.

The variety A was constructed as the base-space of a family of cycles
on X, «right below &#x3E;&#x3E; the middle dimension. By the universal property
of the middle-dimension intermediate Jacobian J(X) there is a natural map

given by «integration along paths in A, emanating from o )&#x3E;.

THEOREM 3.3. j: A ---&#x3E;- J(X) is an isomorphism.

REMARKS. a) j factors as follows:

where i, i’ are as in § 2.3, and i’ is the Abel map, well-defined by Abel’s
theorem. The theorem then implies:

(1) i is injective, therefore an isomorphism by § 2.3, completing the

proof of Theorem 2.7.

(2) i’ is surjective by definition and injective by surjectivity of i,
thus rational equivalence of linear subspaces in X is generated by the rela-
tions (*) in § 2.3.

(3) Finally, y i’ is an isomorphism, proving that all cycles on X are

generated by linear subspaces modulo equivalence (surjectivity) and that
on X rational and Abelian equivalence coincide (injectivity).

b) j fits in a still larger diagram

where y is the canonical extension to J(E) of

provided by the universal property of J(E). (Both tp, jogg map J(E) to J(X)
extending o.)

PROOF OF THEOREM. Once we know that A, J (X) are abelian varieties,
checking that a given map j is an isomorphism is routine. We sketch this

here; for more details see chapter 2 of [3], or [2].
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1) First we replace A by J(E) :

is an isomorphism ---&#x3E;

ip: HI(E, Z) -+ H2n-I(X, Z) is an isomorphism of lattices.

Note that both of these have rank = 2n. Verifying this for X involves
an easy computation of C2n-I(X), the Euler characteristic; and Lefschetz’
hypersurface theorem for discarding all non-middle betti numbers.

Let ( , )E, ( , )x be the (unimodular) intersection forms on the integral
middle dimensional homologies of E, X ; let ( , )1p be the pull-back form on E.
It suffices to show (,)E = ( ,)1p i.e. that preserves intersection.

2) Let C be a correspondence on E, i. e. a curve C c E X E. Set

this gives a map

(ignoring components e x E of C.) and this extends naturally to J(E) :

inducing

Note that C, C*, yc depend only on the linear equivalence class of Ce,
all e E E.

3) We wish to eliminate J(X) from the picture too, and deal only
with J(E). Thus we need the intersection numbers in X of cpo(y), gg,(y)
for loops y, y’ in E; but each of these (2n - I)-cycles is a I-parameter
family of spaces x E A, and all of these intersect o in codimension 1, hence
each other if n&#x3E;3. To circumvent this difficulty we continuously deform
CPo(Y’) to cpx(Y’) for a generic x E A, x r) 0 = ø. Note that ggo, cpr induce the

same V: J(E) ---&#x3E;- J(X). Now we have a correspondence

(By Lemma 2.3, Ce consists of n points for generic e.) and C induces the

pull-back form on E:
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4) By part 2, to show that tpc is the identity it suffices to check that

C(e) - e varies in a linear system as e traces E. But by the description of
the group law on A in § 2, the sum (in A, or J(E)) of the points of C(e) is
just cpx(e) = e - x, so C(e) - e is linearly equivalent to - x (plus an in-

tegral multiple of o.) Thus

COROLLARY 3.4. (( Torelli’s theorem )}) X is determined (biregularly, and
even projectively) by J(X).

PROOF. J(X) is isomorphic to J(E) which determines E by Torelli’s
theorem for (hyperelliptic) curves. ip: E --&#x3E; P’, the hyperelliptic covering, ’
is unique (by Lemma 3.2, for one) determining the 2 up to an automorphism
of Pl. As remarked in § 1.2, the matrices defining the pencil can be brought
to the form

choosing the vertices p i of Q,, as coordinate-points in P2n+l. Q.E.D.
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