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Pseudoconcave Homogeneous Manifolds.

A. T. HUCKLEBERRY (*) - D. SNOW

When we began this project we had the goal of carrying over some of
the main techniques in the theory of compact homogeneous manifolds to
the case of pseudoconcave homogeneous manifolds. In particular, we were
looking toward a theory in the non-compact case which would parallel the
Borel-Remmert theory [10]. It turns out that many techniques are rather
easily carried over from the compact to the pseudoconcave category. The

first three sections of the paper are devoted to this: we give a detailed account
of the normalizer, ALbanese, and meromorphic reduction fibrations for pseudo-
concave complex-homogeneous manifolds. (By complex-homogeneous we
mean that there is a complex- Lie group acting transitively.) The latter is

in fact proved for arbitrary complex-homogeneous manifolds.
In the second part of the paper we restrict ourselves to non-compact

0-concave complex-homogeneous manifolds. Our main result is a complete
description of such manifolds:

MAIN THEOREM. X is a non-compact O-concave complex-homegeneous
manifold. if and only if X is a positive line bundles space over a compact
homogeneous rational mani f old which can be realized as a linear cone in projec-
tive space with its vertex removed.

Thus, to construct such an X, one starts with an arbitrary compact
homogeneous rational manifold Q (alternately called a flag manifold and
given as the quotient of a semi-simple complex Lie group and a parabolic
subgroup). Then, imbed Q in a hyperplane {z,, = 0} PN-1 c PN, and connect
each point of Q with lines to the point [1 : 0 :... : 0]. The resulting compact
variety is what we call a linear cone. Let X be this cone with the vertex

[1 : 0 :... :0] removed. Then X is non-compact and easily seen to be complex-

(*) Partially supported by NSF Grant # 75-07086.
Pervenuto alla Redazione il 4 Ottobre 1978 ed in forma definitiva il 4 Aprile 1979.
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homogeneous. An appropriate distance function to the point [1 :0 :... :0]
then gives a 0-concave exhaustion for X. Projection into the hyperplane
{zo== O} reveals the line bundle structure of X. An example to keep in
mind is the Segre cone V = {Z C P4 IZ, Z, -Z3Z41 with the vertex [1: 0 : 0 : 0]
removed, X = FB{[1:0:0:0]}. Here, X projects to a Pl x Pl (the 2-dimen-
sional projective quadric) in the hyperplane at infinity.

The remarkable fact is that X is algebraic (it even compactifies to a
rational manifold) when, a priori, we do not even know there exist mero-
morphic functions on X. The proof is based around the special case pre-
sented in section 8 where we assume X compactifies to an algebraic variety, V,
and the complex Lie group, G, acting transitively on X is a group of colinea-
tions of pN-:J V. In this setting we use a flag argument to show that the
radical of G has closed, 1-dimensional orbits on X, and in fact these orbits
give a homogeneous fibration of X as a line bundle space over a homoge-
neous compact rational manifold. The general case is reduced to this special
case by studying the normalizer fibration (section 9). The base of the nor-

malizer fibration is in the special setting of section 8, so that we need to
understand the fiber which is parallelizable (discrete isotropy). The necessary
results for this case are presented in sections 4 through 6. There is also a

problem if G has no radical, and we eliminate this possibility in section 7.

Finally, in section 10 we show that the line bundle structure of X is very
ample so that we easily obtain the cone realization mentioned above.

For more information on the characterization of homogeneous cones we
refer the reader to the work of Huckleberry and Oeljeklaus [16].

We conclude this introduction with a small prelude to [17]. In [17] we
consider non-compact 0-concave manifolds X which are homogeneous under
the action of a (not necessarily complex) Lie group. This is a bigger class
of manifolds than those covered by the present paper. For example, PIBB ,
where B2 is a ball in some C2 in P2, is obviously not holomorphically equi-
valent to a positive line bundle over a rational manifold. In some sense,
such examples as this are not too far from generic. In particular, one can
prove that if the group is not complex and dim X &#x3E; 2, then either X is

PNBB , or X can be realized as the complement of a totally real compact
homogeneous manifold of half the dimension in a compact homogeneous
rational manifold of a very special type.

0. - Definitions and notation.

In the case of a compact manifold X, it is known that the full group
of biholomorphic maps of X onto itself, i.e. the group of automorphisms
of X, is a complex Lie group [8]. This is not necessarily true when X is
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non-compact. However, we wish to restrict to this setting. Thus, we define a
connected complex manifold X to be complex- homogeneous if there exists a
complex Lie group with a countable number of components which acts
holomorphically and transitively on X. We denote this group by G. If H

is the isotropy subgroup of a fixed point Xo EX, g = fg E G Ig(xo) = xo}, then
we have the natural identification of X with G/.g, the right H-coset space
of G. We may always assume that G is connected since the connected

component of the identity, GO, acts transitively on X. In addition, we always
assume that the group G acts effectively on X, that is, the only element
of G which leaves every point of X fixed is the identity. In this way we

may consider G to be a subgroup of Aut (X), the group of automorphisms
of X, and we will often write G c Aut (X). Note that this last assumption
is not restrictive since the closed complex subgroup L = {g c G ig(x) = x for
all x c XI is normal in G so that G := G/L is a complex Lie group which
acts transitively m% effectively on X. If H is any closed complex sub-

group of G then GIK, the right K-coset space of G, is always a complex
manifold. If -E" contains another closed complex subgroup J, we obtain a
natural holomorphic homogeneous fiber bundle. GIJ -+ GIK with fiber iso-
morphic to K/J. We say that X = X(B, o, F) is a homogeneous fiber bundle
if X = G/H, B = G/K, F = KIH, and (2: X - B is given by the natural pro-
jection GIH --&#x3E; GIK.

A complex manifold X, dim X = n &#x3E; 1, is called p-concave if there exists
a smooth, non-negative function qJ: X -+R+ satisfying:

I-) X. = {0153 E X IqJ(x) &#x3E; a} is relatively compact in X for a &#x3E; 0 (1).

2) For some a,&#x3E; 01 the Hermitian form

has at least n-p positive eigenvalues on the complex tangent space
Tc(X).,, for all x E X"’Xao.

Such a q is called a p-concave exhaustion for X. (See [2] for more details
about p-concave manifolds.) In this language, if X is a p-concave manifold,
0  p  n - 2, then X is pseudo-concave in the sense of Andreotti [1], and
if p = 0 then X is strongly pseudo-concave. Every compact manifold is,
of course, 0-concave.

(’-) Whenever we use the set Xa in this paper we will choose a so that the boun-
dary of Xa is smooth.
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We denote the field of meromorphic functions on any connected complex
space X by %(X) and we let t(X) := transdeg x(X), the transcendence de-
gree of this field over the constants. A complex space Y will be referred
to as meromorphically separable if, for any two distinct points y,, Y2 E Y,
there is a meromorphic function m on Y which is not indeterminate at

either y, or Y2 and such that M(YI) -r-- M(Y2) (i . e. u( Y) separates the points
of Y). 

1. - The normalizer fibration.

In this section we present a natural fibration which is well known in
the theory of complex homogeneous manifolds [31]. The idea is to look

at the adjoint action of G on the tangent space of X = G/H at the point
.x° = eH. This amounts to following the orbit of § (the Lie algebra of H)
under the adjoint action of G in ffI k,m, the Grassmann manifold of k-planes
in m-space (k == dim §, m = dim g). we then obtain a map of JL onto this
orbit which, in general, could behave wildly in M k,m. Of course if the

manifold X is compact., Remmert’s proper mapping theorem shows that
this orbit is a compact analytic set in --[ k,m. In fact, if the orbit is compact
it can be shown to be a homogeneous rational manifold (see Borel-Rem-
mert [10]). For the more general p-concave manifold X, one must rely on

knowledge of the function field x(X) in order to describe this orbit.

THEOREM 1. Let X be a connected complex homogeneous mani f oZd,
dim X = n. Assume X is p-concave, 0  p  n - 2. We write X - G IH and

let N = N,(HO), the normalizer of .g° in G. Then the natural projection
y: GIH --&#x3E; GIN yields a holomorphic honaogeYgeous fiber bundle with GIN Zariski
open in an irreducible compact projective algebraic variety and the fiber NIH
is group theoretically parallelizable.

PROOF. The subgroup N = NG (HO) is a closed subgroup of G contain-

ing so p: GIH --&#x3E;- GIN naturally has the structure of a homogeneous fiber
bundle. We may write NIH:fi--! N’IF where JV’= NIHO is a complex Lie

group and T= H/H° is discrete. Thus N/H is parallelizable.

Let m = dimc G and k = dime H. We can consider the Lie algebra 4
of J? as a point in the Grassmann manifold M k,m consisting of the k-dimen-
sional linear subspaces of the Lie algebra g of G. By means of the adjoint
map, G acts linearly on M,,. and the isotropy in G of the point f) E M,,.
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is just N. Since H c N, we can map G/.g holomorphically onto B, the

G-orbit of 1), which we identify with G/N. Noting that M,,,. is a compact
projective algebraic variety in some PN, we define Ê to be the smallest
compact projective algebraic variety which contains B. We claim that
dim P === dim B. If this is true, then G, which acts linearly on M k,m and
thus holomorphically on 11, has an open orbit in B, namely B. The va-

riety P is then said to be almost-homogeneous with respect to G. It is not

hard to prove (see e.g. Remmert and van de Ven [25]) that the complement
in 3 of the open orbit of G is an analytic and thus algebraic set, showing
that B is Zariski-open in f3. To prove the claim we first observe that if

dim B C dim 13 then there are t === dim Ê algebraically (analytically) inde-

pendent meromorphic functions f1, ..., f, c- x(f3) such that f t is analytically
dependent on fi , ..., f t-, when restricted to B. Then u* f t c- x(X) is analyt-
ically dependent on the meromorphic functions lz* f , c- x (X), I  i  t - 1.
But Andreotti shows [1] that on p-concave manifolds, analytic dependence
implies algebraic dependence of meromorphic functions. Therefore f t is

atgebraicaZl y dependent on f,, ..., f t-, when restricted to B, i.e. there is a

polynomial P, such that P( f 1, ..., f t ) = 0 on B and P(f,, ..., f,) =,,z:: 0 on f3.
Writing the fils in homogeneous coordinates [x,,:... : x.,] c- PN and clearing
denominators gives rise to a homogeneous polynomial Q such that Q[xo :
:... : x,,] = 0 on B and Q [x,,:... :x,] 0 0 on f3. This contradicts the minimal-

ity of A
To see that the variety 13 is irreducible, let 131, ..., f3t be the irreducible

branches of 11 and let S be the singular set of P. Then the sets P,BBS, ..., 13’0-..S
are disjoint, while the set of BBS is connected since S is thin analytic in B
for dimension reasons. Therefore B""’8 c f3,BS for some i which shows that
B c 3, . Thereforel f3 = f3i I and f3 is irreducible. D

2. - The meromorphic reduction fibration.

In [13], y Grauert and Remmert show that for a compact homogeneous
manifold X, there exists a meromorphic reduction Q: X - B. This means

that x(X ) is isomorphic to x(B), that B is meromorphically separable, and
that B is universal with respect to this property. We remark that this
reduction exists for arbitrary complex-homogeneous manifolds:

THEOREM 2. Let X be. a connected complex- homogeneous manifold. Then

there exists a holomorphic fibration of X, o : X -+ B, with a group theoretically
parallelizable fiber F, having the following properties:
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1) X = X(B, o, F) is a homogeneous fiber bundl e and e is semiproper
on closed e-saturated sets (2).

2) x(B) is isomorphic to x(X), and B is meromorphically separable.

3) If T = X - Y is a holomorphic map into any meromorphically sepa-
rable complex space Y then there exists a unique holomorphic map
u : B - Y such that T - aop.

PROOF. For a homogeneous manifold X and x E X we define,

Clearly, F(x) is an analytic set in X and can be defined by finitely many
f-l( a).

LEMMA. For a homogeneous manifold X the sets F(x), x E X form a

G-invariant analytic partition of X. That is,

PROOF. For any g E G we have an isomorphism g* : x(X) -+ u(X). Then

For the second part, if y E I’(x) then y Ei f-’(a) for all (f, a) E x(X) x Pl with
x c- f-’(a). Therefore F(y)CF(0153). We claim that x c F(y) which implies the
other inclusion, F(x) C F(y). For suppose x 0 F(y). Then there exists f E x(X)
and a c- Pl such that x 0 /-’(a) and y c f-’(a). Let I be the set of inde-

terminacy of f. It is easy to find a g E G so that g(y) E f-’(a)Bl and g(x) 0
ft f-1(a). (N= fgc-Glg(x)OXBf-’(a)) is an open neighborhood of the identity
in G. So N(y) is an open neighborhood of y and therefore must intersect
f-’-(a)BI). Letting h = g* f, we see that neither x nor y is a point of

(2) A map p: X --&#x3E;- Y is said to be semiproper if, for any compact set K in Y,
there exists a compact set .g in X such that e(K) = K r) e(X). A set 31 in X is
said to be e-saturated if e-1( e(m)) c M for all m E M.
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indeterminacy for h and h(x) 0 h(y) = a. This means that y 0 F(x), a con-
tradiction. Therefore x c- F(y), and the Lemma is proved.

The G-invariant partition of X given by F(r) , x E X, allows us to put a
fiber bundle structure on X in the following canonical way (see Remmert
and van de Ven [28]) . We fix Xo E X and let H be the isotropy subgroup
of x,, in G, so that X = G/gH. Define J to be the stabilizer of F(x,,) in

G, J = {gEGlgF(xo)==F(xo)}. Since F(xo) is an analytic set, J is a closed

complex subgroup of G [281. Note that the above lemma shows that J

acts transitively on F(xo) and H c J. We define B to be the complex mani-
fold G/J, and let Q: X - B be the natural projection p: GIH --* Gli with
fiber F : = JIH. Then the G-invariance of F(xo) implies that X = X(B, e, F)
is a homogeneous fiber bundle with e-’(e(x)) = F(x) F. To see that e is

semiproper on a closed saturated set V= e-1(e(V)), we take a compact set
.K c B and look at a finite cover of K, Ui c B, where on each Ui there is a
local trivialization of the bundle ggi: U i X F -+ e-1( U i). Now

is compact and eCE.) = K n p(V).
We now show that u(B) ,,(X). We do this by showing the injective

morphism e* : x(B) - u(X) is surjective. Let f be any meromorphic func-
tion on X and let I be its set of indeterminancy. Then I is empty or has
codimension 2. The hypersurfaces h-1(a) for (h, a) c x(X) x Pl are closed
e-saturated sets, since h-I(a):) F(z) for all x E h-1(a). Thus I = f-II(O) r1 f-’(C)O)
must be a closed e-saturated set. Then e is semiproper on I, and by the
semi-proper mapping theorem [19] we know e(l) is analytic. Furthermore

e(l) is empty or has codimension 2 because

and

are hypersurfaces in B. (These last statements follow from the e-saturation
of the hypersurfaces.) On XBI, f is a holomorphic map into Pi which is
constant on the fibers of e. Therefore there is a holomorphic map
f ’: BBe (I) -* Pl such that i* (e* (f ’)) = f (where i: XBI ---&#x3E; X is the inclu-

sion). Now f’ can be extended across e(I) to a meromorphic function

f’: B --* P’, and so e*(f’) == f.
Now suppose Y is a meromorphically separable space and 1:: X - Y

is a holomorphic map. Then -r must be constant on the fibers of e. For

if 1:( x) =F 1:(Y), there is an m E n(y) such that m ( 1:( x)) =F m ( 1:(y)) . But then

T* m c- x (X) and 1:*m(x) =F 1:*m(y) showing e(x) =1= e(y). This allows us to

define a continuous map or: B - Y so that oro == 1:. Since is surjective
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we have that is holomorphic [13], and by its definition a is uniquely
determined.

Finally, we show that the fiber F is group theoretically parallelizable.
First we observe that the base of the normalizer fibration, G/N, is mero-

morphically separable, since it is Zariski-open in a projective algebraic
variety. By what we have just shown, there exists a map a : G/J - G/N
such that ao e = /-l, where p: GIH -+ G/N. Therefore J c N = N(J(GO) and so

.F’ ^! J/.H’ (JIHO)/(HIHO) = JIF, where J is a complex Lie group and r
is a discrete subgroup. 0

3. - The Albanese fibration.

The classical Albanese variety is a universal complex torus A(X) asso-
ciated with any complex compact Kahler manifold X. That is, there is a
holomorphic map a : X -A (X) with dimA(X) = § bi(X) such that if fl: X -)- T
is any other holomorphic map of X into a complex torus T, then there
exists a holomorphic map T: A(X) --* T such that TOa = fl. Blanchard [7]
considers the, case when X is not Kahler but still compact. He proves the
existence of a universal torus, A(X), for which dimA(X):! -lb,,(X). In

Theorem 3 we use Blanchard’s procedure, after making the appropriate
adjustments, for the p-concave case.

THEOREM 3. Let X be a p-concave manifold, 0  p  n - 2, dim X = n.
Then there exists a compact complex torus A(X), with dimA(X) S )bi(X’),
and a holomorphic map a: X -+A(X) such that if (3: X -+ T is a holomorphic
map of X into any complex torus T, then there is a holomorphic map
T: A(X) -+ T, unique up to alttomorphisms of T, such that io« _ (3. If, in
addition, X is complex- homogeneous, then X == X(.A(X), «, F) is a homoge-
neous fiber bundle with connected fiber F 0-!- a-1(O).

REMARK. If we write X= G/H, H the isotropy of x,,c-X, then A(X)
GIK where K is the smallest closed normal subgroup of G that contains H.
Note that .K also contains the commutator subgroup of G.

PROOF. The construction of the Albanese variety follows a general
procedure as outlined in Blanchard’s paper [7]. Two facts are needed.

Let co be a closed holomorphic 1-form on X.

1) If the real part of co is zero then ()) is zero.

2) If the real parts of the periods of w are zero then co is zero.



37

The first is easy and the second follows from the fact that there are no non-

constant pZuriharmonic functions on p-concave manifolds. In fact if "p: X --&#x3E;- R

is a pluriharmonic function it takes a maximum on X a at a point po E ôXa.
By concavity, we can map a 1-dimensional disk D into X, i : D --&#x3E;- X, so
that i (D-B{O 1) C Xa and i (0) = p,,: But then i* V: D --&#x3E; R is harmonic and

takes its maximum at zero. So i* V) is constant on D which shows that ’ljJ
takes its maximum on Xa at some interior point i(s) E Xa, and therefore
is identically constant by the maximum principle.

It now follows that the set D’ of all closed holomorphic 1-forms on X
forms a complex vector space whose real dimension is no greater than bl(X),
the first Betti number of X, which is finite for p-concave manifolds,
0  p  n - 2 [2]. Let D be the complex dual space of D’ (not the antidual
space). We define a map a: H1(X, Z) -*D by cx (y) (o)) = fw. The map «

y

is a homeomorphism and the image of .g1(X, Z) under « forms a subgroup
of D, which we denote by L1. It should be noted that L1 generates all of D
over the real numbers. For if d generated a proper subspace, then there
would be a non-zero complex linear form L on D such that Re (L(L1)) = 0.
But then L would define a non-zero closed holomorphic form on X with
the real parts of its periods being zero. This contradicts the second remark

above. We now let d be the smallest closed complex subgroup in D which
contains d and whose connected component of the identity is a complex
subspace of D. The quotient D/4 is then a compact complex torus which
we denote by A (X).

The rest of the Albanese construction follows as in the compact case [7].
That is, there is a natural holomorphic map a: X --*A (X) satisfying the
above mentioned universal property. We mention here only that the map «
is defined by oc(x) = F(x) + 4 where F(x) is the linear functional on D

x

given by F(x){ro) = fro (note that F is only well defined up to elements
a

of L1; see [7] for details).
For the second half of the theorem we must show that X = X (A (X), a, F)

is a homogeneous fiber bundle, with connected fiber .F’ = a-’(O) when X is
complex-homogeneous. First, we note that for any automorphism g : X - X
we have the holomorphic map aog: .X &#x3E; A (X ) and so, by universality, a

holomorphic map z ( g ) : A(X) -* A(X) such that T(g)OC( = aog. Applying the
same argument to g-I we see that r(g) has a holomorphic inverse, namely
z(g-1), so z(g) is an automorphism of A(X). In addition z(gl) o z(g2) o« _
-C(91)OM091.= aoglOg2= T(glog2)oa. Thus we have a homorphism T: G -

-+ T(X), (here T (X ) denotes the complex group of translations of A(X))7
defined by the composition of the following holomorphic maps, Paeo: G -* X,
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P".(g) = g(xo); a: X -+ a(X) with ex(xo) == 0; and i: A (X) --&#x3E; T(X), i(ex(x)) =
= translation by a(x). Furthermore, a(X) can be identified with the complex
abelian Lie group í(G): ex(X) = a(Gxo) == í(G)ex(Xo) í(G) under i. So we

may write oc(X) = C’IF for some discrete subgroup F. Now ex(X) must be
compact for otherwise we would have non constant pluriharmonic func-
tions on X, e.g. e (Re (zi)) for an appropriate coordinate function zi in Ck.
Thus «(X) is a complex torus, and by universality of « we must have

a(X ) = A(X ).
We now show the fibers of a are G-invariant. Let F(z) = a-’(,x(x)).

Then for gEG, a (gF(x)) = z(g) o«(F(x)) = í(g)ex(X) == «(gx). Therefore gF(x) =
= F(gr) for all (g, x) E G X X. As in Section 2, once we have such a G-in-
variant fibration we can put a natural fiber bundle structure on oc: X --*A (X).
We let X = G/H, where .H is the isotropy of K - Ig E GlgF(xo)== F(xo)}.
Then K is a closed subgroup of G containing H, and « can be identified
with the natural projection GIH -+ GIK. The base G/.K is biholomorphic
to A(X), by the surjectivity of a, and the fiber H/g is biholomorphic
to F(xo).

Since A (X) is an abelian groupy K must be a normal subgroup of G
containing both 2? and the commutator subgroup of G. If R is any other
closed normal subgroup of G containing H, then we have a holomorphic
map G/H - GIX. Now GIR is a complex Lie group which has no non-
constant holomorphic functions. (Otherwise (?/N has non-constant holo-
morphic functions, contradicting û(X) C for X p-concave.) Therefore

G/k is abelian [23]. In fact, GI-k must be a compact torus for otherwise
there would be non-constant pluriharmonic functions on GI-k and therefore
on X. Universality of a gives a holomorphic map r: GIK -* GI-k showing
that Kc ff. So -E’ is the smallest closed normal subgroup containing H.

Finally, we show that the fiber F is connected. We let

K, = u {KA IKt is a connected component of K, KA(} H 0}

and then a can be factored into the holomorphic maps

and

The al-fiber is now connected and the a2-fiber is discrete. This shows

that G/K’ is an abelian Lie group and so, as above, GIK’ is a torus.

Universality of a gives a holomorphic map r : a/K -+G/K’ such that 1’OlX== lX1.
Therefore G /K gg GIK’ and F = K/H  K’IH is connected. D
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4. - A fibration lemma.

In this section we will study certain exceptional cases which arise in
later proofs. These cases involve fibrations of a 0-concave homogeneous
manifolds which have 1-dimensional fibers. We show that the fiber can

never be isomorphic to C*, and if the base is a complex torus, it can also

never be isomorphic to C. We begin with a discussion of affine bundles
and the obstructions to such bundles reducing to line bundles.

Let X = X(Y9 7r9 C) be an affine bundle over a complex manifold Y.

Such a bundle has a local trivialization with respect to some Leray cover

Ui} of Y. The transition functions f ii: Ui n Uj -&#x3E; Aut (C) are given by
!i;(zj)==aijzj+bij, where zj is a fiber coordinate over U j . Associated to X

is a Pl-bundle, P = P(Y, 7/;1’ Pl) with transition functions

and a line bundle L= L(Y, a,, C) with transition functions {aij}. If ’we
let Ezi, z§] be the homogeneous fiber coordinate for P over Ui, then we
obtain a bundle preserving holomorphic injection X- P, given locally by
(u, Zi) -* (u, [zi, 1]). We will call E = P""X the infinity section of P, which
is biholomorphic to Y via the section s : Y -+ P, s ( y ) _ (y, [1, o]) , and which
is locally defined by the equation wi := zjfz§= 0 on xj[U,). These func-

tions determine transition functions 9ij = wi1w, on n-;l(Ui) 0 or-’(U,) which,
when restricted to E, define N(E), the normal bundle of E in P. Since

9ij = Wi/Wj= Zi/Zi== zi/(aiizi+ b;) = l/(aij+ bijwj), we have gij = l/aij when
restricted to E. Thus, making the identification of E with Y, we have that
N(E) is isomorphic to L*, the dual bundle of L.

Let 8l denote the sheaf of germs of holomorphic maps into Al-it (C)

Two affine bundles .

== X ’(Y, a’, C) with transition functions {fii} and {f;i} respectively are equi-
valent if there exist gi E HO( Ui, 9t) such that gi f ijgj ’= fij - For then we have
a biholomorphic map g: X --* X’ given locally by g( u, Zi) == (u, gi zi),
(u7 Zi) E Uix C, such that nog = n. Thus to say that the affine structure

of X reduces to the line bundle structure of L means that there exist
I I I

aci = aj = constant and

The obstruction to finding the functions bi satisfying (*) lies in H’(Y, .2)
where R is the sheaf of germs of local holomorphic sections of L. To see
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this, define cij = bij ej on Ui 0 Uj, where ei is a frame for the bundle L

over Ui. Using the cocycle conditions on the affine bundle,

and

we see that

Thus, {cij} represents a cohomology class in HI(Y,- 2). If lejjl is cohomologous
to zero, then oij = ei - c, where CiEHOC[TH £). Writing ei - bi ei for the ap-
propriate holomorphic functions b  on Ui, we have bijci== biei- bjej==
(bi - aijbj}ei, and so bij == bi- a;b; which is condition (*).
We would now like to comment on holomorphic fiber bundles with C*

fibers. These bundles need not be principal bundles in general, but we show
here that they are covered in a 2-to-1 way by principal C*-bundles. Let

X = X ( Y, x, C*) be a holomorphic fiber bundle and consider the principal
bundle X = X (Y, fi, A-ut (C*)) associated to X. Since Aut (C*) ",-,C*XZ2,
it is clear that the natural map fl: X --&#x3E;- X, with nofJ == it, is 2-to-1. Let

it1: X --&#x3E;- -7 and fi,: -7 --&#x3E;- Y be the Stein factorization of the map yr, so that
the fi,-fibers are isomorphic to C* and the it2-fibers are isomorphic to Z2.
Since the fibrations itl and ii2 are locally trivial and Aut (C*)-equivariant,
we see that the group of the bundle X = X(.fl, fi,, C* ) is contained in the

stabalizer in Aut(C*) of the fiber C*. In this case, the fiber C* is a com-

ponent of Aut (C*) and we know that the Z2 action on Aut (C*) inter-
changes components. Therefore the stabalizer of this C* fiber is just the
identity component, (Aut (C*))o== C*. Thus, X is a principal C*-bundle,
and with respect to the map fi2: Y of the bases, fl is a 2-to-1 bundle

map of X onto lY.
With these notions in mind, we prove:

LEMMA 4. Let X be a non-compaet, connected, O-concave naanifold. If
X = X ( Y, yr, F) is any holomorphic fiber bundle over ac compact complex
manifolds Y with connected fiber, then F cannot be isomorphic to C*. If, in

addition, Y is a complex- torus and the group of bundle preserving automorphisnt
of X acts transitively on Y, then the fiber cannot be isomorphic to either C or C*.

PROOF. If the fiber is isomorphic to C*, we consider the principal
C*-bundle X = xCY, n1, C*) given above, along with the 2-to-1 bundle
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map fl: X --&#x3E; X. Since the map # is finite, we obtain a 0-concave exhaus-
tion (p o of X, where 99 is the 0-concave exhaustion for X. Now, the

bundle X is defined by transition functions f ij: Ui n Uj-+C*, where {Ui}
is some Leray cover of Y. Let L be the line bundle over R defined by f ia .
Then we obtain a bundle preserving holomorphic injection of X into L
(given locally by the injection Ui x C* -* Ui X C) so that we may identify 11
with the complement of the zero section in L. In this way we obtain from
the 0-concave exhaustion for X, a strongly pseudo-convex neighborhood of
the zero-section in L. A theorem of Grauert[12] then shows that some
power Lk imbeds Y into projective space, PN. In particular, there is a non-
constant section s in .H°( Y, Lk). Letting z be a fiber coordinate in L, we
have that sz-’ is a non-constant holomorphic function on X. This con-

tradicts û(X) ro.J C for pseudo-concave manifolds.
For the second half of the lemma w e assume that Y is a complex torus,

and that for any automorphism g E (Aut (y))o there is an automorphism
g c- Ant (X) such that no g == gone By the first half of the lemma we may
assume that, if the fiber is 1-dimensional, then it is isomorphic to C. With
respect to some Leray cover {Ui} of Y, we then obtain transition functions
fij: Ui r1 Uj --&#x3E; Ant (C) which exhibit X as an affine bundle. The main step
in the proof is to reduce the group of this bundle from Aut (C) to C or C*,
which we now proceed to do.

As above we let P === P(Y7 n1, Pl) be the PI-bnndle associated to X,
L = E(Y, n,, C) be the line bundle associated to X, and E = P"",X be the
infinity section of P biholomorphic to Y via s : Y --&#x3E;- P7 s(y) = (y, [1, 0]).
An automorphism of E, g E (Aut (E))O, can be identified with an automor-
phism of Y, g c- (Ant (Y)) 0. By assumption, there exists an automorphism
of X, g c- Ant (X), such that nog = gon. Since g preserves the yr-iibers, g ex-
tends pointwise in the a,-fibers to an automorphism of P, g E Aut (P). Note

that g fixes E and that g restricted to E agrees with g. The original defining
functions of E, wi = 0, are translated by g to wiog = 0, but these still de-
fine E. Therefore N(E) is isomorphic to g*N(E), as a line bundle, and we
get a bundle preserving automorphism g: N(E) ro.J g*N(E) - N(E). Now we
make the identification of N(E) with Z* as outlined above, to obtain a
bundle automorphism g : L*-+L* which yields a bundle automorphism
g: L - L. Since this can be done for any g c- (Ant (Y))0, we have that the
group of bundle preserving automorphisms of L acts transitively on Y.

The same condition holds for Zo, the principal C*-bundle associated to L
(since Lo c L). A theorem due to Matsushima [20] then implies that Lo
has a holomorphic connection and therefore is topologically trivial (see
for e.g. [33]). This implies that L is also topologically trivial.

Now we have two cases: a) L is holomorphically trivial; or b) -L is
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topologically trivial, but holomorphically non-trivial. In case a) there

exist ai E .g°( Ui, *) such that a , ; = a , a§. Setting gi we have

which shows that the affine structure group can be

reduced to the group C, realizing X as a principal C-bundle. In case b), a
lemma due to Nakano [22] shows that H1(Y, £) == 0. As outlined above,
this implies that the affine structure of X can be reduced to the line bundle
structure of Z (with structure group C*). So, we have reduced the struc-
ture group to either C or C*, and in either case Matsushima ([20], Prop. 3.4)
shows that the bundle X comes from a representation of the fundamental
group of Y, e: nl( Y) -+ C. This means that the bundle X is defined by
the equivalence relation on Cn X C (Cn = the universal cover of Y) given
by (w, z) X (w + y, z + e (,y)) for y c- r, where F""n1(Y) is a lattice in Cn,
such that Y = CIIIF. Therefore, if we let F’ be the lattice in C,+’ defined

by {(y, e(y)) 1), c- rl, we have X = Cn+1/F’. But then, because X is non-

compact, there is some coordinate function zi on Cl+l for which Re (zi)
gives a non-constant pluri-harmonic function on X. As in section 3, this
contradicts the 0-concavity of X. Therefore the fiber F of X - Y cannot

be isomorphic to C. 0

5. - The case of solvable groups.

We now present two brief but useful remarks on the special case when
X = G/H is p-concave, 0 C p C n - 2, and the complex Lie group G is

solvable. These remarks rely on the work on Barth and Otte [6]. First,
we note that the Albanese variety of X is always non-triwial, A(X) =F {O}.
To see this, we start with the observation that if û(GjH) "" C and G is

solvable, then GIH "" Olr where a is solvable and F is a discrete sub-

group, [6]. If a is abelian then O/T is a p-concave Lie group and [3] shows
that OIF is a compact complex torus. So we need only consider the case
where G is non-abelian. Barth and Otte prove [6, propositions 2.5 and 3.2]
that under these assumptions, there exists a proper closed normal sub-

group L c 0 such that L - I’ is closed and 0  dim L  dim 0. We then ob-
tain the non-trivial fibration O/T --&#x3E; OIL - T = GIF, where GI:== OIL is solv-
able and FI:==rj(LnF) is discrete..Note that OdimGIdima. If G,
is non-abelian we can repeat this construction and obtain another fibration

Gljrl -* G,IF2, with G2 solvable and T’2 discrete. Again we have 0  dim G2 
dim G,.. This procedure cannot continue indefinitely so for some k, G,
is abelian and we have the holomorphic map X - G,I-P,, given by the com-
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position X --* G1/r1 -+... -+ Gk/rk. Since G,IF, is an abelian Lie Group, it

must be compact, for otherwise there are non-constant pluriharmonic func-
tions on G,IF,, which lifts to X, contradicting p-concavity, 0  p  n - 2 (see
Section 2). Therefore GIF, is a compact complex torus and dim G,I-V, &#x3E; 0.
Since A (X ) maps onto G,IF, by universality, it follows that A (X) is non-

trivial.

The second remark we can make is the following:
If X = G/.g’ is a 0-coneave manifold and G is a solvable complex Lie

group, then X is compact. To prove this, we use an induction argument
on the dimension of X. As before, we have X = G/T with G solvable
and f discrete. We consider the Albanese fibration X - A(X ), with A (X) =
= GIK non-trivial by the preceding remark, and with fiber F = KIF where K
is solvable. Since A (X ) is non-trivial, dim F C dim X . Of course, if dim F 0,
then X = A (X) because F is connected and so X is compact. If dimF == 1

then Lemma 4 shows that again X is compact. In particular, if dim X = 2,
then X must be compact. If dim X &#x3E; 2, we may assume dimF&#x3E; 1, so

that F is 0-concave by restricting the exhaustion for X. The induction

hypothesis then applies that F is compact. Therefore, X is compact.

6. - The case of discrete isotropy.

Now let X = G/H be an arbitrary non-compact 0-concave complex-
homogeneous manifold. We want to show that H cannot be discrete, i.e.

that X is not group theoretically parallelizable. First we note that the two

dimensional case is handled in [11]. Assuming dim X &#x3E; 2, we can apply a
theorem of Andreotti and Siu [4] to obtain a minimal compactification V
of X, where V has at most a finite number of normal isolated singularities
in YBX. We now extend the automorphisms of X to automorphisms of V
in the following lemma:

LEMMA 6. Let X.= G/H be a 0-concave homogeneous naaozifold, where G
is an arbitrary connected Lie group acting effectively on X, and let V be a

minimaZ compact complex space such that XcV. Then G c Aut (V).

PROOF. Let Ya. = V",Xao’ where Xa. = {xEXlqJ(x) &#x3E; ao}. Since Yao has
a strongly pseudo-convex exhaustion given by q, and since V is minimal,
it is easy to see that Yao is Stein. Choosing another ao if necessary, we can
imbed Yao into a bounded subspace of CN, j : Yao --&#x3E; CN- Now consider the
« collar &#x3E;&#x3E; X6 a {x c X I a  99 (x)  b I where a  b  ao . Since G is generated
by any open neighborhood of the identity we need only extend an arbitrary
element gc- U:= {gc- Glg(-X’) c Y,,.} ( U is an open set in the c-o topology).
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Let y - goj: X"--* CN. Then y has components Yl: X: -7 C. By a general
Hartogs theorem [29], each yi extends as a holomorphic function to Ya=
=== V ",-X a . Thus, we get a holomorphic map y : Ya -+ eN, and it is clear

that y(Ya) cj(Ya). Define the holomorphic map q: V - V to be j-loy on Ya
and g on Xa. Doing the same for g-1 (which we can arrange to be an element
of U), we get another holomorphic map #-’: V -+ V. Since gog-l== id on
the open set Xa, we see that qoq-1 - id on Tj. Thus q is invertible and

therefore is the desired automorphism of TT extending g. This completes
the proof of Lemma 6.

The complex Lie group G now acts almost transitively on V, i.e. G has
an open orbit in V, namely X. Therefore, there is a lower dimensional

analytic set E c V such that V"’-E == X (see [25]). Note that E c V",-X ao,
and VB,BX, ’ o is Stein, as above. This shows that VBX = E is, in fact, a
finite set of points.

We now sketch an argument which appears in detail in [16]. Let

XoE E. If G - RS is a Levi-Malcev decomposition of G, then S can be
linearized at xo . That is, one imbeds V (locally in a neighborhood of xo)
in the Zariski tangent space of TT at xo , and the linear representation of S
acting on this space is almost-faithful. An application of Lie’s Flag Theo-
rem to this action shows that any Borel subgroup B in S must have an
orbit in X which is at most 1-dimensional.

If the isotropy group H were discrete, then the above argument shows
that a Borel subgroup in S is at most 1-dimensional. Thus S = {l}, and G
would be solvable. However, this is ruled out by the remarks in the preced-
ing section. Hence the isotropy group is never discrete.

7. - The case of semi-simple groups.

The next case we wish to consider is when X = SIH is a non-compact
0-concave manifold and the complex Lie group S is semi-simple. We will
show in fact that this case is impossible, i.e. no sexli-sinaple complex Lie
group acts transitively on a non-compact O-concave manifold.

We first show that there exists a homogeneous fibration of X, SIH --&#x3E;- SIJ
with fiber JIH ’"’-J C and compact rational base S/J. We note that S is a

linear algebraic group, because S is semi-simple. we define X to be a
proper algebraic subgroup of S which contains H, and whose dimension is
maximal with respect to all such subgroups. To see that at least one proper
algebraic subgroup of S contains H, we look at the normalizer fibration of
section 1. There we had S acting algebraically on a Grassmann manifold
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and we were able to identify an orbit of S with the coset space SIN, where
N = Ns(.H’°). Therefore, N is an algebraic subgroup of 8 which contains H.
IfN== 8, then X = SIH = NIH = (NjHO)j(HjHO) is 0-concave and parallel-
izable, which is impossible by the previous section. Thus, N is a proper
subgroup of S. Now, by [21], if lVl° is reductive, then SIMO is Stein. But

then 8jM has non-constant holomorphic functions since the map SIX-&#x3E;-
-+8jMO has finite fiber MIMo, and therefore BIH has non-constant holo-
morphic functions, since SIR --&#x3E; SIX. We conclude that .M° cannot be

reductive, so that the subgroup R,JM) of all unipotent elements in the
radical of M is positive dimensional (see [18]). Let U == (B.(M))O= (Ru(MO))o,
and note that Me Ns( U). Now, Ns( U) is an algebraic subgroup of S which
is proper, because S is semi-simple ( S cannot have a non-trivial normal
unipotent subgroup!). So, we redefine M to be N,,(U), and observe that .M
is now a maximal proper subgroup of S. For, if M’DM, then dim M’
dim M by the definition of X so that (M’)o== MO. This shows that

U = (Ru(M’))o and so M:) M’. According to a standard theorem of reduc-
tive groups ([18], Section 30.3, Cor. b), X is a parabolic subgroup of S.
Thus, 8jM is a non-trivial homogeneous compact rational manifold. Since X
is non-compact, the fiber of SIH --&#x3E;- SIX must be non-compact connected
and positive dimensional. If dim XIH = 1 then MjH r--.J C by Lemma 4
and we have our assertion. If dimMjH&#x3E; 1 then .lVl /H inherits the 0-con-
cavity of X. Since dim MIH dim X, we can apply the following induc-
tion hypothesis to -JIIH: any non-compact complex-homogeneous 0-concave
manifold Y is a homogeneous bundle Y - Z with fiber C and Z a compact
homogeneous rational manifold. (That this is true for dim Y = 2 follows

from [11]). Thus we get a homogeneous bundle iV/H - MjJ with MjJ a
compact rational manifold and JIH -- C. Now M contains a maximal con-
nected solvable subgroup B of S since it is parabolic. This subgroup B
is also a maximal connected solvable subgroup of M. Since J is a parabolic
subgroup of M (-IVIJ is projective algebraic), it must contain a conjugate
of B [18]. Therefore, J is a parabolic subgroup of S and so SIJ is a compact
rational manifold. Then we have the holomorphic fibration SIH --&#x3E; 8jJ
with fiber J jH r--.J C, as desired.

We now outline a geometric argument that shows this situation actually
cannot happen. (An algebraic proof appears in [16].) Let K be a maximal

compact subgroup of 8. If P’EX, then K(p) is clearly either a 1-codimen-
sional or 2-codimensional real submanifold of X because it covers the base.

In the latter case, the simple-connectivity of the base implies that it is a
section of the affine bundle SIH --* 8jJ = Q. If two distinct such K-orbits

were 2-codimensional, then the associated line bundle would be topologically
trivial and therefore holomorphically trivial (since H’(Q, C) = 0). The affine
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bundle would then be reducible to a principal C-bundle as in section 6.

However, this bundle is also holomorphically trivial because H’(Q, :0) = 0.
This contradicts the 0-concavity of X, so that K has at most one 2-codimen-
sional orbit.

Considering a representation e of K acting on a fiber of 8/H - s/J,
we see that e(X) has exactly one fixed point, and K has exactly one 2-codi-
mensional orbit in X. We will call this orbit the minimal K-orbit and prove
that it must be a complex manifold.

The K-orbits in the Stein space V""Xau are smooth hypersurfaces and
are therefore strongly pseudoconvex. We may assume that the minimal
normal compactification V of X is singular, as otherwise we may quote
the results of E. Oeljeklaus [26] to show that X = pn",,{p}, and in this case
no semi-simple group can act transitively on X. Now applying a result
of H. Rossi [30], a strongly pseudoconvex K-orbit bounds a « tube » neigh-
borhood of the zero-section of a negative .K-homogeneous line bundle over a
homogeneous rational manifold. Thus, we can compactify X by adding
the zero-section, E, of this bundle and identify the strongly pseudoconvex
neighborhood U of E with the tube neighborhood T in the Rossi bundle.
Call this new compactification V’.

Let W be the vector space generated by it-fold wedge products of the
complexifications of K-invariant vector fields coming from the Lie algebra
of K. Let y: X ---&#x3E;- P- be the map associated to TV, i.e. for a choice of

basis wo, 9 w, , ..., wm of W, ’lp(p) == [wo(p): WI(P) :... : Wm(p )]. If we assume that

the minimal K-orbit is not a complex manifold, then 1p has no base points
because wo, wi, 9 ... Wm vanish simultaneously only on this orbit. Now the
correspondingly defined map of the Rossi bundle is just projection on the
base of the bundle. But, T and U are K-invariantly defined and H-equi-
variantly identified. Thus, 1p has 1-dimensional fibers in U. Since -K acts

on W, it follows that y is iT-in variant and maps X onto the rational base Q’
of the Rossi bundle. In addition, the homotopy sequence shows that the
’ip-fibers are connected.

We have constructed a « new » fibration of X as an affine bundle over a

rational manifold Q’. (It is clear that S = Kc acts invariantly on this bundle
so that the fiber is complex-homogeneous. Lemma 4 then shows it must
be C.) We know that the normal bundle of E, N(E), in the Rossi bundle
is equivalent to the normal bundle of E in V’, and that this normal bundle
is negative due to the strongly pseudo-convex neighborhoods of E. Let L

be the line bundle associated to the affine bundle X = X(Q’, 1p, C). As in

section 4 we have that L is dual to N(E), so that L is positive. Then, by
the Kodaira Vanishing Theorem, we have that H’(Q’g 2) - 0, and therefore
the affine bundle structure of X can be reduced to the positive line bundle
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structure of L (see section 4). Thus, X has a 1-point compactification to a
rational cone in some Pm, as we prove in section 10. The semi-simple
group S acts on this cone, fixing the vertex and a complementary hyper-
plane, D: Thus, D r) X must be stabalized by S, contrary to the assump-
tion that S acts transitively on X.

The above contradiction resulted from the assumption that the minimal
K-orbit is not a complex manifold. Thus, it must be a complex manifold.
But, in this case, S would stabalize this orbit and again not act transitively
on X. We conclude that no semi-simple complex Lie group acts transitively
on X.

8. - The case of linear groups.

We are now ready to prove the classification theorem for X- G/g
0-concave when G is a complex linear group:

THEOREM 8. Let X = G/g be a eonnected, non-compact, 0-coneave, com-
plex- homogeneous manifold achich is Zariski-open in a projective algebraic
variety V c PN. If G c Aut (PN), then X Oxll where G and I are complex
Linear algebraic groups. In addition, X == X(Q, v, C) is a homogeneous affine
bundle over a homogeneous compact rational manifold Q. This bundle is given
by the natural projectiojl fJjI -+ OXIRI, where R is the radical of G, and the
structure of this bundle can be reduced to that of a positive line bundle. In

particular, X is simply connected.

Before we begin the proof, we would like to remark that there is a fixed
set X,,:= {X EXIp(x) &#x3E; al (with a ao) which intersects any positive dimen-
sional analytic subset A of X. To see this, suppose An Xa== 0. Then A

is contained in the compact set VBX,,, where Tl is the minimal compac-
tification of X mentioned in section 6. Since VBX is only a finite set of
points we may apply Remmert-Stein [27] to extend A to a compact analytic
set A in Tl BX a . However, A c VBXa, and VBlXa(, is Stein. This contradicts
the fact that A is positive dimensional. Therefore, A n Xa=F 0. This remark

shows that the base of any fibration of X with positive dimensional fiber
is compact: every fiber must intersect the compact set -Y,,.

PROOF. Let .E be the compact analytic (algebraic) set TTBX, and let
G(V) and G(.E) denote the stabalizers of V and E, respectively, in Aut (PN).
Define G := G(Y) n G(E). Since G(V) and G(E) are linear algebraic gruups,
so is G. Now, G c G and 1i stabalizes X, so we may write X = O(xo) == 0/1
where I is the isotropy of the point zoe X.



48

Let R be the radical of 0, i.e. the largest connected normal solvable
subgroup of G. Then R stabalizes a flag in PN :

Set k - min f i ILi 0 X =A 01. If R fixes a point x c L, r) X, then it must fix
every point of X, since B is normal. Therefore B is contained in I. Using a
theorem of Levi-Malcev [18]y we express 0 as a semi-direct product G== RS,
where 8 is semi-simple. Then I = R(I r) S), and so X = 011 = (G/R)/(ljR) =
= S/L, where L = I r) S is an algebraic subgroup of 8 since I and S are
algebraic. This contradicts section 7, so R must have no fixed points and
therefore dim L, (-) X &#x3E; 0. If dimLk n X&#x3E; 1, then Lk n Xc Lk""’Lk_l ro..J Ck.
is an analytic set in X which evidently has non-constant holomorphic func-
tions defined on its top dimensional components. However, these compo-
nents inherit the 0-concavity of X, and so they can have no non-constant
holomorphic functions. This contradiction implies that dim Lk n X = 1. We
claim that -R acts transitively on every connected component, C, of L k r1 X.
This follows from the fact that R(z), the orbit of x c- C under R, must be
Zariski-open in C, if R is not to have fixed points. But the complement
of .R(x) in C must either be empty or contain isolated fixed points
(dim C - 1). Therefore R(x) = C for x E C. This shows that R(z) is closed

in X for all x E X, and since -R is normal in 0, these orbits are 0-invariant.
So we have the natural fibration ’1-’: X = 011 --&#x3E; GIRl. The base OIRI =
- ((]IR)/(RIIR) = SI(I/R r1 I) = 8/P is compact since all v-fibers must in-

tersect Xa. The fiber .R(xo) = RIll, being complex-homogeneous, non-com-
pact, y connected, y and 1-dimensional, y must be either C or C*. Since.X is

0-concave, Lemma 4 implies that the fiber is C, i.e. X -&#x3E;- S/P is a homoge-
neous affine bundle.

we now show that the base 8/P is projective algebraic and therefore a
compact homogeneous rational manifold. Consider the orbit S(x) for some
x c- X. Since S is an algebraic group, S(x) is a submanifold of X and is

Zariski-open in its closure 8(z) , a subvariety of V. If S(x) is open in X then
either 8(z) = X which is impossible by section 7, or there is a lower dimen-
sional analytic set A in X such that S(x) = X""’A. In this case we redefine x
to be a point in A, so that we can say S(z) is not open in X. Now, the
fibration v restricted to 8(z) is surjective so that dim X - I  dim SIP 
dimS(x)dimX-1. Thus, S(x) n V-l(V(X)) is a discrete set. Noiv.,
S(x) n v-1(v(x)) is an algebraic subvariety of TT which is also discrete since

S(x) is Zariski-open in /S(.r) and dimv-’(v(x)) = 1. Therefore 8(z) n V-1(V(X))
must be a finite set and vo : S(x) ---&#x3E; SIP a finite map. Since SIP is compact,
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we have that 8(r) is compact and therefore S(x) = 8(z) is a projective
algebraic manifold. It then follows that SIP is projective algebraic (see
e.g. [13]).

We note that, since Q := rS/P is now a compact homogeneous rational
manifold and in particular simply connected, vo : 8(z) -* Q is biholomorphic
and thus defines a section s : = vo ’: Q - X of the affine bundle v : X &#x3E; Q.

be the transition functions for this bundle so that if

fine on Ui and observe that This shows that

the aSine structure of X reduces to a line bundle structure (see section 4).
The 0-concave exhaustion for X now provides a strongly pseudoconvex
neighborhood of the zero-section in the dual of this bundle. A theorem of
Grauert [12] then shows that this dual bundle is negative, so that in fact X
is a positive line bundle. 0

9. - The general case.

In this section we show that the conclusion of Theorem 8 applies to an
arbitrary non-compact 0-concave complex-homogeneous manifold X = G/H
i.e. that X is a positive line bundle over a compact homogeneous rational
manifold. We begin with the normalizer fibration of section 1, p: X - B,
where B is Zariski-open in an irreducible compact projective algebraic
variety f3 c P’ and the fiber F is group theoretically parallelizable. If

dimF&#x3E; 1, then F inherits the 0-concavity of X. Section 6 then implies
that F is compact. Since the base of any fibration of X with positive dimen-
sional fiber must be compact (see section 7), we have that X is compact, a
contradiction. Therefore, dim F  1.

If dim F = 1, then B is again compact and in fact must be a homoge-
neous rational manifold, as mentioned in section 1. Since F is non-compact
connected and complex,-homogeneous, it must be isomorphic to C or C*.
Lemma 4 eliminates C*, so T’ C. Let G = RS be a Levi-Malcev de-
composition of G, where B is the radical of G and is semi-simple. We
recall from section 1 that B = G/N with N = N,,(HO). A standard flag ar-
gument [10] shows that B c N, so that B = GIN = (GIR)/(NIR) = SIP. Now
consider the orbit S(xo), for some xoEX. We claim that we can choose xo
so that S(x,,) is a section of the bundle p: X - B. Since iz restricted to

S(x,,)) is surjective, we have codim S(xo)  1. If codim S(xo) = 1, then ,uo :

S(xo) -&#x3E; B is a covering map, and since B is simply connected Iz,, is bihol-
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omorphic. Thus we get a section 8:=,uo . I-’- B ---&#x3E;- X with s(B) - S(x,,). If

codimS(x,,)=O then S(x,,) is open in X. In this case, either S(x,,)-X,
which is impossible by section 7, or there exists a positive dimensional
analytic set A in X such that S(xo) = X%A . We redefine Xo to be a point in A
so that S(xo) c A and therefore 0  codim S(x,,) :::;: 1. Thus, codim S(x°) = 1
and, as in the above case, S(x°) is a section of the bundle IA: X - B. Note

that using the section s we can reduce the structure of this bundle to that
of a line bundle (see section 7). We now choose x EX""S(Xo). The orbit
S(x) must be open in X, for otherwise S(z) is another section of the line

bundle ,u : X - B (as above) distinct from the section S(x°). However, this
implies that the bundle is holomorphically trivial which is impossible (e.g. X
would posses non-constant holomorphic functions). Therefore, S(x) n

() p-1(p(X)) is open in the fiber p-I(p(X)) = F. We recall from section 1

that F = NIH - N(x). Thus, S n N has an open orbit in F. Notice that

{X,} _ S(xo) (} F so we must have S (} N(x,,) = {Xl}. If we define H to be

the isotropy of x1, then S n N c H, and therefore H (and H° ) must have
an open orbit in F. However, for any y E F7 there is an n E N such that
n(xl) = y, and since N normalizes H°,

This contradiction implies that dim F 0 1.
If dim F = 0 , then p: X -* B is a covering map. Again, if B were

compact, then it would be a rational manifold and thus simply connected.
This would imply that X = B is compact, contrary to our assumption.
Therefore B is non-compact and Zariski-open in a projective algebraic va-
riety P c Fl (Theorem 1). We recall also from the proof of Theorem 1 that
B = 4/H with 0 = Ad (G) c Aut (P). We now show that X has an alge-
braic compactification V and that It extends as a birational map to

A: v
We observe that there exist n == dimB== dimX algebraically indepen-

dent meromorphic functions on P. Thus, there exist algebraically inde-
pendent meromorphic functions on X. Andreotti shows [1] that algebraic
independence of meromorphic functions implies analytic independence on
pseudo-concave manifolds. Therefore by homogeneity we can assure that
for any x,,c-X there are n meromorphic functions on X which are holomor-
phic and analytically independent near Xo (i.e. give local coordinates near xo).
Note that we may assume n &#x3E; 2, since the two dimensional case is proved
in [11]. We now cover the compact set Xa:== {XEX/p(X):2: al with a finite
number of open sets Uk where on each Uk we have n meromorphic func-
tions ff, ..., fk which give local coordinates on Uk. Each meromorphic func-
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tion f k can be expressed as a ratio of two sections in some holomorphic line
bundle Li,,. Then L:= &#x26;Li,,, is a holomorphic line bundle on X whose

ll,k) 
_

sections give local coordinates on Xa. We apply the imbedding theorem
of Andreotti and Siu [4] which states that a 0-concave manifold with such a
line bundle L is isomorphic to an open set in a compact irreducible projec-
tive algebraic variety V. The exhaustion function for X gives a strongly
pseudo-convex exhaustion for V",Xa. Thus, we can blow down the maximal
compact analytic set in VBX,, to get a new compactification Tl for X.

Now, V is a minimal compactification for X and, as shown in section 6,
VBX is a finite set of points. Therefore any meromorphic function on X
extends to Tl and can be lifted to V using the modification map. This

shows that the injective morphism i* : x(V) --&#x3E;- x(X) is also surjective (where
i : X - V is the inclusion). This isomorphism allows us to define an injec-
tive morphism ’*:= i*-lou*oj*: x(f3) --* Y,,(V) (where j: B -* f3 is the inclu-

sion). Let ,u : V be the canonical surjective rational map associated
to /!* (see e.g. [24]). Note that /l agrees with ,u when restricted to X, so
that ,u is indeed an extension of ,u. In addition, Iz is a finite map, since 6
is finite (dim V == dimE).

We can now construct a 0-concave exhaustion for B. Define cp: B -* R+
by 99(p) = q;(Zl) +... + q;(zr), where zep-i(p). Clearly, cp is smooth on B

and strictly plurisubharmonic on {p c B 10(p)  a,,}. Furthermore, if q;(Zl) +
+ ... + q;(zr) ¿ c, with zi c- Iz-’(p), then for some fixed b E (0, c) there must

be at least one zi such that gg(zi) &#x3E; b/r = : a. This shows that the closed

set Bc={pEBlcp(p)¿ c} is contained in the compact set p(Xa), and there-
fore is compact.

Thus B = 0/17 c E c P is a 0-concave complex-homogeneous manifold
with G c Aut (PK). Therefore, Theorem 8 applies to B, showing it to be

simply connected. Therefore, p : X - B is biholomorphic and we can apply
Theorem 8 to X.

10. - Projective cones.

Now that we know that a non-compact 0-concave complex-homogeneous
manifold X can be realized as a positive line bundle X = X(Q, 7c, C) over a
compact homogeneous rational manifold Q, there is an easy geometrical
way to describe X. This description, in fact, provides a convenient charac-
terization of all such manifolds, and demonstrates how the conclusion of
Theorem 8 applies to them.

We first show that the line bundle X is very ample. Let TY denote the

(N+ ]-)-dimensional vector space of holomorphic sections of X, and consider
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the natural map s : Q - PN given by s(q) == [so(q):... :SN(q)] where so, ..., sN
is some basis for W. (Here we abuse notation and allow Si(q) to stand for
its fiber coordinate.) For any q c- Q, we can find a section t E W which does
not vanish at q by finding a g c- Aut (Q) such that g (0 (q)) w 0(Q) and defin-
ing t to be goO. (We are letting 0: Q - X denote the zero-section.) There-
fore, the map s is well-defined, i.e. it has no base points, and N &#x3E; 0.

Since the bundle X = GIH is preserved by the action of G, the vector
space W is invariant under the action of G and so the map s is invariant

under G. This means that the map s : Q - PN is given by a homogeneous
fibration Q = GjJ -+ GIJ’C PN. Now, Q = S/P where S is a semi-simple sub-
group of G and P is parabolic. Therefore, GIJ’= SIP’ where P’::;P, so
that P’ is parabolic and G/J’ is a compact rational manifold. The homotopy
sequence then shows that the s-fibers are connected. If F is one such fiber

of s, and i : F -&#x3E; Q is the inclusion map, then i* (X) must be a trivial line
bundle over F, by the definition of F and s. (We can find a section t e W

which is not zero at a point q c F and therefore not zero on all of .F’ so

that i*(t) trivializes i*(X)). However, if F is positive dimensional, then
i*(X) inherits the 0-concavity of X and so it must be a positive line bundle,
not trivial. Therefore, -F is 0-dimensional showing that s is in fact an

imbedding of Q into PN, i.e. that the bundle X is very ample.
Letting z represent the fiber coordinate of the bundle, we construct a

holomorphic map j : X - PN+l given locally by j(u, zi)- [zi(u): SI(U): ... : SN(u)]
on Ui X C (where sk= s’ and z = zi on Ui). This is a well-defined map
which imbeds the zero-section {z = 01 of the line bundle into the hyper-
plane at infinity and maps each fiber of the bundle n-1(q) onto the complex
line EQ[1 : 0 : ... : 0], where Eq is the PI in PN+l connecting the origin [1: 0 : ... : 0]
to the point [0 :SO(q):... :SN(q)]. We let V be the 1-point compactification
of X, V= X U[1:0:... : o].

Given this imbedding, we can easily realize the results of Theorem 8.
Since Q is a compact homogeneous rational manifold, there exists a semi-
simple group S c Aut (PN) (here PN is the hyperplane in which Q is imbedded),

such that It is clear

that lli fixes the point [1:0:...’:0] "VBX and acts transitively on X. The
I 

radical of G is R = which has orbits

The fibration X = 0/1 --&#x3E;-G/Rl is then explicitly given by the projection
of X to the plane at infinity.

On the other hand, given any compact homogeneous rational manifold

Q=SjP, we can imbed it in a hyperplane PNc PN+l with ScAut(PN) and
then construct a homogeneous manifold X by defining () as above. The
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orbit X = G(q) for some q c- Q will have the same properties described above.
Note that there is a natural 0-concave exhaustion for X given by the dis-
tance to the origin [1 :0 :... :0]. Thus, we obtain the convenient charac-
terization of a non-compact 0-concave complex-homogeneous manifold as a
projective cone over a compact homogeneous rational manifold (with its

vertex removed).
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