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Twisted Sheaves on Complex Spaces.

ALDO ANDREOTTI (1) - CONSTANTIN BANICA (**)

Let (X, O) be a complex space, let £ be an invertible O-module and
let 5 be a coherent O-module. Define £" = £®" = £® ...® £ (m-times)
for m>0 (£ = O) and set L™ = (L)~ for m <0, where £-! = Fomg (£, O)
is the invertible dual sheaf of £. The twisted sheaves of F relative to £ are the
sheaves F(m) = F X L™ Our purpose is the study of these sheaves.

In [7], if X fulfils some convexity or concavity assumptions and if £
is associated to a positive or negative line bundle, one obtains theorems
concerning the behaviour of the cohomology of these sheaves for m — -+ oo
similar to the vanishing theorem of Serre ([24], n. 74, th. 1). In a first
paragraph we complete these results for the case m — — oo using an idea
that goes back to [24]. The paragraph also contains an attempt to formulate
a dual theorem to theorem A of Cartan-Serre by giving a meaning to the
« cogeneration of the cofibres ». o

Let us consider the graded ring A(X, L) = @ (X, L™). In a second

m=0
paragraph we study the finite generation over C of this ring and also the
finite generation of the #(X,f)-modules ® H/(X, (m)), as well as the
asymptotic behaviour of the function m ~> dim H?(X, F(m)).

These results are established for X compact complex space and £ such
that a convenient power £ of £ has no fixed points (partial results are also
given in the pseudoconcave case). These questions were started by Zariski
in connection with the generalized 14-th Hilbert problem (see for example [28]).
The ring A(X, £) was used in [5] and [6] to obtain compactification of pseudo-
conecave Spaces.

In a third paragraph we consider the particular case X = P* and
£ = Op.(1). In this case the freeness of the coherent sheaf F can be traced
through the Hilbert polynomial m ~> X(— 1)« dim HY(X, (m)) and the
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question is connected with the so called Castelnuovo Lemma ([19], lecture 14)
and with the dual version of it.

Almost all results could be generalized replacing £ by a locally free
coherent sheaf, substituting the powers with the corresponding symmetric
tensor powers, but we confine ourselves to give only one remark in para-
graph 2.

1. — The sheaves F(m) for m — + co.

a) Dualizing sheaves. Let X be a complex space and let F be an
analytic coherent sheaf on X (we write shortly 5 € Coh X). For all Stein
open sets U in X, the space Hi(U, ) has a natural topology of DFS space
and we can consider the strong dual of it. For an inclusion V c U we can
consider the transposed of the natural continuous extension map Hi(V, ¥) —
— H{(U, §). In this way we define a presheaf whose associated sheaf is
denoted D F and is called the g-dualizing sheaf of F. In [2] and [4] the
following statements are proved:

1) D*F is a coherent analytic sheaf on X for any g¢;

2) for all Stein open sets U, I'(U, D*F) equals the strong dual of
HY(U, 5);

3) for any embedding ¢: U — W of the open subset U of X into
an n-dimensional manifold W there exist natural isomorphisms

i4(DF|U) = Doiy(F|U) ~ EXUE(i(F|U)y )5

4) if X is of finite dimension and if X3 denote the dualizing com-
plex of X [22], then there are isomorphisms

DeF = ExtGl(F, KY);

5) if & £ 0 then D*F = 0 if g¢[depth F, dim F] and D* F % 0 when
g = depth & or ¢ = dim §;

6) dim DF <q for every ¢ and D¥F= 7,
We will need also the following

LeEMMA. If & is a Cohen-Macaulay coherent sheaf (i.e. F =0 and
depth 5§ = dim &) then D*F =0 for q +# ¢o= dim F and D*F s also
Cohen Macaulay.
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Proor. From the facts stated above we get D:F = 0 for ¢=# ¢, and
dim D* F = ¢q,. It will be enough to show that depth D F >gq,.

The question is of local nature on X and using suitable embedding we
may as well assume that X is a manifold of dimensionn. As dh F = n — ¢q,,
F has locally a resolution

0 >8" %> ,..>8>F =0

where the & are free Oy-modules of finite rank. Now D*F = € XUG T, L)
and thus the cohomology of the complex

(%) 0 — Fom (&, Q) — ... > Fom (6"~ %, Q) -0

is trivial but in the dimension n — g, where it is just D*F. This means that
D*F has locally a resolution of length n — ¢, by free sheaves of finite rank.
Thus dh D*F<n— q, i.e. depth (D*F)>q,.

b) gq-pseudoconvex spaces. Let X be a complex space, let L be a holo-
morphic line bundle on X and let ¥ € Coh X. We agree to denote by
F(m) the twisted sheaves relative to the invertible Ox-module £ of germs
of holomorphic sections of L. We shall write m > 0 to mean « for m suf-
ficiently large ».

THEOREM 1. Let X be a strongly q-pseudoconvex space of finite dimension,
let L be a positive holomorphic line bundle on X and let F € Coh X. For the
associated twisted sheaves F(m) we have

(i) H'(X, F(m)) =0 for r>q and m > 0.
(ii) Hy(X, F(—m)) =0 for r < depth F — ¢ and m > 0.

Proor. Statement (i) is theorem 1 of [7]. So we need to prove only (ii).
For any r and any m the space Hy(X, F(— m)) has a natural QDFS topology
and its associated separated space is isomorphic to the strong dual of
Ext—" (X; F(— m), Xy ), this last space being endowed with its natural QFS
topology [22]. For any m there exists a spectral sequence

ByP(m) = H*(X, €xtf (F(— m), X))

which converge to Ext*™’ (X; F(— m), Ky).
For any three Oy-modules M, N, § one gets a natural morphism

Fomg (Mo, N) ®¢ FHomg (T, 0) — FHomg (SR T, N)
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given by the map ,
PRy > (MR p — p(p) p(m)) .

Moreover, this is an isomorphism if & is locally free of finite rank.
Let X3 — 3° be an injective resolution of the dualizing complex. We
have the isomorphism

Fomg (F, 3°) ®g Fom (L7, 0) ~ Fomg (FR L™, 3°) .
Taking cohomology we get the isomorphism
Exts(F(—m), Ky) =~ Ext6(F, K3)(m) ~ (D4 F)(m) .

As DFF = 0 for all but finitely many f’s, by means of (i) we can find m,
such that

H*(X, DsF(m)) =0, VYa>gq, V8, Ym>m,.
On the other hand D8F = 0 if § < depth F. Therefore

E3Pm) =0 for o« + f=—r when r < depth ¥ — ¢ and m >0 .

As Hj(X, F(m)) is separated iff Ext—+1(X; F(— m), X%) is separated [22],
we conclude with the assertion (ii).

REMARK. The proof shows that HI®™F - X, F(— m)) is separated in
agreement with the general statement of separation of these groups on
strongly g¢-pseudoconvex spaces [3].

Let us denote by H, and H,° the homology groups (with compact sup-
ports) and respectively the homology groups with closed supports. We will
denote by the suffix % the associated dual cosheaf[4]. In virtue of the
previous theorem and the separation of H*™™F~¢(X, F(— m)) we get

THEOREM 2. Let X be a strongly q-pseudoconver space of finite dimen-
sion. Let 5 € Coh X, let L be a positive holomorphic line bundle on X and
denote by F(m) the corresponding twisted sheaves. Then:

(i) H,(X, F(m)y) =0 for r>q and m >0,
(ii) H, (X, F(— m)x) = 0 for r < depth F — ¢ and m > 0.

c) The pseudoconver case (i.e. ¢ = 0). We first recall the following
definition [15]:
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Let A be a local ring with maximal ideal m and let M an A-module;
we denote by
y(M) = (0: m)y = {s € M|ms = 0}

and we call it the socle of M.

Let (X, O) be a complex space and 5 € Coh X. We say that « F ful-
fils the dual of theorem A in dimension r» or that « the space Hi (X, F) coge-
nerate its cofibres » if for every x € X the canonical map H'(X, F) % Hi(X,5)
is injective on the socle of H (X, F) (i.e. if §é € Hy(X, &) is such that (&) =0
and m,& = 0 then & = 0).

REMARK. Let D be a precosheaf on X. For a point x € X we define
the cofibre D° = ]i_n_l‘J)(U), U open neighbourhood of ». When D is the
dualizing cosheaf U — Hi(U, &) [4], a duality argument shows that its
cofibre in # equals H (X, F), the r-cohomology with supports in {z}. We
say that D « verifies the strong dual of theorem A » or « D is strongly coge-
nerated by the global cosections» if the maps D”— D(X) are injective.
If O is the cosheaf U ~ H (U, &) this condition is equivalent to the fact
that the maps H (X, F)— Hi(X, ) are injective. That is true for example
when X is a Stein space (by means of a duality argument). This strong
formulation of the dual of the theorem A implies the previous formulation,
which was inspired by the fact that the theorem A is nothing else but the
surjectivity of the map I'(X, F) - F,/m, F,.

We have the following useful

LemMA. H(X, F) = 0 iff y(HYX, F)) = 0.

Proor. Via an embedding around x we are reduced to the case when X
is a manifold of a certain dimension ». Now H,(X, §) has a natural FS
topology and its dual is isomorphic to Exty " (F,, £,), this last space being
endowed with the DFS topology given by uniform convergence of germs
via the isomorphism

Exty " (5., 2.) = Exty " (F, Q). .

Now m, Exty_ " (F., 2,) is a closed subspace of Exty ' (F,, 0.) (as it
is analytic submodule). The topological dual of the quotient

Ext’{):’ (F.y 2,)/m, Ext'é:' (F o, £,)
is just y(HL(X, F)). Thus the assumption y(H(X, F)) = 0 brings

Exty " (o, 2,) = m, Exty " (F., 2.)
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and by Nakayama’s lemma we get Exty "(F., £2,) = 0 thus, by duality
H,(X,5)=0. And conversely.
We have the following

THEOREM 3. Let X be a strongly pseudoconvex space of finite dimension,
let L be a positive holomorphic line bundle on X, let 5 € Coh X and let F(m)
be the corresponding twisted sheaf. Then

(i) F(m) verifies theorem A if m >0,
(ii) F(— m) verifies the dual of theorem A if m > 0.

Proor. Note that in ([11], theorem II) a weaker form of (i) is proved.
Here is the general argument.

Let X = Y be the Remmert reduction; s is proper and biholomorphic
outside a compact set K c X. For every G € Coh X, 724(G) is coherent on Y.
By theorem A of Cartan, I'(Y, 7+(8)) generated the fibres of 74(8). Conse-
quently I'(X, §) generates the fibres G, for all x € X\ K. In virtue of this
remark it will be sufficient to show the existence of an integer my, = my(F)
such that I'(X, & (m)) generates the fibres F(m), for any x € K and m>m,.
We follow the argument by which theorem A is deduced from theorem B.
First we establish that there is an integer I, > 0 such that I'(X, O(l,)) gene-
rates the fibres all over K (and hence in all points of X). Let € K and
let m(x) be the maximal ideal sheaf given by 2. From the exact sequence
0 ->m(x) >0 - O/m(x) -0 we get the exact sequence

0 —m(x)(m) — O(m) — (O/m(x))(m) -0 .
By theorem 1, H'(X, m(z)(m)) = 0 if m > 0, therefore the maps
I'(x, 9(m)) — O(m)./m,O0(m),

are surjective. By Nakayama lemma I'(X, O(m)) generates the fibres O(m),
if m is large. Let us fix such a m. By coherence there exists a neighbour-
hood U of # such that I'(X, O(m)) generates the fibres O(m),., for all '€ U.
Moreover we note that this property is preserved by changing m with a
positive multiple of it. By a compacity argument we find an integer I, with
the required property.

Let ¥ € Coh X. We claim that the sheaves J(ml,) are spanned by
global sections if m > 0. With the above notation we have the exact
sequence

A0—>m(m)$—>$—>$'/m(w)3"—>0.
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As HI(X, (m(x) F )(ml.,)) =0 for m >0, as before we obtain that
I'(X, 5(ml,)) generates the fibre F(ml,), if m >0. Let us fix such an
integer m. By coherence I'(X, F(ml,)) generates the fibres in a neighbour-
hood U of . As I'(X, 9(l,)) generates the fibres of O(,), for all m'>m the
space I'(X, F(m'l,)) spans the fibres through the same U and then by a
compacity argument we conclude that I'(X, F(ml,)) generates F(ml,), for
for m > 0. .

We can now prove statement (i). We apply the previous assertion to
each of the sheaves &, F(1),..., F(l,—1). Consequently the shaves F(ml,),
F(mly 4+ 1), ..., F(ml, + l,— 1) are spanned by the global sections for m > 0.
For each m we can write m = m'l, 4 r with 0<r < l,, and if m > 0 then
m’ > 0. From this assertion (i) follows.

We turn to the proof of (ii). First we remark that for any complex
space X (of finite dimension) and for any coherent sheaf G, the canonical
maps

Ext (X; G, Ky) — I'(X, €xt(S, X5))

are continuous when Ext is endowed with the QFS-topology inherited by
the duality theory [22] and when the target space is endowed with the
natural topology on the sections of a coherent sheaf. For that it suffices
to show that, by composition with the restriction maps

I'(X, €xt..) - T'(U, €xt ...)

with U open and Stein, we obtain continuous maps. This derives from the
commutative diagrams

Bxt(X,..) > (X, €xt ...)

v v

Ext(U,..) - I'(U, €xt...)

and the fact that our assertion is already known when X = U. The proof
of (ii) then proceeds as follows. By theorem 1 H*(X, (DeF)(m)) = 0 for
every «>1, every integer f and m < 0. Since

EXt=8 (F(— m), K3) = Ext=5(F, X3)(m) = (DF)(m)

one deduces that the maps

Ext~ (X; F(— m), K5) > I'(X, Ext-r (F(— m), K3)) = I'(X, (DF)(m))
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are bijective for every » and m > 0. As these maps are continuous they
are topological isomorphisms. By duality we get then Hi(X, F(— m)) ~
~ strong dual of I'(X, (D"F)(m)) for r>0 and m > 0. If we apply state-
ment (i) to any D"F we obtain that the maps

(%) I'(X, DrF(m)) — (D' F)(m)./m (D F)(m),

are surjective for every r and z if m > 0. Now H(X, F(— m)) is iso-
morphic to the topological dual of

Exty! (F(— m), Ky) = Ex—7(F(— m), Kx), = (DF)(m), .
Hence by transposing (%) we get that the extension map
H(X, F(— m)) - Hy(X, F(—m))

is injective on y(H;(X y F(— m))) for m > 0. Consequently, F(— m) verifies
the dual of theorem A for m < 0 in any dimension 7.

COROLLARY. Assume that sup dim (F,/m,F,) << co. Then F is globally
: reX

the quotient of a coherent locally free sheaf.

Proor. Let m > 0 be so chosen that F(m) is spanned by the global
sections. Consider Remmert’s reduction X -% Y and let K be a compact
in X such that x is biholomorphic on X\ K. There exist sections s, ..., s, €
e I'(X, $(m)) which generate F(m) on K. The sheaf § = n(F)(m) is
coherent on a Stein space Y and as X\ K ~ Y\xn(K) it follows that

sup dim (§,/m.G,) < co.
veY

By ([10], [12]) S is spanned by finitely many global sections. Using this
fact, we can find ¢,, ..., t, € I'(X, F(m)) which spann F(m) on X\ K. Hence
the morphism 0%"? — F(m) given by (s;, ..., 8, &, ..., t,) is an epimorphism
and therefore we get an epimorphism 0% Y(— m)— F — 0.

THEOREM 4. Let X be a strongly pseudoconver space of finite dimension,
let L be a positive holomorphic line bundle on X, let q be an integer, let
F € Coh X and let F(m) denote the associated twisted sheaves. Then

(i) depth F>gq if and only if Hy(X, F(—m)) =0 for r<gq and
m>0;
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(i) dim F <q if and only if Hy(X, F(— m)) = 0 for r> q and m > 0;

(iii) for every m >0 and for any xe€ X such that depth F,= q or
dim F, = q there ewists a cohomology class & € HY(X, F(— m)) with supp & =
= (@} (ie. £#0 and e Im(HY(X, F(—m)) — HYX, F(— m)))).

Proor. By the same argument given in the proof of theorem 3, there
exists an integer m, such that

Hj(X, F(— m)) ~ strong dual of I'(X, (D"F)(m))

for m>m('). On the other hand, by statement (i) of theorem 3, there exists
an integer mg for which the sheaves (D75 )(m) are spanned by their global
sections for all r if m>my .

Therefore, for any r and any m>m, = sup (mg, m,)

Hj(X,5(—m)) =0 if and only if DF=0.

The statements (i) and (ii) follow now by what has been said in section a).
For any ¢ and m > 0 by statement (ii) of theorem 3 the extension map

y(HYX, F(—m))) —~ HY(X, F(—m))

is injective. It is enough to show that the socle of H(X, F(— m)) is non
zero to find the desired cohomology class & By the above lemma it suf-
fices to show that HZ(X, F(— m)) s 0. Now, by duality Hi(X, F(— m))
is isomorphic to the topological dual of (D*F)(m), = (D*F),. In accor-
dance with section «) the O, module (D2F), is non null provided that q =
= depth ¥, or ¢ = dim 7.

COROLLARY. Let X be a mormal strongly pseudoconvexr space of dimension
>2, let 5 % 0 be a locally free sheaf of finite rank and let F(m) be the twisted
sheaves corresponding to a positive line bundle on X. Then

HYX, F(—m)) = HY(X, F(—m)) =0 if m>0.

Moreover, let us assume that X is of pure dimension 2. Then for every m < 0
and for any point x € X there ewist cohomology classes &€ Hi(X, F(— m))
for which supp (&) = {}.

Indeed depth 5 >2 and depth & =2 when X is of pure dimension 2.
We may note also the following consequence of theorem 1, 3 and 4.
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COROLLARY. Let X be a strongly pseudoconvex open subset of a non singular
n-dimensional projective variety, let F be an analytic coherent sheaf on X
locally free and let F(m) denote the twisted sheaves associated to the hyperplane
divisor. Then

(i) H'(X, F(m)) =0 for r>0 and I'(X, F(m)) generates the fibres
of F(m) if m <« 0;

(i) Hi(X, F(— m)) =0 for r<mn and for any xe X there exists
e HYyX, F(—m)) such that supp & = {a} if m > 0.

REMARK. As theorems 3 and 4 show, the strongly pseudoconvex spaces
possessing a positive line bundle are simultaneously generalisation of Stein
spaces and of projective varieties. Let remind that a complex space X is
called after Grauert and Remmert projectively separated (cf.[13] where
is used the term « analytically separated »; « projectively separated » has
been proposed by H. Cartan) if for any x € X there is a morphism into a
projective space such that x is isolated in the fibre. Then we have the
following

STATEMENT. Let X be a strongly pseudoconver space of bounded Zariski
dimension. The following assertions are equivalent:

(i) X admits a positive line bundle,
(ii) There exists a closed embedding X — C¥ x PV,

(ili) X s projectively separated.

Proor. First of all, let us remark that the implications (ii) =- (iii) and
(ii) = (i) are easy. The implication (i) =-(ii) is proved in [11] in the non-
singular case, but the argument still works in the general case: using the
vanishing theorem [7], one gets an integer m, and sections s, ...,s,€
e I'(X, £™) which give rise to a mapping from a neighbourhood of the
exceptional set K of X into P’ and which is injective on K and local embed-
ding in the points of K. Then, one finds sections without common zeros
st ..., 8" of the analytical restriction of £™ to X* = {x e X|s;(x) = 0,
1<j<t} (X* is a closed analytic subset of X, contained in X\ K, hence
is Stein and one makes use of theorems A and B). Using again [7] and
replacing eventually m, by a multiple, one can extend these sections on
the whole of X ; the morphism X — P!**, together with an embedding ¥— C”
of Remmert’s reduction gives the required embedding (see [11] for details).
The implication (iii) = (ii) is a straightforward consequence of the vanishing
theorem of Grauert and Remmert for projective maps as follows. Let X 5>Y
be the Remmert reduction, K the maximal compact analytic subset of X
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and U a relatively compact open set which contains n(K). By the hypo-
thesis, we can find a morphism X — P such that each x e (U) will be
isolated in the fibre. Consider the morphism f: X — P"x Y given by the
product of the previous one and #. Denote by Op., (1) the reciprocal image
of Opu(1) through the projection P»x Y — Pr, and let £ = f*(Op., (1)).
We claim that for every § € Coh X, H*(X, F(m)) = 0 for ¢>1 when m>>0:
if this is true, then by the proof of (i) = (ii), the conclusion follows. Denote
by p: P»xY — Y the projection. Using Leray spectral sequence of z and
theorem B on Y we get isomorphisms H°(X, F(m)) ~ F(Y, an*(.‘T(m))).
As the sheaves K% (F (m)) are zero on Y\g(K) for ¢>1, to finish the proof
it suffices to show that Reur,(F(m))|y; =0 for ¢>1 if m > 0. Since f is
finite one obtains (for example, looking at the spectral sequence associated
to the composition = = pf, as R, = 0 for ¢>1) the isomorphism

Rimy(F(m) = Ripa(fa(F(m))) .

On the other hand it is easy to see that fu(F (m)) ~ (f(F ))(m). Now
the proof is over, since from the theorem of Grauert and Remmert recalled
above, Ripy(f+«(F)(m))|y = 0 for ¢>1 when m>> 0.

d) q-pseudoconcave case. We have the following

THEOREM 5. Let X be a strongly q-pseudoconcave space of finite dimension,
let 5 €Coh X and let G (m) be the associated twisted sheaves corresponding to
a negative holomorphic line bundle. Then

(i) H'(X, F(m)) =0 for r < depthF — ¢— 1 and m> 0,

(i) Hj(X, F(— m)) = 0 for r>gq+1, m >0, provided F is Cohen-
Macaulay.

ProOF. The statement (i) is theorem 2 of [7]. We need only to prove (ii).
For any r and m the separated space associated to the QDFS space
H(X, 5(— m)) is isomorphic to the strong dual of Ext—"(X; F(— m), X%).
For any m consider the spectral sequence of term

By'(m) = H(X, €10 (F (— m), X)) = HX(X, (D-5F)(m))

which converge to Ext8(X; F(— m),X%). Let B, = dim F = depth F.
In virtue of the lemma in section a), DEF = 0 if § # B, and D F is Cohen-
Macaulay and of dimension f,. Accordingly, depth (D%F) = B, and by (i),
HYX, (D*F)(m)) =0 when a<pf,—¢g—1 and m>0. It follows that
E3*(m) = 0 whena + < — ¢— 1and m>>0. Hence Ext—"(X; F(m), Xx)=0
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when r>g¢q-+1 and m> 0. Now Hj(X,5F(—m)) is separated ift
Ext—*! (X; F(— m), X%) is separated. By duality we deduce that
Hi(X, F(— m)) = 0 when r > ¢ + 2 and that the separated space associated
to HI**(X, (F— m)) is zero. But HI'*(X, F(— m)) is finite dimensional
hence separated and hence zero.

COROLLARY. - Let X be a strongly pseudoconcave open subset of a mon-
singular n-dimensional projective variety, let 5 be a coherent sheaf on X, locally
free and let F(m) denote the twisted sheaves which correspond to the hyper-
plane section. Then

(i) H'(X, F(—m)) =0 for r<n—1 and m>0;
(ii) Hy(X, F(m)) =0 for r>1 and m > 0.

For any strongly g¢-pseudoconcave space and any G e Coh X, the space
Hn9—a-1(x¥ @) jg separated. This is proved in [4] for the nonsingular
case and in [21] for the general case. Using this fact, together with theo-
rem 5 and duality, one obtains the following

THEOREM 6. Let X be a strongly q-pseudoconcave space of finite dimen-
sion, let F € Coh X and denote by F(m) the twisted sheaves associated to a
negative holomorphic line bundle on X. Then

(i) H, (X, F(m)s) =0 for r < depth(F)— q—1 and m > 0;
(i) HP(X, F(m)s) = 0 for r>q+1 and m>0, provided F is Cohen-
Macaulay.

REMARK. We do not know if the Cohen-Macaulay assumptions in theo-
rems b and 6 are effectively needed.

2. — The algebra A(X, () and some polynomial functions.

a) Definitions. Let X be a complex space and let £ be an invertible
sheaf on X. We denote by #A(X, L) the graded ring

A(X, £) = D I'X, L);
m=0
tensorial multiplication gives the natural structure of graded C-algebra.
For an analytic sheaf ¥ on X and for any integer ¢>0, we denote by
MUX; £, F) or simply MY (X, F) the A(X, £)-graded module P H(X, F(m))
. m=0
(here, as usual, F(m) are the associated twisted sheaves).
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We say that A(X, £) is without fixed point if, for any x € X, there exist
an integer m > 0 and a section s e I'(X, L") such that s(x) %0 (i.e. s, ¢
¢gm,Ly). If for all ¥ € Coh X we have a vanishing theorem of the form
HY(X, F(m)) = 0 for m >0, then #A(X, () is without fixed points; this
as we have seen occurs in many instances when £ corresponds to a positive
holomorphic line bundle. Another example is given by the case of a non-
singular algebraic projective variety X when £ = {D} is associated to a
divisor D whose linear system |D| has finitely many base points; indeed,
by a result due to Zariski ([28], theorem 6.2) the complete linear system |m.D|
for m > 0 has no base points. ’

Let |D| be a complete linear system on a nonsingular projective surface F'
over an algebraically closed ground field k. We assume that some multiple
/mD| of |D| has no base points. In the same paper of Zariski the following
statements are proved (theorem 6.5 and p. 611 (2)):

a) The ring R*(D) =@ I'(F, {mD}) is finitely generated over Fk;

b) There exists a finite number of polynomials f,(?), ..., f.(t) of one
variable ¢ such that, setting

s(mD) = dim H'(F, {mD})
(superabundance of |mD|), we have s(mD)= famy(m) for m> 0, where
Am) € {1,2,...,n} is a periodic function of m;

¢) A counterexample is also given when the graded ring R*(D) is
not finitely generated.
These statements emphasize the interest of the following questions:

1) is the algebra A(X, £) finitely generated?

2) are the #A(X, f)-modules MY X, F) finitely generated?

3) what is the behaviour of the function

m — dim HY(X, F(m))
for m > 0?

Before we examine these questions let us first recall the following theorem
of finiteness for graded sheaves proved in [8].

Let (X, O) be a complex space and let T, ..., Ty denote some indeter-
minates. The sheaf of polynomials O[T, ..., Ty] is a coherent sheaf of
rings ([8], lemma 1.2). From any morphism f: (X, Ox) — (¥, Oy) between
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complex spaces one deduces a natural morphism, also denoted by f,
fi (X, Ox[Ty, ..., Tyl) = (Y, Op[Ty, ..., TN]) .

One has the following facts:

«If f is a proper morphism, for any graded coherent O4[T,, ..., Ty]-
module A, the generalized images RY.(Al) are coherent O[T, ..., Ty]-
modules ([8], theorem 1) ».

In particular we obtain:

«If (X, Q) is a compact complex space and L is a coherent graded
o[T,, ..., Ty]-module, then HYX, M) is a C[T,, ..., Ty]-module of finite
type for any value of ¢».

b) Compact case. We have the following

THEOREM 7. Let X be a compact complex space, let L be an invertible
sheaf on X and let 5 € Coh X.

(i) Assume A(X, L) without fixed points. Then the C-algebra A(X, L)
is finitely generated and for every q, MU X, F) is an A(X, L)-module of finite
type.

(ii) Assume I'(X, L) without fixed points. Then for every q the function
m — dim H(X, F(m)) is a polynomial of degree <dim F for m >0, and
the function m — X(— 1)? dim HY(X, & (m)) is just a polynomial.

(iii) Assume that for any two distinct points x, x' there exists a section
sel'(X, L) such that s(x) = 0 and s(x’')5% 0. Then the degree of the poly-
nomial m — X(— 1)« dim H(X, F(m)) equals dim F.

ProoF. (i) Suppose first that the elements of I'(X, £) have no common
zero. As X is compact there exist elements s, ..., sy € ['(X, L) such that
for every x € X at least one of them s; has the property s;(x) = 0.

By the substitution 7'; — s, one obtains a natural structure of graded
O[Ty, ..., Ty]-module on Mo = M(F) = F D FA)PD.... We claim that A
is Ox[T,, ..., Ty]-coherent. Let x € X ; choose a section s; such that s,(x)+ 0.
In a neighbourhood U of z the morphism O, — £ given by ¢ — ¢@s; is an
isomorphism. Then |, ~ F[T]|y; =~ F Rg, Ox[T]|; and the structure of
Ok[T4, ..., Ty]-module is obtained by setting 7, — 0 for j ¢ and T, — T.
There is the identification

FIT) = FITy, ., TY(Tyy ooy Tsy ooy Ty) F[Tay vy Tl
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Now the conclusion follows as F[Ti, ..., Ty] (= F®g O[T, ..., Ty]) is
coherent over O[T, ..., Ty] (a8 one can see taking locally exact sequences
of the form 0% — 05 — § — 0). By means of the theorem of coherence

mentioned above, we derive that HYX, M(F)) ~ @ HYX, F(m)) is a
m=0

C[T,, ..., Ty]-module of finite type for any q. In particular the C-algebra
A(X, L) is a C[T}, ..., Ty]-module of finite type, thus it is finitely generated.
Also it follows that MYX, F) =@ HY(X, F (m)) is a module of finite type
over A(X, £).

Let us now assume that A(X, £) has no fixed points, i.e. its elements
have no common zeros. Then as X is compact, there is an integer m, > 0
such that the elements of I'(X, £™) have no common zeros. For every
m >0 we can write F(m)= (J‘*(r))(hmo), h and r being integers and
0 < r<<m,. If we apply the first part of the proof to £™ and to each F(r),
0 <7< my, it follows that the algebra @ I'(X, £™™) is finitely generated
and that for and ¢ and 7, 0<r < m,, ® H(X, F(r)(mm,)) is a module of
finite type over @® I'(X, £™™). If one puts together, for r=0,...,my— 1,
the generators, one finds that @ HYX, F(m)) is a @ I'(X, £™™)-module of

m=0

finite type and thus of finite type over A(X, ). In barticula.r A(X, L) is
a module of finite type over (P I'(X, L"), hence it is finitely generated as
C-algebra.

(i) Under the previous notations we have that ) H%(X, F(m)) is
0

a module of finite type over C[T,,..., Ty], hence the function m —
— dim HYX, 5 (m)) is actually a Hilbert function, hence a polynomial for
m >0 ([25], Ch. II, th. 2).

We claim that its degree is smaller than dim §. We prove this fact
by induction on dim §. If dim & = 0 then the statement is obvious.
The general induction step is done as follows. Let X, ..., X, be the irre-
ducible components of supp F and pick up some points », € X, ..., ., € X;.
There exists a section se€ I'(X, £) such that s(z;) = 0 for all ¢ by the
assumption. The multiplication by s gives a morphism §(— 1) - F. We
denote by § and X its Kernel and Cokernel. In accordance with the choice
of s, dim § < dim § and dim ¥ < dim . Denote also by

X=Im(F(—1) > F).
‘We have the exact sequences

0>8—->F(—-1)»X—->0, 0->-K->F->¥—->0
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and also
0—=>8m) - Fm—1) >Km) -0, 0—=>Km)—Fim)—>Im)—0.

We have the exact sequences

Hey(X, F(m—1)) 2 H(X, X(m)) 2~ H\(X, G(m)) ,
He(X, X(m)) 2> Ho(X, F(m)) 25 H(X,3(m)) .

dim He(X, F(m)) — dim H(X, F(m— 1)) < dim He(X, F(m)) —
— dim Im ¢, = dim H(X, F(m)) — dim H¢(X, }(m)) 4 dim Im &<
< dim Ho(X, F(m)) — dim H(X, ¥X(m)) + dim H*(X, §(m)) <
< dim He(X, §(m)) — dim Im ¢; + dim H*(X, §(m)) = dim Imeg, 4
+ dim He4\(X, §(m)) < dim He(X, Je(m)) + dim He+(X, S(m)) .

Under the inductive assumption the degrees of the polynomials associated
to the functions m — dim H¢(X, ¥(m)), m — dim H*'(X, G(m)) are < di-
mension of 5. Therefore the polynomial associated to the difference function

m — dim H/(X, 5 (m)) — dim H/(X, F(m — 1))

is of degree < dim § and from this our contention follows.

To see that the function m — y(X, F(m)) = X(— 1)« dim H(X, F(m))
is a polynomial we proceed by the same way, by induction on dim §. If
dim F <0 the assertion is obvious and the general step of induction follows
from the relations

X(X7 J‘r(m)) - X(X, F(m— 1)) = X(X9 JG(m)) - X(X7 Q(fm)) y

with the same notations as before.

(iii) Again we proceed by induction on dim §F. If dim 5 <0 the
statement is clear. Let us prove the general step of induction. Consider
the singular set S,(F) of Scheja [26] and a finite set A of X such that, for
every k, A cuts all (if any) k-dimensional irreducible components of S.(F).
Now choose a point #z, in an irreducible component of supp § of dimen-
sional equal to dim §. By hypothesis we can find a section sel'(X, L)
such that s(x) s 0 whichever is # € A but s(z) = 0. Let V(s) be the locus
of zeros of s (V(s) = supp (£/9s)). Then dim (V(s) N 8,,1(F)) <k for any k.
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By ([26], 1.18) the morphism induced by the multiplication by s,
F(— 1) — &, is injective; let G be its cokernel. Clearly, dim § = dim F — 1.
From the exact sequences

0—>F(m—1) — F@m) —>SG(m) -0
one gets

2 X, F(m)) — x(X, Fm—1)) = y(X, §(m))

and the proof is over.
Particular cases of this theorem can be found in ([6], theorem 3) and
([5], preposition 8.2).

¢) REMARKS. 1) One could prove the theorem using the proper mor-
phism X — P(I'(X, £)) (defined when £ has no fixed points), using Grauert
coherence theorem [14], and the associated Leray’s spectral sequence, together
with results of [24] (for the last assertion of (ii) one uses the invariance of
Euler-Poincaré characteristic on spectral sequences). However the argument
used above is applicable to some more general situations. For instance one
can show the following '

STATEMENT. Let X be a compact complex space, let & be a locally free
coherent sheaf on X (or more generally, let & € Coh X) and let F € Coh X.
Assume & generated by its global sections. Then the C-algebra A(X, §) =
= @ I'(X, 8~(8)) is finitely gemerated and for every ¢, @ H{(X, F ® 8™(§))

0 m=0
is an A(X, L)-module of finite type. In particular the functions m —
— dim H(X, ¥ ® 8m(8)) are polynomials for m > 0. (Here S™(§) denote
the m-th symmetric tensor power of §).

2) By the same type of arguments one gets the following
STATEMENT. Let X be a complete algebraic variety over an algebraically
closed field k. Let £ be an invertible sheaf and F an algebraic coherent sheaf.
(i) Assume that A(X,L) has mo fized points. Then the k-algebra
A(X, L) = PI(X, Lm) is finitely generated and, for any q, @ HY(X, F (m))
m=0

0
is an A(X, L)-module of finite type.

(ii) Assume that the elements of I'(X, L) have mo common zero. Then
for any q the function m — dim, H(X, 5(m)) is polynomial if m >0 of
degree <dim F, while the function m — y(X, F(m)) is just a polynomial.

2 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.



18 ALDO ANDREOTTI - CONSTANTIN BANICA

(iii) Assume that for each pair x = x' there exists s € I'(X, L) with
s(@) = 0 but s(x') 0. Then the degree of the polynomial m — y(X, F(m))
equals dim F.

Indeed the proof is more simple than in the analytic case since the
coherence theorem for graded sheaves is easier in the algebraic context
([161, 2.4.1 and 3.3.1). We note the construction of a section s as in the
proof of (iii) given above can also be done, by the same arguments, using
the theory of singular sets of algebraic coherent sheaves which is carried
out in the algebraic case in [27].

From this statement one can derive the results of Zariski mentioned
above.

3) In [17] one shows that the function m — y(X, F(m)) is polynomial
for every invertible sheaf £ on a complete algebraic variety and for any
algebraic coherent sheaf F (Snapper theorem).

According to [1] if X is a compact complex space (or more generally
a pseudoconcave space) and if £ is an invertible sheaf on X the function
m — dim I'(X, £) is bounded by a polynomial of degree <dim X. One
can ask the following question to which we do not know the answer:

«Let X be a compact complex space, let £ be an invertible sheaf
and let ¥ € Coh X. When is the function m — X(— 1)? dim H4(X, F(m))
a polynomial? Are the functions m -> dim H*(X, F(m)) bounded by poly-
nomials of degree <dim X7 ».

A very partial answer is given by the following (%)

STATEMENT. Let X be a Moishezon space, let £ be an invertible sheaf on X,
let 7 € Coh X and let F(m) denote the associated twisted sheaves. Then the
funetion m — X(— 1) dim He(X, F(m)) is a polynomial (?).

ProoF. Let X %~ X be a proper morphism of complex spaces, let
£ € Pic X, and let £ denote the reciprocal image of £ under z; then for any
G e Coh X there exist natural isomorphisms Riz.(S(m)) =~ (Rimy(8))(m). In
the left side the twisted sheaves are relative to £ but in the right side relative
to £. To get them, we consider a covering W = (U,); of X which trivializes
£ and let & = (§.)), &.,€ O%(U, N U;), be the gluing functions. The sheaf £
is obtained gluing together the sheaves Ox|nr~'(U,;) by means of the funec-

(*) E. Selder (Miinchen) has proved that the function m—> x(X, &(m)) is poly-
nomial when X is of dimension 2 (reduced) and £ is associated to a divisor.

(?) The statement has been proved by C. Horst (Miinchen) for a special class
of Moishezon spaces.
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tions 7*&,;. One verifies easily that both sheaves Rimy(S(m)), (RemsS)(m)
are equal to Rz (F) on each U, and moreover on each U; N U; the gluing
functions are for both the multiplication by &,;.

We now go back to the proof of the statement. We proceed inductively
on dim X. If dim X = 0 the conclusion is obvious. Let suppose the asser-
tion already proved for Moishezon spaces of dimension < dim X and let
prove it for X. First note the following: if § € Coh X and F = 0 outside
a closed analytic set Y of dimension < dim X, then the conclusion holds
for ¥. Indeed, if J = J(Y) is the maximal ideal sheaf assigned to Y, then
J*F = 0 for k sufficiently large and the required statement derives by
additivity from the exact sequences

0> FFFNF>FIFF > F[FF>0

using induction on &k and the fact that (Y, Ox/3 |Y) is Moishezon.

Now X is bimeromorphically equivalent to an algebraic projective
variety [18] hence there exists an algebraic projective variety X and a
proper surjective morphism z: X — X biholomorphic outside an analytic
set Y of dimension smaller than dim X. Let £ = #*(L) and § = a*(F).
There exists a natural morphism F — 7m(5) which is an isomorphism out-
side Y. In virtue of the former remark the statement holds for ker and
coker of that morphism, thus to prove that the function m — X(X7 F (m))
is polynomial we need only to show that this happens for the sheaf s (F).

For each m there exists a spectral sequence of term E3%m) =
= H”(X, R“n*(f (m))) which converges to H”"/(X, 5(m)). The remark at
the begining of the proof gives us that E%m) = H"(X, (Rs(F ))(m)).
By the invariance of the Euler-Poincaré characteristic in a spectral sequence
we get (X, F(m)) = 2(X, w(F)(m)) — 4(X, R'7ws(F)(m)) + .... Moreover
Rim,(5) are coherent sheaves on X which are zero on X\ Y for ¢>1, thus
the functions m — y(X, Ry (F )(m)) are polynomial when ¢>1. Similarly
behaves the function m — x(X, 5 (m)) by Snapper theorem (and by GAGA)
and the proof is finished.

It is easy to see that the degree of the polynomial which appears in the
statement is smaller than dim F.

4. Another open question is the following

«Let X be a strongly pseudoconcave space, £ and invertible sheaf
on X such that the elements of some power £ (r > 0) have no common
zeros. Let § be a coherent sheaf and torsion-free. Is A(X, L) finitely gene-

rated? Is @I(X, F (m)) an A(X, £)-module of finite type? »
0
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Particular answers could be given in the case the pseudoconcave space
is compactificable and the data is extendible on the compactification.
A still very partial answer to this type of questions is given by the

STATEMENT. Let X be a strongly pseudoconcave space, let L be an invertible
sheaf on X and let § be a locally free coherent sheaf. Assume that there exist
depth X — 1 global sections of some power LT, r > 0, without common zeros.

Then A(X,£) is finitely generated and @ I'(X, F(m)) is an A(X, L)-module
of finite type. 0

Proor. As in the proof of part (i) of the previous theorem it is suf-
ficient to prove the assertion when r = 1. Let s,,..., s, be global sections
of £ without common zeros, n = depth Oy — 2. Consider the morphism
X % P~ given by those sections. The sheaf £ is isomorphic to 7*(Op.(1)).

One gets isomorphisms 74 (F @ L") ~ 74 (F) R Opa(1)™ which agree with
the graduation. Consequently,

#(X, £) =@ I'(P*, m(0x)(m))  and @ I'(X, F(m)) =@ I'(P*, me(F)(m))

where on P the twisted sheaves are considered relative to the tautological
line bundle Op.(1). On the other hand as m is a strongly pseudoconcave
map and depth Oy =n + 2 = dim P*» + 2, depth § = dim P*» 4 2 by
([21], theorem 3) both 74(Ox) and m,(F) are coherent sheaves on Pr. By [24]
it follows that A(X, £) and ® I'(X, F(m)) are C[t,, ..., t,]-modules of finite
type. The structure of module is given by setting ¢, — s, and the proof
is over.

5. STATEMENT. Let X be a complex space, let JC Oy be a coherent ideal
sheaf such that Z = supp (Ox/3) is compact and let F € Coh X. Assume
that I'(X, J) generates the fibres 3, for all z€ Z. Then the function m—
— 2(— 1) dim HYX, F/I"F) is polynomial for m>0 and for any q the
function m — dim HY(X, §/I"5F) is bounded by a polynomial.

ProOF. In order to prove the first assertion it suffices to show that the
difference function is polynomial when m > 0. Making use of the exact
sequences

() 0 — JnF [Imt1F — F[I"F — F[InF — 0
it is only necessary to prove that for every ¢ the function

m — dim HY(X, InF[In+1F)
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is polynomial for m > 0. By the assumption there exist sections s,, ..., sy
in I'(X, 3) which span the fibre J, for every v € Z. The direct summ F/JF D
@IF|3*5 @D ... has a natural structure of graded O,[T,, ..., Ty]-module
(0:=0 x/3|z) by the mapping T, — class of s; mod J2; moreover its cohe-
rence over O[T, ..., Ty] is easily established. By the theorem of finiteness
we get that @ HYZ, »F[I=+1F) is a C[Ty, ..., Ty]-module of finite type
and the first conclusion follows.

For the second assertion it suffices to show that the difference function
m — dim H(X, & [I»15) — dim HY(X, F/3»F) is bounded by a polynomial.
From the exact sequence

HYX, InF[Im1F) > HY(X, F|ImF) - H(X, F[InF)

we derive that this difference is bounded by dim H*(X, J»F/J»+1F) and by
this the proof is over.

We do not know if the assumption on I'(X, J) can be weakened (if X is
Moishezon, then the function m — y(X, 5/J"F) is polynomial without any
additional hypothesis on J; this derives from the statement given in sec-
tion 3., using an argument due to Ramanujam [20] which reduces this problem
to a problem concerning invertible sheaves via a blowing-up along J).

The required condition on J is fulfilled when Z is a compact analytic
set which has in X a strongly pseudoconvex neighbourhood and when
J = J(Z) is the maximal ideal sheaf of Z (use Remmert reduction).

We may also note the following case. Let X L. ¥ be a proper morphism,
let yeY and J =m,0; the ideal sheaf of X generated by the maximal
ideal of Oy ,. Then Z is the analytic fibre X, = f~*(y) and we get that the
function

m — 3 (— 1)? dim HYX, Fm"F)
']
is polynomial (see also [9]) and that the functions
m — dim HY(X, F/m"F)

are bounded by polynomials in this case of degrees<dim, Y.
In [9] it is also proved that the functions m — dim HYX, F /t’r\t;”? ) are
polynomial for m > 0 provided that F is flat over Y.

3. — Twisted sheaves on projective spaces.

In this paragraph we deal with twisted sheaves relative to the tauto-
logical line bundle of the projective space. We are interested of the algebraic
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geometry over an arbitrary algebraically closed ground field £ and on alge-
braic sheaves. When k = C one recovers results concerning coherent ana-
lytic sheaves making use of GAGA.

a) STATEMENT. Let P be the n-dimensional projective space over the
field k, let F be an algebraic coherent sheaf on P and let q be an integer. Then

(i) depth F>gq if and only if H'(P", F(—m)) =0 for r<0 and
m > 0;

(i) dim F<gq if and only if H'(P", F(— m)) = 0 for r > q and m > 0;

(iii) ewhichever is m > 0 and x € P* such that depth ¥, = q or diim ¥, =
= g, there exists a class &€ HY(P", 5(— m)) such that supp & = {z}.

Assertion (i) was proved in ([24], Ch. III, § 5, th. 2 and also [15], Ex-
posé XII). The assertion (ii) can be proved in the same way using theorem 1
of Ch. ITI, § 5 of [24] and a convenient characterization of the dimension
over regular local rings. For the assertion (iii) we reconsider the argument
given in theorems 3 and 4. Precisely we will show that the sheaves 5 (— m)
verify the dual theorem A when m > 0, i.e. the maps

H(P*, 5(— m)) — H'(P", F(— m))

are injective on the socle y(H;(P”, F(— m)))

For a coherent sheaf G the O,module H,(P" §) is null iff its socle is
null (indeed, in the algebraic case any element of H (P~ G) is annulated
by some power of the maximal ideal m, of O,). From this remark the asser-
tion (iii) can be derived as HY(P", F(— m)) ~ HY(P", F) ~ HY, (Spec O, 7
is 0 for ¢ = depth &, or ¢ = dim &, by [15]. Now H'(P", F(— m)) is
finite-dimensional over k and its dual is isomorphic to Ext»—(P»; F(— m), Qp).
Use the spectral sequences which tie the global with the local € xt’s, use the
isomorphism

Ext* (F(—m), Q) ~ Ext* (F, 2)(m)

and the theorem B of Serre. Then we get
Ext—(Pr; F(—m), 2) ~ I'(X, Ext~(F(—m), Q)) it m>0.

On the other hand, €xt(F(— m), Q) ~ Extr (F, 2)(m) is spanned by
global sections when m > 0, i.e. for any x the map

(#)  I(X, €xtrr(F(~ m), 2))—~
— Bxtl"(F(— m),, Q) /m. BExty] " (F(— m)., 2.)
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is surjective. By local duality over a regular local ring [15], considering
the m,-adic topology on the O,-module of finite type Exty "(F(— m),, £2.),
its topological dual is isomorphic to

H', (Spec 0,, F(— m),) ~ Hi(P, F(— m)).

The target space of the map (%) is finite dimensional over k¥ and its dual
is just the socle of H (P, 5(— m)). Taking thus the dual of () we obtain
our contention.

b) Let us recall that F is called m-regular if H'(P", 5(m — 7)) =0
for > 0 ([19], lecture 14). We will also say that F is m-coregular if
H'(P", F(m— r)) = 0 for r < depth F. In particular if F is locally free
this last condition becomes

H(P" Fm—1r)=0 forr<mn.
Analogously to Castelnuovo Lemma ([19], lecture 14) we have the following

LeEMMA. Let F € Coh P* be m-coregular and let q, = depth F.

(i) then F is m'-coregular for every m'< m, i.e.
H'(P", (k) =0 for r<depthF and r + k <m;

(ii) ¢f &+ go<m and &€ H*(Pr, F(k)) is such that T& = 0 for amy
linear form T, then & = 0;

(iii) ¢f k¥ + go<m and if v P* is such that depth F,= q,, then
there ewists & € H*(P", F(k)) with supp & = {x}.

PRrROOF. (i) When depth ¥ = oo (i.e. F = 0) the statement is trivial.
Let us suppose F = 0 and use induction on depth §. If depth F =0
there is nothing to prove. We can thus suppose depth F>1. By ([24],
Ch. III, 8) we can find a linear form T such that the multiplication mor-
phism F(— 1) — §F is injective and such that the hyperplane associated
to T passes through a point # in which depth §, = depth & (one could
give an argument for the existence of 7' as in the proof of (iii) of theorem 7).
One has the exact sequence

0>5F(—1)-F -§—->0
and depth @ = depth & — 1. For any k one has the exact sequence

0— F(k—1) — F(k) - G(k) —0 .
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Considering the associated exact sequence we derive that § is m-coregular.
By the inductive hypothesis then G is m'-coregular for m’<m. By induction
on k>0 one deduces then that F is (m — k)-coregular.

(i) When depth § = oo there is nothing to prove. Assume that
depth ¥ = 0 and choose & € H(P~, 5(k)) such that T¢& = 0 for any linear
form 7. For every x € P* take a form such that 7'(x) # 0, then it follows
that &, = 0 for every « € P*, thus § = 0. Assume now depth 5 > 0 and
proceed by induction on depth F. With the same notations as above we
have the exact sequence

H"Y (P, §(k + 1)) - H*(P, F(k)) — Ho(P~, F(k -+ 1)) .

Let & e H*(P~, §(k)) as in (ii). In particular for the linear form 7T used
for the exact sequence we have T¢ — 0, i.e. the image of & through the
second arrow is zero. There exists thus an element ne H% !(P", §(k+1))
whose image in H%(P", ¥ (k)) is £ It is enough to show that for any linear
form 8, 8y = 0, because then by induction n = 0 and thus & = 0.

Now H*Y(P", 5(k + 2)) = 0 by (i) so that the map

He=Y(P", §(k 4 2)) — H*(P", F(k + 1))

is injective. The image of 8z under this map is zero because equal to S&.

(iii) We proceed by induction on k, ¢,+k<m. For k small enough
there exists £ e H"(P", F(k)) such that supp é = {w}. This follows from
point (iii) of the statement given before. In accordance with (ii) if g,-Fk <m
there exist a linear form T such that T&e H*(P", ¥ (k1)) is not zero.
As supp (T€) c supp & one gets supp T& = {#}. This shows that we can
proceed with the induction.

¢) THEOREM 8. Let F be an algebraic coherent sheaf on the projective
space Pr.

(i) Assume that the Hilbert polynomial m — y(P*, F(m)) equals the
Hilbert polynomial of a free sheaf. Then F is also free if and only if 0-regular;
if in addition F 1is locally free this last condition is also equivalent with the
condition for F to be (— 1)-coregular.

(ii) Assume F locally free; then §F is a direct factor of a free sheaf (of
finite rank) if and only if it is O-regular and (— 1)-coregular.

Proor. The «only if » implications follow from the formulae which
compute dim Hr(P~, O(m)) of [24].
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(i) The first assertion follows directly from Castelnuovo Lemma. One
can also argue by induction on n. If » = 0 there is nothing to prove.
Assume % > 0. We take a linear form 7 such that the multiplication gives
rise to an injective morphism F(— 1) — &. Let denote by H = P! the
corresponding hyperplane. We have exact sequences

0->0p(—1)>0p—>0y—0, 0->F(—1)>F >Fyp—>0

where JF,; = F ®9 Ox. Assume that the polynomial m — y(Pr, & (m))
equals the polynomial m — y(Pr, O%(m)). Since

(P, Fulm)) = (P F(m)) — y(Pr F(m— 1)

the Hilbert polynomial associated to 5, equals the Hilbert polynomial
associated to O0%.

On the other hand, ¥, must be 0-regular. By the inductive hypothesis F
is free and in fact isomorphic to O%. Let us choose s,, ..., s, € H(P"* Fy)
giving rise to the isomorphism 0% ~ F4. The map H°(P", F) — H(P*, Fy)
is surjective as the obstruction lies in H!(Pr, (— 1)) which is zero by the
hypothesis of 0-regularity. Therefore there exist ¢,, ..., t, € H(P", §) whose
images are just s, ..., $,. The corresponding morphism 92-% F induces
the isomorphism Of ~ 5. By Nakayama lemma 0 is surjective at all
points of H, thus supp (Coker) has dimension << n. One has

x(Pr ker 6(m)) — x(Pr, 02(m)) + x(P7, F(m)) — x(P" (Coker0)(m)) =0 .

It follows that the Hilbert polynomial of ker § equals the one of Coker 0.
Hence dim supp (Ker ) <n. But this is possible only if Ker0 = 0 as
Ker 0 c 9. Consequently Coker § = 0, that is F ~ Or. Now assume F
locally free and (— 1)-coregular. It is sufficiently to show that the dual
sheaf ¥ is free. The Hilbert polynomial of ¥ is given by m — X(— 1)-
-dim He(P», ¥(m)). But He(P" ¥(m)) is isomorphic to the dual of
Hr=(Pr, F(— m)® Q) = Ho(Pr, F(—m—n—1)) a8 2~ O(—n—1). It
follows then easily that the Hilbert polynomial of ¥ equals the one of a
free sheaf; as the condition « ¥ is 0-regular » reduces by duality to the
condition « F is (— 1)-coregular », it follows that JF is free.

(ii) For this point we apply Castelnuovo Lemma. In virtue of it F
is generated by its global sections. Let O? — & be an epimorphism and
let G be its Kernel. From the exact sequence

Hr3(Pr, (— 1)) > H'(P", §(— 1)) - H'(P", 0°(— 1))
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and from the fact that H7(P», O7(— 7)) = 0 for r>1 we deduce that G is
0-regular.

Now the coherent sheaf @ § has Hilbert polynomial equal with that
of O? and it is 0-regular. By (i) this sheaf must be free and the proof is over.

COROLLARY. Let F be a locally free sheaf of finite rank on the projective
line P

(i) Assume x(Pl, F(m)) = p(m + 1) for at least an integer m, where
p >0 is an integer. Then F is free if and only if H'(P*, F(— 1)) = 0 and
if and only if H(P!, F(— 1)) = 0.
(i) F s a direct factor of a free sheaf of finite rank if and only if
HY(PY, 5(—1)) = 0 and H\(P', F(—1)) = 0.
These facts can also be proved using Grothendieck’s structure theorem
for vector bundles on the projective line.

STATEMENT. Let X be a mon-singular projective variety and let F be an
algebraic coherent sheaf on X which is 0-regular relative to the hyperplane
section and having a Hilbert polynomial equal to the one of a free sheaf.
Then F is free.

The argument is the same as in the theorem since for a generic
hyperplane H, H N X is non-singular and the corresponding morphisms
Og(—1) - O, F(— 1) — F are injective.
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Added in proofs. .

(1) The implication i =~ii of the statement on page 10 was also noted by
M. SCHNEIDER and A. SILVA;

(2) D.LEeistNER (Regensburg) has proved that the functions m —dimHe(X, F RL™)
are bounded by polynomials (X compact complex space);

(3) K. Ueno and the second author have proved that the function (n, m) —
- 2(X, FRQLY/IMF ®L)) is polynomial for any n and m > 0 (the only assump-
tion is that Supp (O,/J) is compact).



