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Theta Functions and Barsotti-Tate Groups

V. CRISTANTE

Introduction.

In 1970 I. Barsotti published a paper (cfr. [0]) which developed a theory
of theta functions in characteristics 0. The methods used were comple-
tely algebraic and for the first time the theta functions were characterized
without recours to periods.

The aim of this paper is to construct an analogous theory of theta func-
tions in positive characteristic. Hence it may be useful to illustrate briefly
the main ideas of the theory in characteristic 0.

Let A be an abelian variety over a field of characteristic 0, and let R
be the completion of the local ring at the identity point of A. Let X be
a divisor on A defined by the cocycle (CPU)ue’lL relative to the affine open
covering ’B.L of A ; for every invariant derivation d, the differential a(dggulggu)
is the exact part on U of a differential of the second kind rod. Any such rod
is determined up to differentials of the first kind on A. Differentials of the

second kind are closed, and so there exists an element ?7,, E Q(R) such that
a,q, = (o,; here Q(jR) denotes the quotient field of B. If the w/s are suitably
chosen, the map d t-+ rà is a closed diflerential ( of Q (.R). Hence the equa-
tion ô{}/{} = , has solutions in Q(R); these solutions are the theta func-
tions of X.

It is clear that this construction cannot be used in positive characteristic.
However, in [0] it is observed that the elements of Q(.R) which satisfy the
given differential equation are essentially characterized by the «theorem
of the cube )}. In particular, the theta functions of X are the elements of

(*) Lavoro eseguito nell’ambito del G.N.S.A.G.A. del C.N.R.
(**) Part of the results of this paper has been communicated in a lecture given

by the author at the Scuola Normale Superiore of Pisa in the spring 1978; and part
in a lecture given by Barsotti during the « Journees de geometric algebrique » at
the University of Rennes. Barsotti’s talk will appear in « Asterisque o.

Pervenuto alla Redazione il 9 Febbraio 1979.
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Q(.R) which satisfy the equation

where P is the extension to Q(R) of the coproduct of R, X denotes the com-
pleted tensor product, sc23 is the automorphism of RXRXR defined by
x 0 y &#x26; z F-* x 0 z 0 y, F is an equation of the divisor

the pi are the obvious projections and p* are the induced maps on the groups
of divisors.

This characterization provides the starting point for our paper. We
require, as is natural, that the theta functions of a principal divisor coincide
with the corresponding rational functions, and that the action of A by
translation on the group of thetas corresponds to translation on divisors.
Then the thetas of X must be solutions of equation (0.1) in some extension
field of the field C of the rational functions on A. Indeed, in section 1 and 2
we show that if the ground field is perfect, equation (0.1) has solutions in
a certain completion of the perfect closure of Q(R). The existence of such

solutions depends on the fact that, over a perfect base field, every exten-
sion of a Barsotti-Tate group by the multiplicative group Gm splits.

The methods used are quite general. In fact they may be applied when-
ever one has an « analytic » group G whose hyperalgebra contains an order
of C, and which has the property that every extension of G by Gm splits.
For example, with this method we can also construct 1-adic theta functions
for every prime l =1= p : they are locally constant functions on the Tate
space V, with values in k. Theta functions of this type have already been
studied by Mumford [7] and by Barsotti (secret notes).

Those who know the work of Barsotti will clearly see how much the
author of the present paper owes to him; but here I wish to thank him par-
ticularly for his constant and indispensable aid during the preparation of
this paper.

1. - The theta function of a divisor (a special case).

Let k be a perfect field of characteristic p 0 0, and let A be an abelian

variety of dimension over k ; we assume that a definite identity point
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e E A has been selected, hence that a definite group law on A has been
chosen. A will denote the Barsotti-Tate group of A, i. e. A = lim (ker p i cA)
(t will always denote the identity map). In most of this paper we will use

only the local component n1 of A ; its hyperalgebra, which will be de-

noted by .R, can be identified with the completion of the local ring 0 A e
of e : .R = OA,,. Hence, if (x) == (Xl’ X2’ ..., xn) is a regular set of parameters
of OA,l or of .R, we have B k[x]. The field C = k(A) of the rational

functions on A can be canonically embedded in the quotient field Q(R)
of R, and we shall consider it to be so embedded.

Since many copies of A, C and B will be needed, it is convenient to

index them; thus, for instance, the completed tensor product RXR (over k)
will be denoted by R/XR2 = k[zi , X2]. The single x’s, indexed from 1 to n,
will never be used again, so that no confusion arises from this notation.

Let X be a divisor on A. If X is linearly equivalent to zero, X "" 0,
then X = ( f ) for some f E C c Q(R). This f, which is uniquely defined by X
ud to a nonzero factor in k, is called a theta element of X, and will be de-
noted by lsx. If we assume that none of the polar components of X go
through e, lsx can be chosen in .R; while if none of the components go
through e, lsx can be chosen in such a way that lsx = 1 mod .R+ (jR+ is the
kernel of the coidentity 8 of R).

Next we assume X algebraically equivalent to zero, X - 0. If P is a

point of A, dp will denote the translation by P and d) is the corresponding
map in the group of divisors. We begin by assuming that none of the com-
ponents of X go through e ; this restriction will be eliminated at the end

of the following argument.
If P’q i = 1, 2, stands for the i-th projection of A X A on A, and p* is

the corresponding map between the groups of divisors, it is well known

that (cf. [6])

is linearly equivalent to zero. Therefore Y has a theta element f = I(x,, x,)
in the previous sense. By the assumption on X, f E OAXA,eXe c R5zR, and
it can be chosen in such a way that

If qj, j = 1, 2, 3, denotes the j-th projection of A xA xA on A and pii,
i = 1, 2, is the j-th projection of Ax A X A on the i-th factor of A X A,
then pzpij == bziqj, and we readily obtain
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Therefore, if P denotes the coproduct of R, and if for short we write x1 + X2
instead of Px, then after choosing f as in (1.2), relation (1.3) is equivalent to

If G,, denotes the multiplicative formal group over k, and if kTt], with
Pt = t x I + I x t + t x t7 is its hyperalgebra, then (1.4) shows that the map
t f - 1, from 7c[t] to the completed tensor product R X R, corresponds
to a factor set of nA on Ûnq and thus to an extension E of n1 by Gm. But
it is well known that every such extension splits, i.e. that E ’"’-J ð m x nA.
Hence there exists an element lsx = P,(x) such that

This lsx will be called a theta- element of X.

The quotient of two solutions of (1.5) is a nonzero element g - g(x) c- B
such that g(xl + x2) = g(XI) g(x,J. Such nonzero elements will be called mul-
tiplicative elements. The hyperalgebra R has nontrivial multiplicative ele-
ments (that is different from 1) if and only if it has a block of slope 1,
namely if and only if A has p-division points. Therefore, if there are no

such points, there exists a unique ?9x which satisfies (1.5). It is uniquely
determined by X and by the condition  == 1 mod R+. In general X de-
termines lsx up to a nonzero factor in k and a multiplicative factor in ..R.
W’e shall say for short that X determines lsx up to linear exponentials. The
group of the linear exponentials will be denoted by (I.e.). The reason for

this terminology will be seen further on.
We can now remove the restriction initially imposed on the support

of X. Indeed, let Do be the group of principal divisors, and Di be the group
of divisors algebraically equivalent to zero whose support does not con-
tain e. Then, the preceding argument provides the homomorphisms

and

(if S is a ring S* denotes the multiplicative group of units in S). Since

Da = Do -(- Dl coincides with the group of all divisors algebraically equiv-
alent to zero, any Y c- D,, can be written as Y = Yo + Y,, with Yi E Di;
we shall then define lsy as
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This is a good definition : indeed, if Y= Y§ + Y[ with Y; E D i’ the
homomorphisms described above imply that

hence {}Yo {}YI == lsyjlsyj, (these equalities are really congruences mod (l.e.)).
If K is a k-algebra and G, B are a group over k and its hyperalgebra,

we will denote by G, and BK the group over K and its hyperalgebra (ob-
tained by scalar extension).

In the next section the following lemma will be needed:

(1.6) LEMMA. Let K be a perfect erte%s’io&#x3E;i field of k, 8 an integrally closed
order of K containing k, G a local B-T group over k and E a (commutative)
extension of G, by (Gm)s; then E - (Gm)s xGs.

PROOF. Let R be the hyperalgebra of G. The hypothesis says that E
corresponds to a (symmetric) factor set f E RsXRs. We must show th,,tl
teh equation

in the unknown g has solutions in -B.,,.
We shall give the proof only in the case of a single variable, that is when

dim G = 1: in general the same reasoning applies.
Since K = Q(S) is perfect, we know by the preceding remarks that (1.7)

has solutions We shall show next that each ai i is a

zero of a monic polynomial with coefficients in S. Hence, being in-

tegrally closed, each ai e S.
with bij E /S; since f is a unit of RsXRs we

"

may suppose that boo = 1 ; f being a (symmetric) factor set, boi - 0 and

bij = b;i for every i, j &#x3E; 0. For Px = x, -j- X2 we will have an expression
of the type with xij E k. With these nota-

tions (1.7) can be rewritten in the following form

By (1.7) and the hypotheses on i we have ao = 1; therefore we will use an
inductive argument: we will assume that the aj with j  p 1 - 1 belong to )rg
and we shall prove that also the aj with j pi+l - 1 belong to S. To this
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end, consider the relations R(pi, j), with i &#x3E; 1 and I j pi(p - 1), obtained

by equating the coefficients of the monomials xl 1 ixl 2 in the two sides of (1.8):

where, by the inductive hypothesis, 4,,, is a linear polynomial with coeffi-
cients in S, in the arguments a z with p i  1  p i + i - i.

I 

then Therefore, for these j’s we can

obtain the api +i from R(p i, j) and replace them in the R(p i, s), where j  s 
pi(p - 1). In this way for each j, I j pi(p - 1), we obtain an expres-
sion of the form

where, in wiew of the inductive hypothesis, Ppi,j(X) is a polynomial with
coefficients in S. If (r - 1) pi j C rp i, the degree of Ppt,j is equal to r;

I I

in particular Prpt,(r-l)pt is monic. Since p divides a"f is a solu-

tion of the equation P.,,.,(.-,)(X) = 0, and therefore it is in S. Now,
from (1.9) we deduce that each al with 0  1  pi+l is in S7 Q.E.D.

2. - The theta function of a divisor (general case).

In this section we shall need the perfect closures of Rand C: we shall
denote them by f1° and C°° respectively. As jR is local, f1° is the direct limit
of the sequence 

’

and it is endowed with the limit topology. With this topology 3tO is not

complete; its completion will be denoted by Jt. The group corresponding
to fl will be denoted by ’A: it is the inverse limit of the sequence

As usual, Coo will be identified with its image in the field Q(9t).
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Let ( y ) be a non-homogeneus general point of A such that the n-tuple
of its first n coordinates, which will be denoted by (x), is a regular set of

parameters of OA,e. Identify C with the second factor of C 0 C == 01@ C2,
and let P be the point of A(’) (extension of A over Ci ) where (y2) assumes
values (yl). Let X be a divisor on A ; at first we assume that none of the
components of Jf go through e, and we identify JT with its extension to A.
With this identification, Z = cr* X - X is a divisor algebraically equivalent
to zero on A(’), and by the previous paragraph it has a theta element

in 0’; [x2] .
First, we shall show that this theta element may be chosen in R’x2j,

and then we shall symmetrize it in such a way as to obtain a factor set
in 9tX 9t. This factor set will be associated to an extension of n Â by 0,,,.

As in paragraph 1, and with the same meanings for the symbols, con-
sider the divisor

on A x A xA. It is well known, cf. for instance [6], that Y - 0; hence Y
has a theta element .F = F(x,, x2 , X3) E Q(C0 e 0 C).

Since none of the components of X go through e, F E RXRXR. As F
is symmetric, and F(0, X2’ x3) is a theta element of the zero divisor, we
may assume that

If we use the same symbol Y for the extension of Y to A(’) xA(l) xA(l),
and if P is the point already used in the definition of Z, we have

where r1 is the intersection-product; hence

From (2.3) and from section 1 it follows immediately that .F is a factor

set of (R2)Rl (3 (R3)Rl’ which supplies an extension of (nA)R,, by (ðm)Rl. Now
if we observe that 9t° is integrally closed, and that Q(J’tO) is a perfect field,
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we see that, by (1.6), there exists a CP(XI, X2) E J’toTx,l such that

By (2.3) it is clear that each solution 99 of (2.4) is a theta element of the

copy of Z on A(’). If we compute (2.4) first in (xl, 0, x3), next in (0, x2, x3),
and remember assumption (2.2) on F, we conclude that gg(x,-, 0) = I and
that cp(O, x2) is a multiplicative element of .R2. Therefore there exists a

(unique) solution 99 of (2.4) such that

The field C will now be identified with the 3-rd factor of C0 C(D C,
and P., P2 will denote the points of A(’,’) (extension of A over Q(C’ 0 0;»)
where (y3) assumes the values (yl) and (y2) respectively.

In a way similar to that just used for Y r1 (P xA(l) x A(’)), we obtain

From (2.6) follows that

and

are theta elements of the same divisor on A(’,’); hence we have:

where ð is a nonzero element of Q(c @ 0;) and fl is a multiplicative ele-
ment of .12a (the extension of R3 over Q(C§J @ c;)). We remember that F
and qJ are normalized as in (2.2) and (2.5) respectively, and we compute (2.7)
first at (zi, X2, 0) and then at (0,0, X3). The result is ð = , = 1, so that

Now, since F is symmetric and n Â is commutative, (2.8) can be rewritten
in the form
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By comparing (2.9) with (2.4) we see that

is a bi-multiplicative element of Jt5Jt: that is, X is a nonzero element such that

Since there is a one-to-one map between the set of these elements and the

set of bi-homomorphisms -A x -A---&#x3E; there exist bi-multiplicative ele-
ments in XlXfl if and only if Xl has a block of slope a 1. This follows

from the theorem of symmetry (cf. chap. 7 of jl%IA]) : in fact, from this
theorem we know that fl has a block B of slope a, with 0 C oc  1, if and

only if it has a block (of slope 1- - a) isomorphic to the dual B of B.

From this fact, if A is ordinary, i.e. :It has only the block of slope 1, we
may conclude that X == 1, so that cp is symmetric and belongs to .RX.R;
in the other cases, i.e. when % possesses blocks of slope different from 1,
X supplies informations about the class of X under algebraic equivalence;
in particular, if in fl the block of slope 1 is missing, the map X v-* y gives
an isomorphic image of the Severi group of .A in the group of bi-multipli-
cative elements of :ItX:It (cf. §8).

In all cases, X(XI, X2) = 1, so that X(XI, X2)! exists in flX fl and supplies a

which is a symmetric element of Jt5Jt. The element V satisfies both (2.4)
and (2.8) (replace 99 by V), hence it satisfies the equation

The element is thus a factor set, associated to an extension of n Â by Gm .
But it is well known (cf. chap. 4 of [MA]) that such extensions split; con-
sequently there exist a lsx c- ’JI such that

The direct connection between F and f}x appears after comparing (2.12)
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with (2.4) or (2.9): it is

lsx will be called a theta element of X.
This relation, perfectly analogous to the corresponding one in [0], will

be the main tool in the characterization of abstract theta function (cf. § 7).
From the preceding arguments it is clear that ’ljJ is determined by F

up to symmetric bi-multiplicative elements of JtXJt. But every such ele-

ment W = W(XI, X2) is a factor set, so that it has a decomposition analogous
to that of y :

Such elements q, or more precisely the product of such q’s by nonzero
elements of k, will be called trivial theta functions, or quadratic exponentials
(q.e. for short). They are characterized by the relation

constant .

The reason for the first name is thus clear, while the reason for the second
one will appear later on. Finally observe that (q.e.) D (l.e.), and that lsx
is determined by X up to (q.e.).

What has been said until now concerns divisors whose components do
not go through e. But every divisor JF is a sum of a divisor Y algebraically
equivalent to zero and of a divisor Z whose components do not go through e;
thus we will define lsx by means of Ox = {}y{}z. In this way 0, is well
defined, as we may verify with the method used in section 1.

The results of these first two sections may be summarized in the following

(2.14) THEOREM. To every divisor X on A one can associate an element {}x
of the quotient field Q(:R) of :R, uniqueup to (q.e.), with the following properties :
Ox+, - {}x{}y; {}x E:R i f and only i f none of the polar components of X go
through e ; X = 0 i f and only if {}x = 1; X r-..J 0 i f and only i f {}x E C ; {}x E Q(R)
if X== 0 (in reality, the previous equalities are congruences mod (q .e.») .

Observe that, by the first property, the second is equivalent to the fol-
lowing : let X be an effective divisor; then lsx is a unit of fl if and only if
none of the components of Jf go through e. This assertion follows imme-

diately from (2.13). Observe furthermore that if A is ordinary, then for

any X the cp of (2.4) may be chosen in B. Consequently, y the converse to
the last statement of our theorem does not hold.
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Theorem (2.14), and more generally all the arguments used until now, are
also true when A is an extension of an abelian variety by a multiplicative
group, rather than an abelian variety. Such varieties will appear later on,
because it is not possible to distinguish them from abelian varieties by the
local components of their B-T groups.

Functions similar to our .F have already been studied by Mumford [8]:
in his terminology F determines an element of Bi-ext (A X A, Gm). Our F

corresponds to a symmetric bi-extension, and the .I"s corresponding to
such bi-extensions are characterized by the following properties:

for every permutation s E S,;

3. - Generalities on bivectors.

The (Witt) bivectors are the main tool which we will use in analysing
the previous results; in particular they allow us to exhibit the analogies
between this and the case of characteristic 0.

In this and in the following section we will limit ourselves to brief de-
scriptions and to an inventory of the formulas which will be used later on.
For precise definitions and statements we refer to [MA].

In the following discussion B will denote the hyperalgebra of a B-T group
(not necessarily local): such hyperalgebras will be called hyperdomains
(cf. chap. 3 of [MA]). Just as starting from B we have defined f1° and
so starting from B we may define %0 and %: i.e. %0 is the direct limit of

the sequence B B "&#x3E; ... ; it is endowed with the limit topology, and %
is the completion of %0. The hyperalgebras of the type of %0 and $ will
be called bidomains. For an intrinsic characterization of bidomains cf. chap. 4
of [MA]. Whenever we speak of the canonical embedding of B in $°’ we
are referring to the natural map of the first term of the sequence
B B -?- ... in %0.

With vect and cov we shall denote the (group) functors of Witt vectors
and covectors. For cov we shall use the definition given at the end of § 5
of [MA]: this definition, unlike other ones given more recently (cf. [4]),
makes it possible to define operations as d* (cf. § 4), even if cov is defined
on a category of algebras which, in addition to the local algebras, contains
the etale ones. A (Witt) bivector with components in the k-algebra S is a
sequence x = (xi)ieZ of elements of S such that for every m e Z the subse-
quence x(.) (..., Xm-l’ xm) is a covector. The bivector x will be denoted
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with (..., X-,; xo , Xl’ ...). The bivectors which have the x(.) = 0, for some
m E Z, will be called special. The special bivectors of the type (... 0 ; $, 0, 0, ... )
will be denoted by ($).

For ic-algebras of the type of % (in particular for bidomains), we define
biv %: it is the set of bivectors x with components in %, such that, for some,
and hence for every m E Z, x(,,,) E cov %. On biv % we define a sum in the

following way: for x, y E biv $, we have (x -[- y)i = (x(m) + Y(m»i, if m&#x3E;i.
Endowed with this sum biv % is a group; the subset of its elements such

that x(-,) = 0 is a subgroup isomorphic to vect %, and biv -%/vect % = cov,%.
The topology of % allows us to define a topology on biv -% (cf. § 9 of [MA]) ;

with this topology biv % is a topological group. Now Q vect %, which in
addition to the sum has the product inherited from vect -%, becomes a dense
topological ring in biv -’q. As a consequence the completion of biv %, which
will be denoted by Biv -%, has a natural structure of topological ring.

As usual, on biv % we define the operators yr (Frobenius) and t (Ver-
schiebung) in the following way:

The operators just defined are continuous, so that it is possible to extend
them to Biv 9’.,; we have

An element x E cov $ will be called canonical if Px = x x I + I X-x (here
and later on, if f is a lc-algebra homomorphism we shall write f instead of
cov f or biv f, etc ...). The set of canonical elements of cov B has the struc-

ture of a finite, , free .K-module, where K = vect k. It will be denoted by
CB and will be called the canonical K-module of B. The restriction to CB

of the operator t of cov J’3 coincides with tB, the Verschiebung of B. Hence,
f or x E CB we have

In a completely similar manner we define the canonical bivectors. The

set of the canonical bivectors has the structure of a H’-module, where
K’= biv k. It will be denoted by C’-% and will be called the canonical
K’-mod,ule of %. With regard to t, for C’% we have the same situation
as for CB: i.e. the restriction of t to C’ IS coincides with ts. Hence, if a
canonical bivector has a component in -%0, it has all its components in -%0.
The set of such bivectors will be denoted by C,,%O. It is a sub-K-module

of C’ $ and it is related to CB in the following way: the canonical embedding
of B in $° produces an embedding (K-linear map) z of CB in C’-%. This

map is characterized by the property (-rx)(-,) = x. The image -r(CB) of 1
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will be denoted by C’ B, and it is related to e’ $° by

Later on we shall need the following facts about the logarithmic series

(for proofs we refer to the last sections of chap. 2 of [MA]).
Suppose (for simplicity) B to be local, denote by %+ (this notation will

be maintained later on for all other hyperalgebras) the kernel of the coiden-
tity of %, and let $ be an element of 93, m 1 mod,%+. Then the series

converges in biv $, and its limit will be denoted by log ($).
If q is another element of $ subject to the same conditions as $, so that

log fql exists, we have:

The elements y E biv 93 which are of the form log (8) for some 8 E -%, are
characterized by the property ty = y. For these we have Yi = .L(), where
L(8) is the Artin-Hasse logarithm: i.e. L is defined by the relation .E(L()) = s,
where and It is the Mobius function.

Now, if we consult (5.51) of [MA], the reason for the term quadratic
exponential will be clear.

4. - The Barsotti operators.

Let G be a B-T group and G its dual, and let Rand R be their hyper-
algebras ; then, if D denotes the hyperalgebra Homcont. (R, k) (k is endowed

with the discrete topology, is obtainable not only as the completion of
the direct limit f? "&#x3E;- R  ..., but also as the inverse limit of the sequence
D "’ D "’ .... Therefore, if we observe that to every element d E D we

may associate the invariant endomorphism (d 0 t)PR, we see that the ele-
ments of f1° act (by means of a similar formula) on J’t. More precisely, if

we identify P with the image in f1° of the first term of the sequence

so that the elements of fRo (as operators)

are exactly the continuous and invariant k-endomorphisms of RO which are

(p i) - i B linear for some r E Z (cf. §38 of [MA]).
Using the representation of ’TtO in Endk Jq just described, for every

d E C’ 3t° we may define a continuous and invariant X-endomorphism d*
of Biv fl. The map d* will be called the Barsotti operator associated to d.

Now we shall give a quick schetch of the construction of d*. A complete
treatment is given in chap. 5 of [MA].
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Let d = (do, ..., dr) be an ordered (r + l)-tuple of indeterminates over Q,
and consider the Q-algebra of polynomials .L = Q[d,,, dl, ..., dr]. Interpret d

as Witt vector whose i-th ghost component is

and endow L with the hyperalgebra structure defined by Pdi = (d 0 1 + 1 &#x26; d) i .
Then, consider another (r + I)-tuple (xo, xl, ..., xr) of indeterminates and

letA = Q[..., d’xj, ... ] be the symmetric Q-algebra S(L ê_/Jil); here M is the
free Q-module on the set {xo,..., xr}, v - (vo, ..., vr) E Nr, and dV stands for
dvol ... d;r.

The elements doxj of A will be identified with xj, so that x may be

thought as an element of vectr A.
Now, observe that there exists a unique Q-bilinear map L XA -+A,

such that for fl, v E Nr+l, y, Z E A, 0 ,j  r,

By this action, to the couple (d, x) corresponds the vector

defined by its ghost components in the following way:

What makes this algorithm useful in our case is the fact that

More precisely (cf. §43 of [MA]), for Oir we have

where Pi(d’xj) denotes a polynomial with coefficients in Z in the arguments
dVxj, with j  i and vs = 0 if s &#x3E; i. Further, if we attribute weight pr to xr
and dr, Wi is isobaric of weight pi separately in the d’s and in the x’s.

Now we can define the Barsotti operators: let d E C’ i 0, and let x E biv lJl
be a special bivector with components in jt 0; then if - n is big enough,
and n  i  n + r for a positive integer r,

does not depend on n and r (cf. (5.8) and (5.9) of [MA]). This fact allows

us to define the (special) bivector d,x by means of
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The map d* : z - d*z is continuous and K’ -linear so that it can be extended
to the whole Biv fl. The extension will also be denoted by d*x: this is the
Barsotti operator associated to d.

The more important formal properties of these operators are the following:

they hold for x, y c- Biv Jt, a c K’, dEC’jio.
Even though these operators are not derivations, they link the co-

homology of 0* 4 with the cohomology of vect 0 A: for this reason they are
the key to our entire analysis of theta functions.

The notations of § 3 are still in force. Let E .R, =1 mod .R+; then
log ($) exists, and for every d E C’ .Ry i.e. such that d_iR = 0, d* log ($) E
E vect .R (cf. (5.40) of [MA]). If $ c C, in general log ($) does not exist,
but, as explained in § 6 of [MC], d* log ($) may be defined directly for every
d E C’R: it is in vect C.

Later on we shall need the following result:

(4.3) LEMMA. Let X be an irreducible subvariety o f codimension 1 o f A ;
denote by Q(XfA) the local ring of X and by Q(XIA)* its group o f units. Then

f or an element  E C the following properties are equiwale%t:

PROOF. By the construction of d* log ($) (cf. § 6 of [MC]) it follows

that i) implies ii); for instance (d* log {} )-1) == 0 is a direct consequence
of (4.1). Moreover, y the components of d’(d* log f$l) are polynomials whose
arguments are invariant hyperderivatives of the components of d* log ($).
Therefore ii) implies iii). Now we shall prove that i) follows from ii).

The ring Q(XIA) is a discrete valuation ring; therefore if t denotes a

regular parameter of Q(XIA), we will have $ . true, where u c- Q(XIA)* and
r c- Z. Then d*log{}==r(d*log{t})+d*log{u}, and by what we have
already seen, ii) implies r(d* log {t}) E vect Q(Xj.A.), for every dEe’ R. In

particular, if r 0 0, ii) implies btft E Q(XIA) for every invariant derivation 6
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of A ; but this is impossible. Therefore r must be zero, i.e. $ = u E Q(X/A)*.
To see this impossibility, it is enough to observe that t belongs to a regular
set of parameters of a point P c- X. In which case it is well known that
there exists an invariant derivation 6 such that bt is an unit of OA,P (sup-
pose for istance P = e). As a consequence bt E Q(Xj.A.)*. There remains
to be seen that iii) implies i). Observe that if all the invariant hyper-
derivatives of an element q c 0 are in Q(XIA), then 77 E Q(XIA). In fact,
if q 0 Q (XIA), then 71 = t"’ u’, where u’ E Q(X/.A.)*, m is a negative integer
not divisible by p, and s is a nonnegative integer. But it is well known

(cf. [10]) that for every invariant derivation 6 of A there exists an invariant
hyperderivation 6’ of A such that 6’(tl"u’) = tv"mbfu’, and
that bf(t"’m) = (ðtm)PB = m’PBtm-t)’PB(ðt)VB. Therefore, as there exists a 6 such
that bt E Q(XIA)*, there also exists a 3’ such that bf(t"’muf) 0 Q(XIA).
Now, let == tru, where u E Q(Xj.A.)*. If r =1= 0, from iii) it follows that

ð’(ðtjt) E Q(Xj.A.), when 6’ ranges over a p-base of the invariant hyperder-
ivation of A. Therefore 6 f (btlt) c- Q (XIA) for every invariant derivation 6
and every invariant hyperderivation 3’: but this, by what has already
been observed, is impossible; hence r == 0, Q.E.D.

Since OA,P== nQ(XIA), (4.3) clearly holds for any subvariety of A ;
PeX

therefore we have the following

(4.4) COROLLARY. Let U be an open set of A and $ an elemee&#x3E;it of C. Then

the following properties are equivalent :

5. - Cohomological relations between X and Ox.

In this section we begin the analysis of the results of §§ 1 and 2. The
notations are always the same.

Consider the exact sequence of sheaves on A

where C is identified with the constant sheaf. From this sequence we have

the following exact cohomology sequence:
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The X-modules H°(A, vect C/.K), H°(A, vect O/vect é)A) and HI(A, vect é)A)
will be denoted by 8(A), %(A) and A(A) respectively. The elements of

,%(A) will be called closed kyperclasses and those of &#x26;(A) exact hyperclasses.
The exact hyperclass which corresponds to the element z E vect C will be
denoted by cl x. If b, b’ are elements of %(A), the relation b - b’ E &#x26;(A)
will be written b - b’.

The Barsotti operators, in analogy to the derivations in the case of
characteristic zero, give maps from the group D(A) of divisors on A and
from the Severi group S(A), to %(A) and %(A) respectively. Such mappings,
which are precisely the link between the cohomology of 0* and the coho-
mology of vect OA alluded to above, will now be described (cf. (6.26) and
(6.30) of [MA]).
(5.1) Let X be a divisor on A de f ined on the linite open covering ’B.L o f A by
the cocycle (CPu)ue’lL, and let d E C’R. Then the element of $(.A.) associated to
them is defined by the cocycle (d* log {CPu} )ue’lL and will be denoted by b(d, X).
If Y is another divisor and i f X = Y, then b(d, X) I’J b(d, Y) for every

d c- C’F?; therefore X - b(d, X) induces a map from S(A) to A(A).
The operators d* also act on hyperclasses : if b c-,.%(A) is defined by the

cocycle (yu)u,=qt, d*b will denote the hyperclass defined by the cocycle
(d* Vu)ueu . ·

The connection between a divisor X and its theta elements is described

in the following

(5.2) THEOREM. Let X be a divisor on A, and {}x be a theta elenae%t of X.
Then for all d, dc- C’ J1, we have

In particular, if X = 0 we may choose a {}x such that

PROOF. Given that every divisor on A is linearly equivalent to a divisor
whose components do not go through e, and that the theorem is trivially
true for principal divisors, we may, in wiew of (2.14), suppose that {}x c- J’t,
,Ox == I mod R+. We begin with the case X == 0. If we choose {}xE:Jt,
by (1. 5) and by the invariance of the d*’s (cf. the last formula of (4.2)) we have

whence d* log {0,1 E vect C.
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After retaining the notations of (5.1), let U, U’E 9.L. Assume that e E U’
3

and set Wl == (PI + P2)-IU, W2 == U x A, W3 == A x U’; then W = n Wi is
i=i

an open set of A X A which contains U X e. If Y is obtained from X as

in (1.1), and if we denote the coproduct of C by P (cf. § 6), then

Pquf(qu@ CPu’) is an equation of Y in W. Thus from (1.5) it follows that

where 1pw is regular and invertible in W.

Now, if we apply the operator (t&#x26; e)(t@ d*) log ( ) to both sides of (5.4)
and compare the resulting expression with (5.3), we obtain

It follows from (4.3) that (t@ d*) log {1pw} is regular in W, and so

(t@ e)[(t@ d*) log {1pw}] is regular in U. Finally (5.5) may be rewritten

as claimed in the statement of the theorem.

For the general case we will use a similar argument. Let

then n W, == W is an open set of A x A X A X which contains
i=l

If Y is obtained from X as in (2.1), then

is an equation of Y in W; therefore we have

where ’ljJw is regular and invertible in W. From (5.7) and in wiew of (2.13),
with a computation analogous to that used for (5.5) we obtain:
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The arguments already used show that the regularity of

in U descends from the invertibility of 1pw in W. Therefore (5.8) is equiva-
lent to

6. - Hyperfields.

In the next section we will need a way to recognize whether a function
field is the field of rational functions on a group variety. The properties
which characterize such fields give rise to a structure called hyperfield.
Hyperfields were introduced in [0] and subsequently studied in depth in [5].

Here we limit ourselves to the essential definitions.

(6.1) A field C is called a k-hyperfield if it satisfies the following conditions :

i) C is a regular extension of k ;

ii) there exists a k-algebra homomorphism called the

coproduct of 0, which is coassociative and cocommutative, i.e. (P 0 t) P ==

= (toP)P and scP= P;

iii) there exists a k-algebra automorphism e: C C, such that, if p de-

notes the extension of the product m : C C - C to the subring"
(C &#x26; C)(k,r m) of Q( 0 @ 0), and if we set 8 == fl{t?!J (!) P, then

a) the domain of s is a local ring R;

b ) 8x = soz c- k, for every x E R ;

c) fl(e@ i) Pz = x, for every x E C ;

p is called the inversion of C.

A subfield C’ of the k-hyperfield C is said to be a sub-k-hyperfield if C’
with the restrictions of the coproduct and inversion of C is a k-hyperfield.

A k-hyperfield is said to be finitely generated if it is a f.g. k-algebra.
The following is a convenient test for recognizing sub-k-hyperfields of

a finitely generated hyperfield.

(6.2) LEMMA. Let C be a finitely generated k-hyperfield and 0’-:) k a sub-

field. If PO’ ç Q (Cl 0 C’), then c’ is a 8ub-k-hyperfield.
k 

’
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A proof is given in (2.1) of [0].
Let C be a k-hyperfield; then a k-automorphism u of the field C is called

invariant if (c 0 0-) P = Pa.
If V is a commutative group variety over k, the field C of the rational

functions on TT is a finitely generated hyperfield : P and e are the mappings
induced by the law of composition and by the inversion of V respectively;
R is the local ring of the identity of V, and 8 is the reduction of R modulo
its maximal ideal. Furthermore, the map which sends the point P of V
to the automorphism of C corresponding to the translation by P, gives a
one-to-one correspondence between the points of TT (which do not lie on the
degeneration locus) and the group of invariant k-automorphisms, of C.

Conversely, let C be a finitely generated k-hyperfield, k the algebraic
closure of k, and let C = C (D k be the k-hyperfield obtained by extending
the coproduct and coidentity of C to C. The set of all invariant auto-

morphisms of C is a subgroup G of the group of k-automorphisms of C.
One can easily show that G with the Zariski topology (a base for the

open sets of which is given by

as x varies in C) and with the structure sheaf defined by

is (the complement of the degeneration locus of) a group variety over k.
This variety is the extension to k of a variety over k such that k(V) = C.

For details in regard to group varieties and their degeneration loci,
the reader may consult [1].

7. - Abstract theta functions.

In the classical case theta functions in n variables are characterized

within the field A of meromorphic functions on C- by means of certain
functional equations. In this section we shall concern ourselves with the

problem of their characterization in characteristic p.
On the basis of the results established in the first two sections, it is clear

that in the present case Cn should be replaced by a group 19 which is the
inverse limit of a sequence
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where G is a local B-T group. Hence A should be replaced by the field
of fractions Q(,%) of the hyperalgebra 3t of t%.

The results of this section are analogous to those obtained in [0] for the
case of characteristic zero.

An element 0 E Q(a) is said to be an element of type theta if

We recall that the middle expression of (7.-1) means

One should note that the use of tensor product rather than completed tensor
product renders the condition (7.1) (more) restrictive.

Further on we will need the following results which are analogous to
lemmas 3.2 and 3.3 of [0].

(7 .2 ) LEMMA. Let tl, ..., tn , t’, ..., t. be indeterminates over k, S = k [tl, ..., tn], ,
S’ == k[t1, ..., t;J and let 99 be an element of SX S’. Then one has:

a) the following conditions are equivalent:

i) cp E so S’

ii) 99 E Q(S),Xo Q(S’)

iii) the k-vector space U c S generated by the elements (t oy§)q is finite
dimensional. Here v ranges over Nm and yv is the element of
Hom (S’, k) defined by y;tP = ðpv fo&#x3E;. every p, E Nm.

b ) If the conditions of a) are fulfilled, the dimension of U coincides with the
dimension of the subspace V generated by the elements (y 1) @ t) rp, as v

ranges over ln..F’urthermore (p E U © V.

c) Under the same hypothesis as in b), the sub f ield cu of Q(S) generated by U
over k is the minimal sublield C o f Q (S) such that 99 E Q (C 0 S’). The

analogous property also holds for the field C, generated by V.

d) Cu and Oy are finitely generated even under the weaker assumption that

cp E Q(S @ S’). Furthermore the minimality properties described in c) re-

main valid, and in addition 99 E Q(Ou@ Oy).
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PROOF. If 99 satisfies the hypothesis of d), we have

where a, , b2 and Av belong to 8, while a, b’ belong to S’. Moreover the Ay’s
are uniquely determined by 99. If the denominator in (7.3) may be chosen
equal to 1 (i.e. if condition i) of a) holds), then U is the space generated by
the ai’s. In fact, if 1- is minimal, (aI, ..., ar) is a base for U. One can handle V
in the same way, so that U and V have the same dimension. Hence i) im-
plies iii) and b). Clearly 99 E Ou@ ,S’’, and so a fortiori 99 E cu[t’]. But any C
such that cp E C [t’] must contain the Av’s. It follows that Cu has the mini-
mality property described in c). A completely similar argument shows that
the same property also holds for Cv. Since, for an element 99 c- S X S,
i) is clearly equivalent to ii), and iii) implies immediately i), we have proved
a), b) and c).

If now the more general assumption d) holds, i.e. if 99 has the expres-
sion (7.3), then vrc have

and where belong to k. Therefore

is equivalent to the following relations:

for every v E N-. As one can clearly see from these relations, the Aa,’s are
solutions of linear systems with coefficients in the field generated by the ai’s
and bi’s, for i = ly 2, ..., r. Thus the field they generate is indeed finitely
generated. From the same relations it follows that, whatever the choice
of the ai and b’ may be, the ai’s and bi’s are solutions of a linear system
with coefficients in cu, so that they can be chosen in Ou. Since for Cv the

argument is the same, 99 c Q (C, &#x26; C,). The minimality properties of CU
and Cv are now clear, Q.E.D.

At this point we can prove the following

(7.4) THEOREM. I f (7.1) holds, there exists a minimal 8ublield C = c{}
of Q(jR) such that F EQ(C@ Cg C). The field C is a finitely generated
k-hyperfield.
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PROOF. By the remark of p. 256 of [0], we may assume lY e lll and
{} =1= 0 mod ’Jl+. In fact, even if this is not the case, {}’ (x) _ ?(X + xi)
satisfies the previous conditions, and Barsotti’s remark shows that we can
get all statements about O(x) by specializing the corresponding results

about {}’(x).
If 0 satisfies the previous assumption, as Q(B &#x26; B &#x26; B) r) (:RX:RX:R) ç

ç; RXRXR, we have F E RXRXR; therefore from part %) of (7.2) and from
the symmetry of .F we deduce that 0 is the subfield of Q(R) generated over k
by the elements

where ,u, v range over Nn.
Here and yv have the same meaning as in (7.2); therefore if

we have

Now we will prove the second statement. From (7.1) it follows that F

is a « cocycle of a symmetric bi-extension )}, i.e. it satisfies (2.15). From this
we deduce that

As the right-hand side of (7.6) is in Q (C,. 0 0,) Tx,,, X4]’ .A.ttV(XI + x,) E Q( CI @ C2)
for all p, v E Nn. Therefore, if P denotes the extension of the coproduct of .R
to Q (B), we have P C C Q (C 0 C) - Now, let e be the extension of the in-
version of B to Q(R), and let C’ be the smallest subfield of Q(R) which con-
tains C and eC. As it is clear that C’ is a finite regular extension of k, the
statement is a consequence of (6.2) if we can prove that C’ is a hyperfield.
From relations 02 = t and Po = (e e) P (which hold in R) it follows im-
mediately that PC’cQ(C’0C’) and C’ == C’. Finally, the properties of P
and p required in (6.1-) are consequence of the analogous properties in .R;
therefore C’ is a hyperfield, Q.E.D.

From (7.4) it follows that to every 0 of type theta there corresponds a
hyperfield Oø, hence (cf. §6) a group variety V* such that Oø == k(Vø).
Two elements 0 and P’ of Q(Jt) such that {}/{}’ is a quadratic exponential
will be said to be associated. It is clear that if P and P’ are associated ele-

ments of type theta, then C. = Co,.
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If DE Q(:R) is an element of type theta, by dimension of lS we shall mean
the dimension of the minimal subhyperdomain (cf. § 3) Ro C B such that
the F of (7.1) is in Q(Rø@ Rø@ Rø). This Rø (by means of the usual limit,
cf. § 3) determines a sub-bidomain :RØk 3t: 9tø is the minimal sub-bidomain
of A containing some element associated to 0.

Let 8 be the sub-k-algebra of B generated by the A,,(x,)Is of (7.5).
Since every element of /S is regular at the identity point e of V,,, S C Ov e;
therefore Ro c Ôv,e, so that dim Rø : dim Ôv,e = trascendency degree of Oø
over k. In particular, if dim D = trasc. deg. of Co, S(kers) = oll , hence

Ro = ÔV,6. In this case 0 will be called a theta element. A theta element D
will be called nondegenerate if dim ls = dim R, that is if 3t = %o. Observe

that from 9t = :Rø we can only deduce that Rø is isogeneous to B. Finally,
let lS be a theta element; as Ro = ðv,e is a hyperdomain we conclude that Vo
is an extension of an abelian variety by a multiplicative group G’M.

In the next section we shall characterize the elements theta whose cor-

responding variety is an abelian variety.
Now we shall show how it is possible to recover the hyperfield Co directly

without using the .F of (7.1). Also in this case, in wiew of the remark at

p. 256 of [0], we may suppose P E:R, {} =1 mod A+.
The following easy remark will be used later on.

(7.8) With the notation o f (7.2), let where

A,(t) E S. Denote by
I

the Artin-Hasse logarithm L(q) ; then the .Å,’8

and B,ls generate the same field over k.

In fact the Bv’s are polynomials in the arguments Ay’s, with coefficients
in the prime field Fp. But also the converse statement is true, because
if E denotes the Artin-Hasse exponential, one has E(-L(99)) = cp.

Recall that a k-endomorphism 6 of B is an invariant hyperderivation
if (i &#x26; 6) P = Pb and ker 6 C k. An invariant hyperderivation will be called
canonical if there exists a d E C’P and a non-negative integer i, such that
the restriction of di to B coincides with 3.

It is well known (cf. chap. 4 of [MA]) that there exists a finite subset
{dO), ..., dr)} of C’R such that the elements d,(’), where j&#x3E;O and l:i:r,
form a p-basis of the k-algpbra of the invariant hyperderivations of R. For
our purposes it is enough to know that every invariant hyperderivation of R
has an expression as a polynomial in the if;i)’S, with coefficients in k.

The following notations will simplify the description of the facts

which concern us. If i E N and v = (nl, ..., nr) E Nr, then Ivl == L nj,

and
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(t is the Verschiebung). Let s eN and let N(s) be an ordered (s + I)-tuple
(vo,..., v,,) of elements of Nr, where I v,, =1= 0 if 8 &#x3E; 0. Then we set

On the set JY’ of the N(8)ls we shall define the following partial-order:
N(s) C N’(s’) if w(N(s))  w(N’(s’)). Observe that w(N(s)) is the weight
of the monomial d(’) when the weight pl is attributed to d,(’). Finally, ,
if L1 is a monic monomial of the symmetric algebra S(C’P), A* will denote
the operator obtained by replacing each factor d c- C’R of 4 with the

corresponding d*. For instance each d::(s) is a particular A*.
In the following lemma S stands for a k-algebra without zero-divisors.

If (1 is a k-homomorphism of the hyperdomain R, the same symbol will be
used for the S-homomorphisnl of Rs = RXS which extends (1. The same

k

convention will be used for the operators d*.

(7.9) LEmmA. Let x E .Rs, x =1 mod (Rs)+ ; let C be the field generated over k
by the elements e(ðL(x») of S (s is the coidentity of R), when 6 ranges over the
set of the invariant hyperderivations of B. Then C coincides with the field 0’
generated over k by the components of the vector e(L1* log {x}), when L1 ranges
over the set of the monic monomials of S(e’R).

PROOF. Since log {xl = (....L(x) ; L(x), ...) (see § 3) it is clear that C D C’.
Conversely, from what we already have observed about invariant hyper-

derivations 6 of B, we can deduce that every such 6 is a linear combina-
tion with coefficients in k (of a finite number) of d"(’)Is. Therefore it is enough
to show that e( dN(s) L(x)) E C’ for every N(s) E N. To this end, recall

(cf. (4.1)) that if d c- Cf? and y = (..., y-1; yo 7 y, E biv Rs, then (d*Y)(-I) = 0,
while for i &#x3E; 0 we have

where P is a polynomial in the arguments hy j with 0  j  i, and h is a
monomial in the dr’s with 0 c r c i. Moreover, if we give weight p 3 to d;
and Yi, then (d*y)i is isobaric of weight pi i separately in the d/s and yjls.
As a consequence, if in (d*y)i there is a monomial of positive degree in di,
we may conclude that it is of type zdiyj, where z is a monomial of posi-
tive degree in the y, with 0  1  i - 1. Recall also (cf. §4 of [MA]) that
if x, y c- R,, then
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where ,uRs is the product map of Rs and P, is an isobaric polynomial of
weight p i if dj &#x26; t and t 0 dj have weight p j.

In our case, from the facts just recalled it follows that

where PN(,,) is a polynomial in the arguments dN’(8’)L(x), isobaric of weight
w(N(s)) in the dN’(8’). Moreover, if in P,(,) there is a monomial of positive
degree in some dN’(8’)L(x), with w(N’(s’») == w{N(s»), such monomial is of

the type L(X)rdN’(,’) for some positive integer r. As a consequence,

where the dN’(8’) effectively appearing in .P) are such that w (N’ (s’ ) ) 
 w(N(s)). At this point it is clear that e{dN(O) L(x») E 0’ and that if

B(dN’(8’)L(x») E 0’ for every N’(s’) with w(N’(s’)) C w(N(s)), then also

B{dN(8)L(x») EO’. Hence, by induction, we conclude that e{dN(8)L(x») E C’
for every N(s), Q.E.D.

(7.10) COROLLARY. Notations and assumptions being as I&#x3E;% (7.4), let 0 c a,
{} I mod :R +; then the field Co is generated by the components o f all vectors

8 0 e) ((t (D d * -Ox J’) log {Fl) when d and d’ range over the set of the

monic monomials of positive degree of S(C’R).

PROOF. By the assumption on 0 it follows that

By ( 7.2 ), (7.4) and (7.8) we know that Co is generated by the elements
(t@ yP,@ Yv)L(F) when fl and v range over Nn - {o}. Therefore if we set

61, = (t &#x26; yg) P, we have (t 0 8 0 8) ((t 0 6/, 0 6,) E(F)) = (t 0 yP,@ Yv)L(F), so
that Co is also generated by the elements (t (D 8 &#x26; 8) ((t 0 6 0 6’) E(F)) when
6 and 6’ range over the set of the invariant hyperderivations of R. Observe

that if 6 (or 6’) is the identity map one has (t 0 8 Ox 8) ((t (D 6 (D ð’)L(F)) = 0,
so that Of) is also generated by the set of elements s.-p when ð"
ranges over the set of invariant hyperderivations of RXR (here again we
use the convention for extended maps already employed in (7.9); thus the

previous eRxR is really the coidentity of (RXR)R). For the same reason the
set (t (D 8 &#x26; 8) ((t 0 J * (D A’) log {Fl) of the statement coincides with the set
8B-B(,A log{Fl) with A’ ranging over the set of monic monomials of

8 (C’ (R x R)). Therefore our statement follows from (7.9), where Rs = (RXR)R
and x=F, Q.E.D.
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Finally we can prove

(7.11) THEOREM. Notations and assumptions as in (7.4). Let {} E:R,
{} == 1 mod :R +; then the field C6 is generated by the components of all the

vectors L1* log {ð} when d ranges over the set of monomials o f degree&#x3E; 2 of 8 e’ -ll) .

PROOF. If apply the operator (t (8) e 1,D e)( (t (8) L1* £ d 1) log ( 1) to both
terms of (7.1), and recall the invariance of the d* ’s (last formula of (4.2)),
we have

From (7.12) and (7.10) we obtain the desired result.
We shall now invert theorem (2.14).

(7.13) THEOREM. Let {} E Q(:R) be a nondegenerate theta element; then there
exists a unique divisor X on the variety Vø corresponding to {} such that every {}x
is associated to 0. 

’

PROOF. Let d, d’E e’Rf}; then if we apply the operator ( (dd’) * © t (D t) log ( )
to both sides of (7.1) we obtain

Now, fix a point P of V. Since (M% log {&#x26;} has its components in (7

(cf. (7.11») it is possible to choose points Q, .R of TT in such a way that all

components of (M% log 101 are regular at P + Q + B, P + Q, P + R,
and are such that (V x P x Q) is not contained in a pole of F’. Now if we

identify points P of V with the corresponding natural homomorphisms
Ov,p--&#x3E; ki in wiew of the previous choices we have

and

is regular in an open set tI containing P. From (7.14) and what we have
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just observed it follows that

for all d, d’ E C’R.
Let flL be a finite open covering of TT consisting of (some of the) open

sets previously defined. Since from (7.15) it follows that (dd’)* log {CPu/CPu’}
is regular in U r) U, using (4.4) we conclude that gJu/CPu’ Er(UnU’, O=;r),
and finally that (CPu)ue’11 is the cocycle of a divisor X.

By (5.2) we know that Vx is a solution of (7.15), hence that

(dd’)* log (lsx)jls = const.. But this relation, in wiew of (7.14), implies
((dd’) * &#x26; t @ t) log (F) == 0; therefore using (4.4) we conclude that .F== const., y
that is c (q.e.), Q.E.D.

Now we shall give some tests which allow us to recognize the effective
divisors by their theta elements.

(7.16) THEOREM. Notations are as in (7.13). The following conditions are
equivalent :

i) X is effective;

PROOF. With the notations of (7.1) we have
therefore 6(xl, x2) c Q (C &#x26; C), and the divisor of 0 (x,,, x2) is

Therefore if X is effective the poles of Y are 2(p*X) and p*(X + (2013 t)*X),
and the converse is also true. Thus, if we observe that an element of

C &#x26; C has only zeroes of the type Z X A and A X T if and only if it has the
form l(xI)g(x2), we may conclude that i) is equivalent to iii).

Now, an argument similar to that used for proving part d) of (7.2)
shows that (Q (B) 0 Q (R)) r) Q (C &#x26; C) = C &#x26; C; therefore ii) implies iii).

If X is effective the denominator of 0 is in :R@:R and its numerator
in :RX:R; but given that i) implies iii), this numerator is actually in

(Q(:R) 0 Q(:R)) (B (:RX:R) = it Ox jl; thus iii) implies iv).
Finally, if iv) holds, O(XI, x2) E (Q(:R) @ Q(:R») n Q (C 0 C). But, as one

may easily verify (for instance using hyperderivations), this intersection

is contained in Q(R) 0 Q(.R), so that iv) implies ii), Q.E.D.



209

In the theorem above we have tacitly assumed that V is an abelian
variety. If that is not so, we must consider the degeneration locus of V,
but the proof does not change.

A theta element which satisfies the conditions of (7.16) will be called

entire. If 0 e Xl is an entire theta element, we- shall denote by C({}) the set
of elements O’c- gt such that {}’ is an entire theta element and 0/0’c- Co.
E(O) will be called the Zinear system of {}. By the arguments of this section
and by the general theory of varieties, we know that E(O) is a finite-dimen-
sional vector space over k. Let (Do, ..., 0,,) be a set of generators of C({})
and. V the variety with (homogeneous) general point ({}o, ..., 7 then,
if TT is (biregularly) isomorphic to a variety W we shall say that {} gives a
representation of W. 

(7.17) THEOREM. Let 0 be an entire I%ela eleme&#x3E;I; then for every integer
r&#x3E; 3, Or gives a representation of Vo.

PROOF. By the general theory of group varieties it is known that if the
divisor X is effective, and if r&#x3E;3, then rX is very ample. If f o = 1, /iy ..., 1m
are elements of Go such that Xi = rX -}- (Ii), for 0  i  m, is a basis of the
linear systems of rX, then the elements lS, = {}rli give a basis of the linear
system of C(Dr).

Now if t is an indeterminate over k[f,, f-I 7 (t, t f l, ... , 7 tf,,) is a general
point of a variety isomorphic to V,,; but k [t, tfl’ ..., tlm]  k[O(,,... ðrn], 7 Q.E.D.

8. - Riemann form.

The Riemann form of a divisor X is defined in chapter 7 of [MA]: it

is a K-bilinear alternating form on canonical K’-modules which deter-

mines the algebraic equivalence class of X (cf. also [9]).
In this section we shall show how this form may be directly constructed

from a theta element of X. Since the results we are concerned with depend
uniquely on the algebraic equivalence class of X, we shall assume lYx E :Jt,
Ox = 1 mod :R+.

We begin by constructing an alternating K’-bilinear form associated
to Px: first, starting from lsx by means of (2.13) one constructs F, next

using (2.4) one finds a CP(XI’ X2) E C’ Tx,l unique up to multiplicative ele-
ments of .R2, and finally (2.10) gives X(XI, X2) E lJlRfl. The element X is

bi-multiplicative and alternating. The construction of X may be obtained
directly using the properties (2.15) of F.

As we have already observed in section 2, X corresponds to a bi-homo-
morphism Tt Â x nA -&#x3E; 0m ; therefore if we go from groups to the corresponding
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canonical K’-modules, from Z we obtain an alternating K’-bilinear form
on canonical X’-modules

or equivalently a homomorphism of canonical K’-modules

The map may be explicitly described: first, since x = 1 mod (:RX:R)+,
log (z) exists; next, as X is bi-multiplicative and alternating, log fxl is

an antisymmetric tensor of degree 2 in the tensor algebra ’G(C,’ -Jt (D C’ :R).
Finally, y if we observe that the restrictions to C’:R of the Barsotti oper-
ators are K’-linear forms, and recall that t log (z) = log f ZI, we see that
the map

is a .K’-bilinear alternating form of C’31’, X C’g in K’: it is precisely E.
Therefore,

Observe that e, being a homomorphism of canonical modules, preserves
the slope. As a consequence, if XIn denotes the multiplicative component
of :R (i.e. Xln is the block of slope 1) we have eC’T,, = 0. In fact XIn has
slope 0 and every block of C’a has slope &#x3E; 0. For this reason we shall

only be interested in the restriction of e to the radical part C’9tr (J’t, de-

notes the product of the blocks of slopes  1 of Jt).
Now we state the main result of this section:

(8.2) THEOREM. The restriction of e to C’ jir coincides with the restriction of
the homomorphism cpx of chapter 6 o f [MA]. As a consequence, the restriction
o f E to C’:Rr X C’:Rr coincides wit% the regtriction of the Riemann form of X
(as de f ined in chapter 7 of [MA]).

Before proving (8.2) we shall describe the following procedure (cf. § 64
of [MA]).

Let b be a closed hyperclass of A (cf. § 4); let pi, p*, where i = 1, 2,
be the projections of A X A on A and respectively the corresponding maps
between hyperclasses; then (cf. [11] and chap. 6 of [MA])
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where 9(X, I X2) C- VeCt Q (C &#x26; C) is a factor set of A in the (infinite) Witt

group W. Denote by A’ the provariety obtained as inverse limit of the
sequence A X A fl ..., and by C’ its field of rational functions. By using
the projection of A’ on the first term of the sequence, one can see that g
corresponds to an extension of A’ by W. But (cf. last page of [2]) every
such extension splits, so that there exists z E vect C’ such that

this z is the x of (6.12) of [MA].
Observe that b determines g up to an additive constant, while g deter-

mines z uniquely : this is so, because there is no canonical vector with com-

ponents in C’. However if z is allowed to be in biv 3t, it is determined only
up to elements of C’J’t. In fact since canonical vectors with components
in 3t do not exist, if z’ E biv 3t is a solution of (8.4), it follows that

where q E e’:R is determined by the condition (z+ n)(-,) = 0. Therefore
the sequence ((pt)-rprZ’)reN converges in biv ’JI, and

Now we may prove (8.2). 

PROOF. Apply the procedure just described to the hyperclass b(d, X)
(cf. (5.I ) ) and denote by zd = ZI(X), r¡d and gd the elements previously de-
noted by z, q and g respectively. An argument similar to that used in (5.2)
shows that gd(XI, XI) may be chosen in such a way that

therefore using (2.13) we have

By comparing this with (8.4), and by (8.5), we obtain
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Observe that 6z, = 0, and that for a suitable divisor Y = 0, (8.9) written
for 0,,+, gives a zd regular on every p-division point of A’. In this situation
(cf. (6.14) of [MA]), since dEe’ Rr, the sequence (p-S(pt)SZd)seN converges
in biv:Rr, and with the notations of §§ 67, 68 of [MA], we have

Since this limit, when it exists, depends only on X, without loss of generality
we may suppose Y = 0. Since q, is a canonical bivector, p-s(pt)srd = 27,,2
for every s E Z, hence

Now we may compare cpx with e: by § 2 we know that

then if we set

and

from (8.11) it follows that

At this point, recalling that C’ C 0’ (cf. § 2), we have Åd E vect U’ and

,, E C’Jt,, so that by comparing (8.12) with (8.9) we conclude that

and

If instead we set

and

by (8.11) it follows that 

Now however, ,tà E biv Rr and E e’:Rr; moreover from (8.14) it follows

that every component of p,, is in R’. Now, we shall show that

Emp-,R(pt)slz, = 0. If w denotes the valuation of :Rr normalized in such a
soo
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way that the group of w-values of .Rr is Z, a fundamental set of neigh-
bourhoods of zero in biv 9tr is given by the sets

obtained by varying i in Z and fl in R+.
In our case, for every integer s there exists an integer h, s such that

t ’_R+ C ’Jthtl R+, and 11,8 tends to 00 with s.

Since every component of ,ud has a w-value &#x3E; 0, it follows that (pt)8/Jd E
c- U,(p-i+,,+h,,) and thus p-8(pt)S /J E U i-S(p-i+S+hs). Now we must show that
for every integer H &#x3E; 0 there exists an integer s’, such that for every &#x3E; s’
it is possible to choose i&#x3E;s -}- Hand p-i+s+H:&#x3E;:H. But since hs - oo when
s --&#x3E; oo, we may choose i = s -f- H, and s’ such that h,,, &#x3E; H + log, H.
From what we have just shown, recalling that p-s(pt)sCd = Cd for every
integer s, it follows that

Finally, from (8.10), (8.15), the first of (8.13) and (8.1) it follows that

At this point we have shown how, starting from Ox, we may construct
the restriction of ggx to C’-llr. If A is an abelian variety, in wiew of the
results of chap. 7 of [MA], ggx is completely known when, besides this

previous restriction, one knows also its restriction to C’-lln : this restriction
too may be obtained directly from {}x-

(8.16) COROLLARY. Let 0 = Ox be a theta element, denote with .Rt the hyper-
algebra of the itale component of A ; then for every d E C’-R, there exists Z = X
such that the sequence (p-8(pt)8(d* log {{}z} - c(d* log {{}z})))seN converges in

C’Rt. In this case we have

PROOF. We have already observed that there is a divisor Z as in the
statement. Now, remember that the map d F-*’qd (cf. (8.9)) preserves the
slope; thus, since the elements d of C’ -lln have slope 1, in the present case r¡d
must be 0. In conclusion, the formula analogous to (8.10) now becomes
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REMARK. Theorem (7.11) and formula (8.9) tell us that Co may also be

generated by the components of the vectors J * Zà obtained when d ranges over
C’-R and 4 over the set of monic monomials S(C’.R) of positive degree.

At this point it is possible to recognize the entire theta elements whose
corresponding varieties are abelian varieties. The main fact used for this

identification is that the abelian varieties are characterized among group
varieties without periodic factors by the possession of a self-dual B-T group.

(8.17) THEOREM. Let {} be an entire nondegenerate theta element, A =: Vs
its corresponding variety, and X the divisor of 0 on A. Denote with M the

quotient module of the K-module generated by the Zd’S of (8.9) (d ranges over
e’ En and X over its algebraic equivalence class) by its sub-X-module generated
by the elements which are in vect C. Then A is an abelian variety if and only
if X is a free K-module of rank f, where f = rank (ker ptA) == dimx C’-iln .

PROOF. Every element m E X contains an element zd for which

$ i m p-S(pc)Szd = qxd exists: such limit depends uniquely on m ; thus we have8--

a map P: m -* qxd of M in e’Rt. One may easily verify (cf. (6.15) of [MAI)
that # is a K-linear injective map. Now if X - Y, z,,(X) = z,(Y) mod vect C,
therefore d )- zd induces a K-linear map a of C’ En in M, and it is clear

that #a = ggx.
If A is an abelian variety and X is the divisor on A such that lfx = P,

 the only point P such that a* X = X is the identity point e. But, since X
is effective, this condition implies that X is nondegenerate, that is that the
polarization corresponding to X is an isogeny (cf. 10 of [3]). In this case

(cf. chap. 7 of [MA]) cpx is an isomorphism, thus also a is an isomorphism.
If, on the contrary, A is not an abelian variety, y dim., C’ En &#x3E; dim C’Rl t

so that dim X  dim C/ Q.E.D.
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