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Twisted Sheaves on Complex Spaces.

ALDO ANDREOTTI (f) - CONSTANTIN B0103NIC0103 (**)

Let (X, 0) be a complex space, let C. be an invertible O-module and

let :F be a coherent 0-module. Define cm = £.8&#x3E;m == £.@ ... @ £. (m-times)
for m&#x3E;O (EO = O) and set cm = (C-1)-m for mO, where £.-1 == dfomo (C, 0)
is the invertible dual sheaf of L The twisted sheaves of Y relative to £ are the
sheaves !F(m) == !F@ cm. Our purpose is the study of these sheaves.

In [7], if X fulfils some convexity or concavity assumptions and if £
is associated to a positive or negative line bundle, one obtains theorems
concerning the behaviour of the cohomology of these sheaves for m - + o0
similar to the vanishing theorem of Serre ([24], n. 74, th. 1). In a first

paragraph we complete these results for the case m -* - oo using an idea
that goes back to [24]. The paragraph also contains an attempt to formulate
a dual theorem to theorem A of Cartan-Serre by giving a meaning to the
« cogeneration of the cofibres ». oo

Let us consider the graded ring A(X, C) == EB F(X, C/"). In a second
m=0

paragraph we study the finite generation over C of this ring and also the
finite generation of the A(X, )-modules Hq(X, Y(m)), as well as the

asymptotic behaviour of the function m - dim Hq (X, !F(m)}.
These results are established for X compact complex space and E such

that a convenient power CT of L has no fixed points (partial results are also
given in the pseudoconcave case). These questions were started by Zariski
in connection with the generalized 14-th Hilbert problem (see for example [28]).
The ring A(X, £.) was used in [5] and [6] to obtain compactification of pseudo-
concave spaces.

In a third paragraph we consider the particular case X = Pn and

C == Opn(l). In this case the freeness of the coherent sheaf Y can be traced

through the Hilbert polynomial M __&#x3E; E(_ I)q dim Hq(X, !F(m)} and the

(t) Scomparso il 21 Febbraio 1980.

(**) Increst Bd. Pa-cii 220, Bucharest - Romania.
Pervenuto alla Redazione il 6 Luglio 1978.

1 - ann, Scuola Norm. Sup. Pisa Cl. Sci.
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question is connected with the so called Castelnuovo Lemma ([19], lecture 14)
and with the dual version of it.

Almost all results could be generalized replacing E by a locally free
coherent sheaf, substituting the powers with the corresponding symmetric
tensor powers, but we confine ourselves to give only one remark in para-
graph 2.

1. - The sheaves !F( m) for m - + oo.

a) Dualizing sheaves. Let X be a complex space and let !F be an

analytic coherent sheaf on X (we write shortly :F E Coh X). For all Stein

open sets U in X, the space Hk( U, Y) has a natural topology of DFB space
and we can consider the strong dual of it. For an inclusion V c U we can

consider the transposed of the natural continuous extension map Hk( TT, !F) -+
H(k’(U, Y). In this way we define a presheaf whose associated sheaf is

denoted 5)q 7 and is called the q-dualizing sheaf of Y. In [2] and [4] the

following statements are proved:

1) oq 5- is a coherent analytic sheaf on X for any q;

2) for all Stein open sets U, F(U, 5)qT) equals the strong dual of

H( U, :F);

3) for any embedding i : U -+ W of the open subset U of X into

an n-dimensional manifold W there exist natural isomorphisms

4) if X is of finite dimension and if KI denote the dualizing com-
plex of X [22], then there are isomorphisms

5) if Y =A 0 then Ðq:F = 0 if q 0 [depth!F, dim Y] and oq Y:A 0 when
q = depth Y or q = dim Y;

6) dim Ð q!F  q for every q and 5)dim,7 y.

We will need also the following

LEMMA. If Y is a Cohen-Macaulay coherent sheaf (i. e. !F =F 0 and

depth F = dim Y) then oqy= 0 for q =F qo = dim!F and ÐtI°:F is also

Cohen Macaulay.
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PROOF. From the facts stated above we get i)q!F = 0for q =A qo and
dim 5)", Y = qo . It will be enough to show that depth 5)1* Y &#x3E; q,,.

The question is of local nature on X and using suitable embedding we
may as well assume that X is a manifold of dimension n. As dh !F = n - qo,
Y has locally a resolution

where the 8’ are free Ox-modules of finite rank. Now
and thus the cohomology of the complex

is trivial but in the dimension n - qo where it is just ÐtI8!F. This means that

Ð(l°:F has locally a resolution of length n - qa by free sheaves of finite rank.
Thus dh Ðq Y : n - qo i.e. depth (1)1, !F) &#x3E; qo .

b) q-pseudoconvex spaces. Let X be a complex space, let L be a holo-
morphic line bundle on X and let :F E Coh X. We agree to denote by
Y(m) the twisted sheaves relative to the invertible Ox-module C of germs
of holomorphic sections of L. We shall write m » 0 to mean « for m suf-
ficiently large ».

THEOREM 1. Let X be a strongly q-pseudoconvex space of f inite dimension,
let L be a positive holomorphic line bundle on X and let Y E Coh X. For the
associated twisted sheaves Y(m) we have

PROOF. Statement (i) is theorem 1 of [7]. So we need to prove only (ii).
For any r and any m the space Hk(X, 5;-(- m) ) has a natural QDFS topology
and its associated separated space is isomorphic to the strong dual of

Ext-r(X; Y(- m), X*), this last space being endowed with its natural QFS
topology [22]. For any m there exists a spectral sequence

which converge to Ext"fl (X; Y(- m), £&#x26;).
For any three Ox-modules A, N, 5’ one gets a natural morphism
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given by the map

Moreover, y this is an isomorphism if 5’ is locally free of finite rank.
Let KI --&#x3E; J8 be an injective resolution of the dualizing complex. Use

have the isomorphism

Taking cohomology we get the isomorphism

As ÐØ!F = 0 for all but finitely many #Is, by means of (i) we can find mo
such that

On the other hand ÐØ:F = 0 if fl  depth:F. Therefore

As Hk(X, !F(m)} is separated iff Ext-r+l(X; !F(- m), X&#x26;) is separated [22],
we conclude with the assertion (ii).

REMARK. The proof shows that HeDth-tI(X, Y(- m)) is separated in

agreement with the general statement of separation of these groups on

strongly q-pseudoconvex spaces [3].
Let us denote by Hr and H:; the homology groups (with compact sup-

ports) and respectively the homology groups with closed supports. We will
denote by the suffix * the associated dual cosheaf [4]. In virtue of the

previous theorem and the separation of .Hkepth -a(X, !F(- m)) we get
THEOREM 2. Let X be a strongly q-pseudoconvex space of finite dimen-

sion. Let !F e Coh X, let L be a positive holomorphic line bundle on X and
denote by !F(m) the corresponding twisted sheaves. Then :

c) The pseudoconvex case (i.e. q = 0). We first recall the following
definition [15]:
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Let A be a local ring with maximal ideal m and let M an A-module;
we denote by 

and we call it the socle of M.

Let (X, tl) be a complex space and Y E Coh X. We say that « Y fui-
fils the dual of theorem A in dimension r » or that « the space H[(X, !F) coge-
nerate its co f ibres &#x3E;&#x3E; if for every x E X the canonical map H£(X, Y) "&#x3E;Hkr(X,S;,)
is injective on the socle of H"(X, :1) (i.e. if c- Hr (X, !F) is such that I($) = 0
and m.x = 0 then $ = 0).

REMARK. Let 0 be a precosheaf on X. For a point x E X we define
the cofibre ÐX == lim 5)(U), U open neighbourhood of x. When 9) is the

dualizing cosheaf U -+ H§(U, Y) [4], a duality argument shows that its

cofibre in x equals Hx(X, 5;-*), the r-cohomology with supports in {x}. We
say that 0 « verifies the strong dual of theorem A » or « Ð is strongly coge-
nerated by the global cosections » if the maps ÐX -+ 3)(JT) are injective.
If D is the cosheaf U --&#x3E;. H’(U, !F) this condition is equivalent to the fact
that the maps Hx(X, !F)-+ H’(X, 5;-) are injective. That is true for example
when X is a Stein space (by means of a duality argument). This strong
formulation of the dual of the theorem A implies the previous formulation,
which was inspired by the fact that the theorem A is nothing else but the
surjectivity of the map T(X, 5;") - !F x/mx!F x.

We have the following useful

PROOF. Via an embedding around x we are reduced to the case when X
is a manifold of a certain dimension n. Now Hx(X, Y) has a natural FS
topology and its dual is isomorphic to Ext§’ (Yr, S2x), this last space being
endowed with the DFS topology given by uniform convergence of germs
via the isomorphism

Now mx Ext"-’ (Y,,, ,SZx) is a closed subspace of Ext- " (Y,,, Ox) (as it

is analytic submodule). The topological dual of the quotient

is just y(H’(X, !F)). Thus the assumption y(H’(X, Y)) = 0 brings
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and by Nakayama’s lemma we get Ext§’ (Yr, Qae) = 0 thus, by duality
.gx(X, Y) = 0. And conversely.

We have the following

THEOREM 3. Let X be a strongly pseudoconvex space of finite dimension,
let .L be a positive holomorphic line bundle on X, let T E Coh X and let Y(m)
be the corresponding twisted sheaf. Then

(i) Y(m) ver’ifies theorem A i f m » 0,

(ii) :F( - m) verifies the dual of theorem A i f m » 0.

PROOF. Note that in ([11], theorem II) a weaker form of (i) is proved.
Here is the general argument.

Let X, ’&#x3E; Y be the Remmert reduction; yr is proper and biholomorphic
outside a compact set K c X. For every 9 E Coh X, n*(g) is coherent on Y.
By theorem A of Cartan, r( Y, n*(@)) generated the fibres of n*(@). Conse-

quently F(X, S) generates the fibres gx for all x E XBK. In virtue of this
remark it will be sufficient to show the existence of an integer mo = m,,(Y)
such that -P(X, !F(m)) generates the fibres Y(m)x for any x E K and m -&#x3E;- m,,.

We follow the argument by which theorem A is deduced from theorem B.
First we establish that there is an integer 1() &#x3E; 0 such that h(X, 0(lo)) gene-
rates the fibres all over K (and hence in all points of X). Let x e K and

let m.(x) be the maximal ideal sheaf given by x. From the exact sequence
0 --* m (x) --* 0 ---&#x3E; 0 /m (x) --&#x3E; 0 we get the exact sequence

By theorem 1, H1(X, m(x)(m)) == 0 if m » 0, therefore the maps

are surjective. By Nakayama lemma F(X, 0(m)) generates the fibres O(m)x
if m is large. Let us fix such a m. By coherence there exists a neighbour-
hood U of x such that F(X, 0(m)) generates the fibres ð(m)x" for all x’ E U.
Moreover we note that this property is preserved by changing m with a
positive multiple of it. By a compacity argument we find an integer lo with
the required property.

Let Y c- Coh X. We claim that the sheaves Y(mlo) are spanned by
global sections if m » 0. With the above notation we have the exact

sequence
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As H1(X, (m(x) !F) (mlo)) = 0 for m » 0, as before we obtain that

T(X, Y(mlo)) generates the fibre :F(mlo)0153 if m » 0. Let us fix such an

integer m. By coherence F(X, 5;-(ml,)) generates the fibres in a neighbour-
hood U of x. As -V(X, 0(1,,)) generates the fibres of O(lo), for all m’ &#x3E; m the

space F(X, :F(m’lo)) spans the fibres through the same U and then by a
compacity argument we conclude that T(X, 5;-(ml,,)) generates Y(ml,,)x for
for m » 0..

We can now prove statement (i). We apply the previous assertion to
each of the sheaves Y, Y(l), ..., [F(lo - 1). Consequently the shaves Y(mlo),
[F (mlo + 1), ..., Y(ml,, + lo - 1) are spanned by the global sections for m » 0.
For each m we can write m = m’Zo + r with 0y C to, and if m » 0 then
m’ » 0. From this assertion (i) follows.

We turn to the proof of (ii). First we remark that for any complex
space X (of finite dimension) and for any coherent sheaf g, the canonical
maps

are continuous when Ext is endowed with the QFS-topology inherited by
the duality theory [22] and when the target space is endowed with the

natural topology on the sections of a coherent sheaf. For that it suffices

to show that, by composition with the restriction maps

with !7 open and Stein, we obtain continuous maps. This derives from the

commutative diagrams

and the fact that our assertion is already known when X = U. The proof
of (ii) then proceeds as follows. By theorem 1 H’(X, (ÐP:F)(m)) = 0 for
every DC&#x3E; 1, every integer and m  0. Since

one deduces that the maps
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are bijective for every r and m » 0. As these maps are continuous they
are topological isomorphisms. By duality we get then B’(Xl :F(- M)) -
~ strong dual of T(X, (r!F)(m)) for r&#x3E;O and m » 0. If we apply state-
ment (i) to any 5)ry we obtain that the maps

are surjective for every rand (j} if m » 0. Now H§(X, !F(- m)) is iso-

morphic to the topological dual of

Hence by transposing (*) we get that the extension map

is injective on y(H’(X, !F(- m))) for m » 0. Consequently, !F(- m) verifies
the dual of theorem A for m « 0 in any dimension r.

COROLLARY. Assume that sup dim (YzjmrYr)  00. Then :F is globally
xc-X

the quotient of a coherent locally free sheaf.

PROOF. Let m &#x3E; 0 be so chosen that Y(m) is spanned by the global
sections. Consider Remmert’s reduction X Y and let K be a compact
in X such that a is biholomorphic on AIBK. There exist sections s1, ..., sr E
E T(X, !F(m)} which generate Y(m) on K. The sheaf @ = n*(:F)(m) is

coherent on a Stein space Y and as XUK ci Y""’n(K) it follows that

By ([10], [12]) 9 is spanned by finitely many global sections. Using this
fact, we can find t, ..., ta E T(X, Y(m)) which spann :F(m) on XBK. Hence
the morphism 0" Y(m) given by (s, ..., s’J}’ tl , t,) is an epimorphism
and therefore we get an epimorphism 0"’(- m)-+ Y --&#x3E; 0.

THEOREM 4. Let X be a strongly pseudoconvex space of finite dimension,
let L be a positive holomorphic line bundle on X, let q be an integer, let

Y E Coh X and let :F(m) denote the associated twisted sheaves. Then

(i) depth :F&#x3E;q if and only if Hk(X, Y(- m) ) = 0 for r  q and

m » 0 ;
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(ii) dim:F q i f and only if H§(X, !F(- m)) = 0 101’ r &#x3E; q and m » 0 ;

(iii) for every m » 0 and for any x E X such that depth:.F 0153 = q or

dim :Fir = q there exists a cohomology class $ E H§J(X, Y(- m)) with supp
= {x} (I,e. $ # 0 and $ e Im(H§J(X, F(- m) ) -&#x3E; H§J(X, Y(-m)))).

PROOF. By the same argument given in the proof of theorem 3, there
exists an integer m’ 0 such that

for m &#x3E; m’. On the other hand, by statement (i) of theorem 3, there exists
an integer mo for which the sheaves (Ðr[F)(m) are spanned by their global
sections for all r if m &#x3E; mff 0 

Therefore, for any r and any m &#x3E; m(, - sup (mo’ mo)

if and only if

The statements (i) and (ii) follow now by what has been said in section a).
For any q and m &#x3E;"’&#x3E; 0 by statement (ii) of theorem 3 the extension map

is injective. It is enough to show that the socle of H§§(X, !F(- m) ) is non

zero to find the desired cohomology lass $, By the above lemma it suf-
fices to show that H’(X, Y(- m)) 0 0. Now, by duality .gx(X, Y(- m))
is isomorphic to the topological dual of ’(DQY)(m)r r--J (Ðq!F) x. In accor-

dance with section a) the Ox module (:Dq)x is non null provided that q =

== depth:Fx or q == dim!Fx.

COROLLARY. Let X be a normal strongly pseudoconvex space of dimension
&#x3E; 2, let :F -=I=- 0 be a locally free sheaf of finite rank and let :F (m) be the twisted
sheaves corresponding to a positive line bundle on X. Then

Moreover, let us assume that X is of pure dimension 2. Then for every m « 0
and for any point x E X there exist cohomology classes $ C H2(X, !F( - m) )
for which supp ($) == {x}.

Indeed depth !F&#x3E;2 and depth Y = 2 when X is of pure dimension 2.

We may note also the following consequence of theorem 1, 3 and 4.
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COROLLARY. Let X be a strongly pseudoconvex open subset o f a non singular
n-dimensional projective variety, let !F be an analytic coherent sheaf on X
locally free and let !F(m) denote the twisted sheaves associated to the hyperplane
divisor. Then

(i) Hr(X, :F(m)) == 0 for r &#x3E; 0 and 1’(X, :F(m)) generates the fibres
of !F(m) if m  0 ;

(ii) Hr(X, 5-(_ M)) - 0 for i-  n and for any x E X there exists

c- Hn(X, Y( - m)) such that supp fxl if m » 0.

REMARK. As theorems 3 and 4 show, the strongly pseudoconvex spaces
possessing a positive line bundle are simultaneously generalisation of Stein
spaces and of projective varieties. Let remind that a complex space X is
called after Grauert and Remmert projectively separated (cf. [13] where
is used the term « analytically separated »; « projectively separated » has
been proposed by H. Cartan) if for any x E X there is a morphism into a

projective space such that x is isolated in the fibre. Then we have the

following

STATEMENT. Let X be a strongly pseudoconvex space of bounded Zariski
dimension. The follou,,ing assertions are eqnival ent :

(i) X admits a positive line bundle,

(ii) There exists a closed embedding X 4 Cl X pN,

(iii) X is projectively separated.

PROOF. First of all, let us remark that the implications (ii) ==&#x3E; (iii) and
(ii) =:&#x3E; (i) are easy. The implication (i) =&#x3E; (ii) is proved in [11] in the non-
singular case, but the argument still works in the general case: using the
vanishing theorem [7], one gets an integer mo and sections so,..., st E

E -r(X, Cmo) which give rise to a mapping from a neighbourhood of the

exceptional set .K of X into Pt and which is injective on K and local embed-
ding in the points of K. Then, one finds sections without common zeros
st+l7 ... 7 St+s s of the analytical restriction of Cmo to X* - Ix c- XI.R!(X) = 07
]-jtl (X* is a closed analytic subset of X, contained in XEK, hence
is Stein and one makes use of theorems A and B). Using again [7] and

replacing eventually mo by a multiple, one can extend these sections on
the whole of X; the morphism X- pt+8, together with an embedding Y- eIJ
of Remmert’s reduction gives the required embedding (see [11] for details).
The implication (iii) =&#x3E; (ii) is a straightforward consequence of the vanishing
theorem of Grauert and Remmert for projective maps as follows. Let X ---’-&#x3E; Y
be the Remmert reduction, K the maximal compact analytic subset of X
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and U a relatively compact open set which contains a(K). By the hypo-
thesis, we can find a morphism X --&#x3E; Pn such that each x E n-’(U) will be
isolated in the fibre. Consider the morphism f : X --&#x3E; P, x Y given by the
product of the previous one and n. Denote by Op. x y(l) the reciprocal image
of Opn(l) through the projection Pn X Y --&#x3E;- Pn, and let C == f*(Opnx y(l)).
We claim that for every Y E Coh X, H’(X, Y(m)) = 0 for q &#x3E; 1 when m »0:
if this is true, then by the proof of (i) =&#x3E;- (ii), the conclusion follows. Denote

by p : Pn X Y - Y the projection. Using Leray spectral sequence of 7t and
theorem B on Y we get isomorphisms gg(X, !F(m)) ,-..J F(Y, Rqn*(!F(m))).
As the sheaves Rfln*(:F(m)) are zero on Yin(K) for q&#x3E;l, to finish the proof
it suffices to show that Rqn*([F(m))lu = 0 for q&#x3E;l if m » 0. Since f is

finite one obtains (for example, looking at the spectral sequence associated
to the composition yr = pf, as Rqf* = 0 for q &#x3E; 1) the isomorphism

On the other hand it is easy to see that f*(Y(m)) -- (f*(!F))(m). Now
the proof is over, since from the theorem of Grauert and Remmert recalled
above, Rqp*(f*(!F)(m))lu = 0 for q&#x3E;l when m » 0.

d) q-pseudoconcave case. We have the following

THEOREM 5. Let X be a strongly q-pseudoconcave space of f inite dimension,
let Y E Coh X and let Y(m) be the associated twisted sheaves corresponding to
a negative holomorphic line bundle. Then

Macaulay.

PROOF. The statement (i) is theorem 2 of [7]. We need only to prove (ii).
For any rand m the separated space associated to the QDFS space
H[(X, Y(- m)) is isomorphic to the strong dual of Egt-r(X’; :F(- m), X&#x26;).
For any m consider the spectral sequence of term

which converge to Extcx+p(X; ZT(- m), KI). Let Po = dim Y = depth Y.
In virtue of the lemma in section a), ÐP:F = 0 if fl =F Po and ÐPo:F is Cohen-
Macaulay and of dimension Po. Accordingly, y depth (Ofl,,T) = Po and by (i),
.H"(X, (ÐfJo!F)(m)) = 0 when a C flo - q - 1 and m » 0. It follows that

E2e(m) = 0 when a + fl  - q - 1 and m » o. Hence Egt-r(X; !F(m), )=0
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when r &#x3E; q + 1 and m » 0. Now Hk(X, 5,-(- m)) is separated iff

Ext-;’+l (X; Y(- m), KI) is separated. By duality we deduce that

H§J(X, Y(- m) ) = 0 when r &#x3E; q + 2 and that the separated space associated
to Hq+2 (X, (:F- m)) is zero. But H%+2(.LY, [F(- m)) is finite dimensional

hence separated and hence zero.

COROLLARY. - Let X be a strongly pseudoconcave open subset of a non-
singular n-dimensional projective variety, let Y be a coherent sheaf o&#x3E;i X, locally
free and let !F (m) denote the twisted sheaes which correspond to the hyper-
plane section. Then

For any strongly q-pseudoconcave space and any 9 E Coh X, the space
IIdevth -tI-l(X,) is separated. This is proved in [4] for the nonsingular
case and in [211 for the general case. Using this fact, together with theo-
rem 5 and duality, one obtains the following

THEOREJ.B11 6. Let X be a strongly q-pseudoconcave space of fi&#x3E;iile dimen-
sion, let 5;- E Coh X and de&#x3E;zote by :F(m) the twisted sheaves associated to a

negative holomorphic line bundle on X. Then

Macaulay.

REMARK. We do not know if the Cohen-Macaulay assumptions in theo-
rems 5 and 6 are effectively needed.

2. - The algebra A(x, C) and some polynomial functions.

a) Definitions. Let X be a complex space and let £ be an invertible
sheaf on X. We denote by A(X, E) the graded ring

tensorial multiplication gives the natural structure of graded C-algebra.
For an analytic sheaf Y on X and for any integer q &#x3E; 0, we denote by

JK,tI(X; C, !F) or simply X’(X, :F) the A(X, C)-graded module I
?I

(here, as usual, Y(m) are the associated twisted sheaves).
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We say that A(X, £) is without fixed point if, for any x E X, there exist
an integer m &#x3E; 0 and a section s E T(X, t-) such that s(x) =1= 0 (i.e. sx 0
mxt’). If for all Y c- Coh X we have a vanishing theorem of the form

H’(X, Y(m)) = 0 for m » 0, then A(X, t) is without fixed points; this

as we have seen occurs in many instances when t corresponds to a positive
holomorphic line bundle. Another example is given by the case of a non-
singular algebraic projective variety X when t = IDI is associated to a

divisor D whose linear system )D] has finitely many base points; indeed,
by a result due to Zariski ([28], theorem 6.2) the complete linear system ImD I
for m » 0 has no base points. 

°

Let )D ) be a complete linear system on a nonsingular projective surface F
over an algebraically closed ground field k. We assume that some multiple
ImDI I of ID has no base points. In the same paper of Zariski the following
statements are proved (theorem 6.5 and p. 611 (2)):

a) The ring R*(D) == ffi T(F, {mDl) is finitely generated over k;

b) There exists a finite number of polynomials f l(t), ..., f n(t) of one

variable t such that, setting

(superabundance of ImDI), we have s(mD) == fÂ(m)(m) for m » 0, where,

Â(m) E 11, 2,..., n’ f is a periodic function of m;

c) A counterexample is also given when the graded ring R*(D) is

not finitely generated.
These statements emphasize the interest of the following questions:

1) is the algebra A(X, t) finitely generated?

2) are the A(X, t)-modules AI(X, F) finitely generated:

3) what is the behaviour of the function

for m » 0?

Before we examine these questions let us first recall the following theorem
of finiteness for graded sheaves proved in [8].

Let (X, 0) be a complex space and let T1, ..., TN denote some indeter-
minates. The sheaf of polynomials O[T,, ..., TN] is a coherent sheaf of

rings ([8], lemma 1.2). From any morphism f : (X, Ox) - ( Y, Oy) between
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complex spaces one deduces a natural morphism, also denoted by f,

One has the following facts :
(-If f is a proper morphism, for any graded coherent Ox[T1, ..., TN]-

module fl, the generalized images Rqf*(tJ1L) are coherent Oy[T,, ..., TN]-
modules ([8], theorem 1) ».

In particular we obtain:
o If (X, O) is a compact complex space and A is a coherent graded

0[T1, ..., TN]-module, then H’(X, A) is a e[T1, ..., TN]-module of finite

type for any value of q ».

b) Compact case. We have the following

THEOREM 7. Let X be a compact complex space, let C be an invertible

sheaf on X and let !F E Coh X.

(i) Assume A(X, C) without fixed points. Then the C-algebra A(X, C)
is finitely generated and for every q, X’(X, Y) is an A(X, C)-module of finite
type.

(ii) Assume F(X, t) without fixed points. Then for every q the f unction
m -&#x3E; dim Hq(X, :F(m)) is a polynomial of degree dim!F for m » 0, and

the f unction m -+ L’( - l)q dim HtI(X, :F(1n)) is just a polynomial.

(iii) Assume that for any two distinct points x, x’ there exists a section
s E F(X, t) such that s(x) == 0 and s(x’) =,p4- 0. Then the degree of the poly-
nomial m -+L’(-l)q dim Hq(X, Y(m)) equals dim Y.

PROOF. (i) Suppose first that the elements of F(X, C) have no common
zero. As X is compact there exist elements s,,, ..., s, E T(X, C) such that
for every x E X at least one of them si has the property si(x) *- 0.

By the substitution Ti -+ si one obtains a natural structure of graded
0[T1, ..., TN]-module on fl = fl(Y) = Y @ [F(l)EÐ .... We claim that A
is 0 X[Tl’ ..., TN]-coherent. Let x E X; choose a section si such that si(x) *- o.
In a neighbourhood U of x the morphism Ox -+ C given by qJ --+ qsi is an

isomorphism. Then A I u -- 5;-[T] I u - !F@ox Ox[T]lu and the structure of
OX[Tl’ ..., TN]-module is obtained by setting T, --&#x3E; 0 for j 0 i and Ti --&#x3E;- T.
There is the identification
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Now the conclusion follows as , is

coherent over O[T,,, ..., TN] (as one can see taking locally exact sequences
of the form Ox -+ 09 --&#x3E; 5;- -&#x3E; 0). By means- of the theorem of coherence

mentioned above, we derive that is a

e[T1, ..., TN]-module of finite type for any q. In particular the C-algebra
A(X, E) is a C[T1, ..., TN]-module of finite type, thus it is finitely generated.
Also it follows that A"(X, Y) H’(X, Y(m)) is a module of finite type
over A (X, E).

Let us now assume that A(X, C) has no fixed points, i.e. its elements

have no common zeros. Then as X is compact, y there is an integer mo &#x3E; 0
such that the elements of T(X, Cmo) have no common zeros. For every

m &#x3E; 0 we can write !F(m) == (!F(r))(hmo), hand r being integers and

0 c r  mo. If we apply the first part of the proof to Cmo and to each !F(r),
0  r  m,,, it follows that the algebra (D F(X, Emm,) is finitely generated
and that for and q and r, 0  r  m,,, 0+ H’(X, Y(r) (mm,,)) is a module of
finite type over G) F(X, cmmo). If one puts together, for r = 0, ..., mo - 1,

the generators, one finds that module of

finite type and thus of finite type over A(X, L). In particular A(X, H) is

a module of finite type over EB F(X, cmmO), hence it is finitely generated as
C-algebra.

(ii) Under the previous notations we have that

a module of finite type over C[T,, ..., T,], hence the function m -
--&#x3E; dim HtI( X, T(m)) is actually a Hilbert function, hence a polynomial for
m » 0 ([25], Ch. II, th. 2).

We claim that its degree is smaller than dim Y. We prove this fact

by induction on dim:F. If dim Y = 0 then the statement is obvious.

The general induction step is done as follows. Let X,, ..., X k be the irre-
ducible components of supp ’j-4’ and pick up some points si E Xl, ..., I Xk E Xk .
There exists a section s E h(X, C) such that s(xi) =I=- 0 for all i by the
assumption. The multiplication by s gives a morphism !F(- 1) -+:F. We
denote by 9 and its Kernel,and Cokernel. In accordance with the choice

of s, dim 6  dim Y and dim R  dim Y. Denote also by

We have the exact sequences
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and also

We have the exact sequences

Under the inductive assumption the degrees of the polynomials associated
to the functions m --&#x3E;- dim Hq(X, Je(m)), m --&#x3E;dim Hq+1(X, Ç(m)) are  di-

mension of Y. Therefore the polynomial associated to the difference function

is of degree  dim 5;- and from this our contention follows.

To see that the function m ---&#x3E;- Z(X, 5;-(m)) = 2:’(- 1)q dim Hq(X, 5’(m))
is a polynomial we proceed by the same ,yay, by induction on dim:F. If

dim :F : 0 the assertion is obvious and the general step of induction follows
from the relations

with the same notations as before.

(iii) Again we proceed by induction on dim Y. If dim:F : 0 the

statement is clear. Let us prove the general step of induction. Consider

the singular set 8,(Y) of Scheja [26] and a finite set A of X such that, for
every k, A cuts all (if any) k-dimensional irreducible components of Sk([F).
Now choose a point so in an irreducible component of supp Y of dimen-
sional equal to dim 5-. By hypothesis we can find a section s E .h(x, E)
such that s(x) =F 0 whichever is x E A but s(xo) = 0. Let V(s) be the locus
of zeros of s ( V(s) = supp (ElOs)). Then dim ( TT(s) n Sk+l(!F)):k for any k.
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By ([26], 1.18) the morphism induced by the multiplication by s,
5;-(- l-) -+ Y, is injective; let 9 be its cokernel. Clearly, y dim S = dim Y - 1.
From the exact sequences

one gets

and the proof is over.
Particular cases of this theorem can be found in ([6]y theorem 3) and

([5], proposition 8.2).

c) REMARKS. 1) One could prove the theorem using the proper mor-
phism X -+ P(F(X, £.)) (defined when £ has no fixed points), using Grauert
coherence theorem [14], and the associated Leray’s spectral sequence, together
with results of [24] (for the last assertion of (ii) one uses the invariance of
Euler-Poincaré characteristic on spectral sequences). However the argument
used above is applicable to some more general situations. For instance one

can show the following 
.

STATEMENT..Let X be a compact complex space, let t be a locally free
coherent sheaf on X (or more generally, let 8 E Coh X) and let :F E Coh X.

Assume 8 generated by its global sections. Then the C-algebra A(X, 8) =

is finitely generated and for every q,

is an A(X, C)-module of finite type. In particular the functions m-7

--&#x3E;- dim Hq(X, Y Ox S-(&#x26;)) are polynomials for m » 0. (Here Sm(E) denote

the m-th symmetric tensor power of &#x26;).

2) By the same type of arguments one gets the following

STATEMENT. Let X be a complete algebraic carielj/ over an algebraically
closed field k. Let £. be an invertible sheaf and :F an algebraic coherent sheaf.

(i) Assume that A(X, E) has no fixed points. Then the k-algebra

is finitely generated and, f or any q,

is an A(X, C)-module o f finite type.

(ii) Assume that the elements of T(X, C) have no common zero. Then

f or any q the f unction m - dimk Hq(X, Y(m)) is polynomial if m » 0 of
degree : dim Y, while the f unction m -* X( X, Y(m)) is just a polynomial.
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(iii) Assume that for each pair x =F x’ there exists s E -V(X, C) with

s(x) = 0 but s(s’) * 0. Then the degree of the polynomial m -¿. X(X, F(m))
equals dim Y.

Indeed the proof is more simple than in the analytic ca’se since the

coherence theorem for graded sheaves is easier in the algebraic context

([16], 2.4.1 and 3.3-1). We note the construction of a section s as in the
proof of (iii) given above can also be done, by the same arguments, using
the theory of singular sets of algebraic coherent sheaves which is carried
out in the algebraic case in [27].

From this statement one can derive the results of Zariski mentioned

above.

3) In [17] one shows that the function m -+ X(X, !F(m)) is polynomial
for every invertible sheaf £. on a complete algebraic variety and for any
algebraic coherent sheaf Y (Snapper theorem).

According to [1] if X is a compact complex space (or more generally
a pseudoconcave space) and if E is an invertible sheaf on X the function
m --* dim F(X, Cm) is bounded by a polynomial of degree dim X. One

can ask the following question to which we do not know the answer:
« Let X be a compact complex space, y let L be an invertible sheaf

and let :F E Coh X. When is the function m __&#x3E;_ Z( - J)q dim Hq(X, :F(m))
a polynomial? Are the functions m ---&#x3E; dim Hq (X, :F(m)) bounded by poly-
nomials of degree  dim X? ».

A very partial answer is given by the following (1)

STATEMENT. Let X be a Moishezon space, let E be an invertible sheaf on X,
let y E Coh X and let Y(m) denote the associated twisted sheaves. Then the

functions m 1)q dim Hq (X, :F(m)) is a polynomial. (2).

PROOF. Let 1 ’- X be a proper morphism of complex spaces, let

C E Pic X, and let E denote the reciprocal image of E under a; then for any
9 c- Coh X there exist natural isomorphisms Rqn*((m))  (Rq7r*(g)) (M). In

the left side the twisted sheaves are relative to C but in the right side relative
to L To get them, we consider a covering % = (U,), of X which trivializes
E and let ($ij), $,; E 0 y( Ui r1 U,), be the gluing functions. The sheaf I
is obtained gluing together the sheaves 011:r-’(Ui) by means of the func-

(1) E. Selder (Munchen) has proved that the function m -&#x3E; x(X, Y(m)) is poly-
nomial when X is of dimension 2 (reduced) and C is associated to a divisor.

(2) The statement has been proved by C. Horst (Munchen) for a special class
of Moishezon spaces.
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tions yr-. One verifies easily that both sheaves Rq’Jl*(g(m)), (Rq2r*g)(M)
are equal to Rq’Jl*(!F) on each Ui and moreover on each Ui () Uj the gluing
functions are for both the multiplication by .

We now go back to the proof of the statement. We proceed inductively
on dim X. If dim X = 0 the conclusion is obvious. Let suppose the asser-

tion already proved for Moishezon spaces of dimension  dim Jf and let

prove it for X. First note the following: if Y E Coh X and Y = 0 outside

a closed analytic set Y of dimension  dim X, then the conclusion holds
for Y. Indeed, if 3 = J(Y) is the maximal ideal sheaf assigned to Y, then
3 = 0 for 1 sufficiently large and the required statement derives by
additivity from the exact sequences

using induction on k and the fact that (Y, OxjJly) is Moishezon.

Now X is bimeromorphically equivalent to an algebraic projective
variety [18] hence there exists an algebraic projective variety X and a
proper surjective morphism a: 1 --* X biholomorphic outside an analytic
set Y of dimension smaller than dim X. Let f = n*(E) and 9 = n*(Y).
There exists a natural morphism Y --&#x3E; which is an isomorphism out-
side Y. In virtue of the former remark the statement holds for ker and

coker of that morphism, thus to prove that the function m 2013" x(X, :F(m))
is polynomial we need only to show that this happens for the sheaf n*( ).

For each m there exists a spectral sequence of term E,tI(m) ==
== H2&#x3E;(X, Rn*(#(m))) which converges to H2&#x3E;+tI(X, 9(m)). The remark at

the begining of the proof gives us that El,’(m) - Hl(x, (RtIn*())(m)).
By the invariance of the Euler-Poincare characteristic in a spectral sequence
we get X(X, 9(m)) = x(x, n*(,T)(m)) - X(X, + .... Moreover

RQn*(T) are coherent sheaves on X which are zero on XB Y for q&#x3E;l, thus
the functions m --&#x3E;- X(X, Rqn*(ff)(m)) are polynomial when q&#x3E;l. Similarly
behaves the function m - X(l, j(m)) by Snapper theorem (and by GAGA)
and the proof is finished.

It is easy to see that the degree of the polynomial which appears in the
statement is smaller than dim [F.

4. Another open question is the following
(Let X be a strongly pseudoconcave space, £ and invertible sheaf

on X such that the elements of some power Er (r &#x3E; 0) have no common
zeros. Let Y be a coherent sheaf and torsion-free. Is A(X, E) finitely gene-

rated? Is I an A(X, E)-module of finite type »
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Particular answers could be given in the case the pseudoconcave space
is compactificable and the data is extendible on the compactification.

A still very partial answer to this type of questions is given by the

STATEMENT. Let X be a strongly pseudoconcave space, let C be an invertible
sheaf on X and let Y be a locally free coherent sheaf. Assume that there exist
depth X-I global sections of some power Er, r &#x3E; 0, without common zeros.

&#x3E;

Then A(X, C) is finitely generated and EBF(X, $"(m)) is an A(X, C)-module
of finite type. 0

PROOF. As in the proof of part (i) of the previous theorem it is suf-

ficient to prove the assertion when r = 1. Let so, ..., sn be global sections
of C without common zeros, n = depth Ox - 2. Consider the morphism
X ’&#x3E;- Pn given by those sections. The sheaf C is isomorphic to n*(Opn(l)).

One gets isomorphisms n*($"@ Cm) -- n*([F) (8) Opn(l)m which agree with
the graduation. Consequently,

and

where on Pn the twisted sheaves are considered relative to the tautological
line bundle Opn(l)- On the other hand as n is a strongly pseudoconcave
map and depth 0 x = n + 2 = dim Pn + 2, depth , == dim Pn + 2 by
([21], theorem 3) both n*(Ox) and n*(Y) are coherent sheaves on Pn. By [24]
it follows that A(X, C) and EB T(X, T(m)) are C[to, ..., tn]-modules of finite
type. The structure of module is given by setting ti -&#x3E; si and the proof
is over. 

’

5. STATEMENT. Let X be a complex space, let 3 c Ox be a coherent ideal

shea f such that Z = supp (OXIJ) is compact and let T E Coh X. Assume

that r(X, J) generates the fibres Jz , for all z E Z. Then the f unction m-+
-+ E( - l)q dim HtI(X, :F / Jm:F) is polynomial for m » 0 and f or any q the

function m --* dim HI(X, :F /Jm!F) is bounded by a polynomial.

PROOF. In order to prove the first assertion it suffices to show that the

difference function is polynomial when m » 0. Making use of the exact
sequences

it is only necessary to prove that for every q the function
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is polynomial for m » 0. By the assumption there exist sections Sl, ..., s,

in F(X, J) which span the fibre 3,, for every x E Z. The direct summ :FjJ!FEB
EBJ[F/J2!F0153... has a natural structure of graded Oz[Ii, ..., TN]-module
(0, = OXIJ I,-,) by the mapping T -* class of s mod 32 ; moreover its cohe-
rence over OZ[Tl’ ..., TN] is easily established. By the theorem of finiteness
we get that EÐ HQ(Z, 3-YI 3-+’Y) is a C[T,,, T,,]-module of finite type
and the first conclusion follows.

For the second assertion it suffices to show that the difference function

m --&#x3E;- dim H-2(X, !FjJm+l:F) - dim Hq(X, :FjJm:F) is bounded by a polynomial.
From the exact sequence

we derive that this difference is bounded by dim Hfl(X, 3mYf3m+iY) and by
this the proof is over.

We do not know if the assumption on T(X, 3) can be weakened (if X is
Moishezon, then the function m --&#x3E; z(X, !FjJm!F) is polynomial without any
additional hypothesis on 3; this derives from the statement given in sec-
tion 3., using an argument due to Ramanujam [20] which reduces this problem
to a problem concerning invertible sheaves via a blowing-up along 3).

The required condition on 3 is fulfilled when Z is a compact analytic
set which has in X a strongly pseudoconvex neighbourhood and when
3 = 3(Z) is the maximal ideal sheaf of Z (use Remmert reduction).
We may also note the following case. Let Y---f* Y be a proper morphism,

let y E Y and 3 = iRvOx the ideal sheaf of X generated by the maximal
ideal of ðy,"8 Then Z is the analytic fibre Xv = f-l(y) and we get that the
function

is polynomial (see also [9]) and that the functions

are bounded by polynomials in this case of degrees dim, Y.
In [9] it is also proved that the functions m - dim HQ(X, :F Im:!F) are

polynomial for m » 0 provided that Y is flat over Y.

3. - Twisted sheaves on projective spaces.

In this paragraph we deal with twisted sheaves relative to the tauto-
logical line bundle of the projective space. We are interested of the algebraic
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geometry over an arbitrary algebraically closed ground field k and on alge-
braic sheaves. When k = C one recovers results concerning coherent ana-
lytic sheaves making use of GAGA.

a) STATEMENT. Let Pn be the n-dimensional projective space over the

field k, let :F be an algebraic coherent sheaf on Pn and let q be an integer. Then

Assertion (i) was proved in ([24], Ch. III, § 5, th. 2 and also [15], Ex-
pose XII). The assertion (ii) can be proved in the same way using theorem 1
of Ch. III, § 5 of [24] and a convenient characterization of the dimension
over regular local rings. For the assertion (iii) we reconsider the argument
given in theorems 3 and 4. Precisely we will show that the sheaves Y(- m)
verify the dual theorem A when m » 0, i.e. the maps

are injective on the socle y(H(pn, F(-m))).
For a coherent sheaf 9 the Ox-module H’(P’, 9) is null iff its socle is

null (indeed, in the algebraic case any element of H.,’(Pn, g) is annulated

by some power of the maximal ideal mx of 0.,). From this remark the asser-
tion (iii) can be derived as HI(P-, !F(- m)) ^J H:(pn, T) - H..(Spee 0,,, fx)
is =F 0 for q = depth Y., or q = dim Tx by [15]. Now IF(P-, Y(- m)) is

finite-dimensional over k and its dual is isomorphic to Egtn-r(Pn; !F(- m), S?pn) -
Use the spectral sequences which tie the global with the local Ccvtls, use the
isomorphism

and the theorem B of Serre. Then we get

On the other hand, eClin-r(:F( - m), Q) 1".1 eClin-r (!F, .Q)(m) is spanned by
global sections when m » 0, i.e. for any x the map
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is surjective. By local duality over a regular local ring [15], considering
the m. x-a di c topology on the Or-module of finite type Extô:r( !F(- m)x, S2"),
its topological dual is isomorphic to

The target space of the map (*) is finite dimensional over k and its dual

is just the socle of H§(Pn, !F(- m)). Taking thus the dual of (*) we obtain
our contention.

b) Let us recall that Y is called m-regular if H(P", Y(m - r)) = 0
for r &#x3E; 0 ([19], lecture 14). We will also say that Y is m-coregular if

H’(P", !F (m - r)) = 0 for r  depth !F. In particular if Y is locally free
this last condition becomes

Analogously to Castelnuovo Lemma ([19], lecture 14) we have the following

LEMMA. Let Y E Coh pn be m-coregular and let qo = depth Y.

(i) then Y is m’-eoregular for every m’ c m, i.e.

(ii) if k -)- qo  m and c- Hl,(Pn, Y(k)) is such that 1$ = 0 f or any
linear f orm T, then $ = 0;

(iii) if k -E- qo c m and if x E Pn is such that depth Yx = qo, then

there exists $ c- H"-(P’, !F(k)) with s-upp - fxl.
PROOF. (i) When depth :F == 00 (i.e. !F = 0) the statement is trivial.

Let us suppose 0 and use induction on depth ’. If depth :F = 0
there is nothing to prove. We can thus suppose depth !F&#x3E;1. By ([24],
Ch. III, 8) we can find a linear form T such that the multiplication mor-
phism 5;’(- 1) -*,T is injective and such that the hyperplane associated
to T passes through a point x in which depth!F x = depth!F (one could
give an argument for the existence of T as in the proof of (iii) of theorem 7).
One has the exact sequence

and depth 19 = depth :r - 1. For any k one has the exact sequence
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Considering the associated exact sequence we derive that 9 is m-coregular.
By the inductive hypothesis then 9 is m’-coregular for m’  m. By induction
on k &#x3E; 0 one deduces then that Y is (m - k)-coregular.

(ii) When depth , - oo there is nothing to prove. Assume that

depth :F = 0 and choose  E HO(PN, Y(k)) such that T = 0 for any linear
form T. For every X E Pn take a form such that T(x) =F 0, then it follows

that $.,, = 0 for every x E P", thus $ = 0. Assume now depth Y &#x3E; 0 and

proceed by induction on depth , . With the same notations as above we

have the exact sequence

Let E Htlo(pn, T(k)) as in (ii). In particular for the linear form T used
for the exact sequence we have 1’$ = 0, i.e. the image of $ through the
second arrow is zero. There exists thus an element rEHtIo-l(pn, @(k+I))
whose image in Hlo(Pn, Y(k)) is $. It is enough to show that for any linear

form 8, Sn = 0, because then by induction q = 0 and thus $ = 0.
Now H",-’(Pn, Y(k + 2)) = 0 by (i) so that the map

is injective. The image of $?I under this map is zero because equal to S$.

(iii) We proceed by induction on k, qo+km. For k small enough
there exists $ E HtIo(pn, Y(k)) such that supp _ fxl. This follows from

point (iii) of the statement given before. In accordance with (ii) if qo+k  m
there exist a linear form T such that I$ E HtIo(pn, !F(k+l)) is not zero.

As supp (I$) c supp $ one gets supp T$ = (s). This shows that we can

proceed with the induction.

c) THEOREM 8. Let :F be an algebraic coherent sheaf on the projective
space Pn.

(i) Assume that the Hilbert polynomial m - X(Pn, !F(m)) equals the

Hilbert polynomial o f a free sheaf. Then 5;’ is also free if and only if 0-regular ;
i f in addition :F is locally free this last conditio91 is also equivalent with the
condition f or T to be ( - 1 )-coregutar.

(ii) Assume Y locally free; then Y is a direct factor of a free sheaf (of
f inite rank) i f and only if it is 0-regular and (- 1 )-coregular.

PROOF. The  only if » implications follow from the formulae which

compute dim Hr(Pn, 0 (m)) of [24]. ,
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(i) The first assertion follows directly from Castelnuovo Lemma. One
can also argue by induction on n. If n = 0 there is nothing to prove.
Assume it &#x3E; 0. We take a linear form T such that the multiplication gives
rise to an injective morphism :F(- 1) - Y. Let denote by H = Pn-I the
corresponding hyperplane. We have exact sequences

where :F H == !F (8)0 0,,. Assume that the polynomial
equals the polynomial m --&#x3E; x(Pn, oll P. (M)). Since

the Hilbert polynomial associated to :F H equals the Hilbert polynomial
associated to 0"

On the other hand, :F H must be 0-regular. By the inductive hypothesis !F H
is free and in fact isomorphic to 01 . Let us choose 81’ ..., s, E HO(pn, !F H)
giving rise to the isomorphism 0 £ ri !F H i The map H°(Pn, Y) - HO(PN, !F H)
is surjective as the obstruction lies in Hl(pn, !F(- 1_)) which is zero by the
hypothesis of 0-regularity. Therefore there exist t1, ..., tv E HO(pn, Y) whose
images are just 81’...’ Sp. The corresponding morphism OP ° Y induces
the isomorphism Ojy !FH. By Nakayama lemma 0 is surjective at all

points of H, thus supp (Coker 0) has dimension  n. One has

It follows that the Hilbert polynomial of ker 0 equals the one of Coker 0.
Hence dim supp (Ker 0)  n. But this is possible only if Ker 0 = 0 as

Ker 0 c OP. Consequently Coker 0 = 0, that is !F,-...J OP. Now assume Y

locally free and (- l)-coregular. It is sufficiently to show that the dual
sheaf is free. The Hilbert polynomial of J; is given by na - E( - l)q.
-dim Hq(pn, J;(m)). But Hq(pn, J-(m)) is isomorphic to the dual of

H--"(P-, !F( - m Q) = H--q(P-, Y(- m- n - 1)) as S2 - O( - n - 1). It
follows then easily that the Hilbert polynomial of j; equals the one of a
free sheaf; as the condition (( 1- is 0-regular » reduces by duality to the
condition « Y is ( - 1 )-coregular », it follows that j; is free.

(ii) For this point we apply Castelnuovo Lemma. In virtue of it Y

is generated by its global sections. Let OP ---&#x3E; Y be an epimorphism and
let 9 be its Kernel. From the exact sequence
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and from the fact that Hr(pn, é)p(- r)) - 0 for r;&#x3E;l we deduce that 9 is

0-regular.
Now the coherent sheaf 9 do- :F has Hilbert polynomial equal with that

of Op and it is 0-regular. By (i) this sheaf must be free and the proof is over.

COROLLARY. Let :F be a locally frree sheaf o f f inite rank on the projective
line Pl.

(i) Assume X(P1, :F(m)) = p(m + 1) for at least an integer m, where
p &#x3E; 0 is an integer. Then:F is free if and only if H1(P1, :F(- 1)) 0 and
i f and only if HO(P1, :F( - 1)) == 0.

(ii) :F is a direct factor o f a free sheaf o f f inite rank i f and only if
HO(P1, :F(- 1)) = 0 and H1(P1, !F(-l)) == 0.

These facts can also be proved using Grothendieck’s structure theorem
for vector bundles on the projective line.

STATEMENT. Let X be a non-singular projective variety and let T be an

algebraic coherent sheaf on X which is 0-regular relative to the hyperplane
section and having a Hilbert polynomial equal to the one o f a free sheaf.
Then T is free.

The argument is the same as in the theorem since for a generic
hyperplane H, H n X is non-singular and the corresponding morphisms
Ox(- 1) - Ox, :F(- i ) -+ :F are injective.
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Added in proofs. ,

(1) The implication i =&#x3E;ii of the statement on page 10 was also noted by
M. SCHNEIDER and A. SILVA;

(2) D. LEISTNER (Regensburg) has proved that the functions m -dimHo(X, Y@L"’)
are bounded by polynomials (X compact complex space);

(3) K. UENO and the second author have proved that the function (n, na) -
--* X(X, Y (D EIIJ-(Y 0 c,n)) is polynomial for any n and m » 0 (the only assump-
tion is that Supp (0x/3) is compact).


