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On the Stability of the Dirichlet Problem
for the Vibrating String Equation (*).

GLORIA PAPI FROSALI (**)

1. - Introduction.

The Dirichlet problem for the vibrating string equation:
11

where a is a positive constant, is a classical ill-posed problem due to its

irregular behaviour. Its solution may neither exist, nor be uniquely deter-
mined, nor depend continuously on the data (see [1], [2] and [3]).

Therefore, the above problem cannot be suitably dealt with if cp, 1p and a
are known within a certain approximation. Without further information,
one cannot answer the following problem:

«When the approximate shape of a vibrating string is given at two
different times which are approximately known (e.g. by taking two photo-
graphs), find the position of the string at all intermediate times, up to an
error whose magnitude can be controlled ».

This leads us to formulate the Dirichlet problem with approximate data
and with the additional assumption that the energy of the string is bounded
by some absolute constant (see (5) below). This constant can be obviously
estimated in any particular case; on the other hand, since the wave equa-

(*) Work performed under the auspices of C.N.R.
(**) Istituto Matematico, Universita di Firenze.

Pervenuto alla Redazione il 27 Settembre 1978 ed in forma definiti-va il 22 Mag-
gio 1979.
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tion can be applied only to « small » vibrations of the string, such a bound
is also implicit in the classical formulation of the problem.

In [2], the Dirichlet problem for the wave equation was studied with
the additional assumption of an o a priori » bound for the gradient of the
solution.

The present research leads to some problems of diophantine approxima-
tion. As far as such problems are concerned, we refer to [4]. For different

applications of number-theoretic results to the heat equation see [5]. 
,

2. - Main results and comments.

Let (p(x) and V(x) be functions in C2[0, n] such that q(0) = gg(;r) ==

== 1p(0) = 1p(n) = 0. Let E, a and 6 be positive constants.
We consider solutions u in C2([O, n] X [0, + oo)) of the following

problem:

for a real number i depending on u and satisfying z - 0153/  ð.
The problem (1)-(5) is the mathematical model describing the physical

phenomenon that is formulated in the introduction. The meaning of

Ii - 0153l  ð is that the final time an is known up to a given error. Further-

more, since (3) and (4) yield the position of the string with an error given
in the L2 norm, it is clear that the corresponding constant should be propor-
tional to 6 ýE, where E is an upper bound for the energy of the string.

We denote by T6 the set of all C2 solutions of (1)-(5). We note that if
6 = 0, then the problem (1)-(5) is reduced to the classical Dirichlet prob-
lem with the additional assumption (5) that the energy is bounded. It is

well known that this problem may have no solutions. Hence it is neces-

sary to assume some compatibility conditions for E, 99 and 1p, in order

to ensure that T6 is non-empty; however, the study of such conditions
goes beyond our purpose. On the other hand, as the system (1)-(5) is

supposed to be a good model of a physical phenomenon, we may assume
T6 =A o.
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We now state our results. Let

I 

and define the diameter of the set T6:

DEFINITION. For a fixed a, the Dirichlet problem (1)-(5) is stable if

for every E, q; and y.
As the functions in F6 are periodic, we may assume a E [0, 1] in the

sequel. We prove (Theorem IV) that:

The Dirichlet problem (1)- (5) is stable if and only if a is irrational.

The best estimate for Diam T,§ is obtained when a belongs to the set
of measure zero (see [6] p. 60) of the  badly approximable» irrational

numbers, i.e. those having bounded partial quotients in their expansions
as simple continued fractions. This estimate is given in the following
theorem:

THEOREM I. Let a be an irrational. number and let the simple continued
fraction for a have bounded partial quotients an  Aa, n&#x3E; 1. Then

If a has type 92  oo (1), the estimate we obtain for Diam F6 is given in
the following theorem:

THEOREM II. Let a be an irrational number o f type Q  00. Then, for
any fixed 0, Q/({J --f - 1 )  0  1, there exists a constant K = K( o, a) &#x3E; 0

(1) Let a be a fixed irrational. If SZ is the upper bound of the numbers co

satisfying

for infinitely many plq E Q, we say that « has type S2. It is known that almost
all numbers « (i.e. all except a set of measure zero) have type Q = 1 (see [6],
p. 69).
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such that

for

The bounds for Diam To in theorems I and II both depend on a. The
. 

uniformity with respect to a is obtained when a belongs to a subset of [0, 1]
having measure ,u satisfying 1 - ê  #  1, with 8 &#x3E; 0 arbitrarily small

(see theorem III).

REMARK. As far as the stability of the Dirichlet problem is concerned,
it is superfluous to weaken the regularity conditions for the functions in F,5.
Indeed, To is dense in the set of the weak solutions.

3. - Proofs.

We shall require the following lemma:

LEMMA 1. Let I(x, t) E C1([0, n] X [0, T]), With T &#x3E; 0. For any t1 cznd t2
in [0, T] such that t1 C t2 , there exists t satisfying t1  t  t2 and

PROOF. We have

By the Schwarz inequality

whence

dx dt .

By the mean value theorem, there exists 1 such that tl C t  t2 and
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From (9) and (10), we obtain (8). This completes the proof of lemma I.

Let

be the simple continued fraction for a, where the partial quotients an are
integers such that a.&#x3E;l-.

We consider the set of irrational numbers with bounded partial quo-
tients, i.e. the numbers « for which there exists a constant Aa satisfying
an c Aa for all n.

We note that if a is a quadratic irrational, then the expansion of a as
a simple continued fraction is ultimately periodic, which implies that a
has bounded partial quotients.

We are now in position to prove theorem I.
Let v,, v2 E 1-’6. Then there exist Ti and i2 such that

If we let

then U C- C2 ([0, 7] X [0, + -)). Moreover, u satisfies (1 ), (2) and the fol-

lowing conditions:

It is easy to verify (1), (2), (13) and (15). To prove (14), we note that

Hence, condition (14) follows directly from (8) and (11). We can write the
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functions satisfying (1) and (2) in the following form:

Similarly, y we can rewrite (13), (14) and (15) as follows:

Defining

we obtain from (19)

whence

We now have the following bound:

) max I

Therefore, from (17) and (18) it follows that

max max

Since the partial quotients in the continued fraction for a are bounded

by A,,, from the theory of continued fractions (see [6] p. 37) we easily
obtain

max
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Since we have for every N

Now let

The minimum value of g for t &#x3E; 0 is attained at

Since g is an increasing function on the interval [t, + 00), we have

Hence, assuming 6  3 Ý30/20n, we obtain:

which proves theorem I.

We now give a proof of theorem II. The proof depends on some results
obtained in [4].

By corollary 6 of [4], since a has type Q  o, there exist _K = .K(8, a) &#x3E; 0

and, for any 6 &#x3E; 0, a number $ e RBQ such that

and

for all N &#x3E; Kb-O.
From (21) it follows that 03BE -rl26, for every T satisfying
If u is defined by (12), we obtain from (16)

Therefore, u satisfies conditions (1), (2), (13), (15) and (23).
The solutions of the problem (1), (2), (13), (15) and (23) are the functions

u E C2([o, :r] X [0, + oo) ) of the form
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which satisfy (17), (19) and

As in the proof of theorem I we obtain

Using (22) and sin x &#x3E; (2/n)x for x E [0, n/2], we obtain

The minimum of g for t &#x3E; 0 is attained at

It follows from (7) that 1  Kb-O.

Let N be the integer &#x3E; Kb-O for which the right side of (24) is minimum.
Since g is increasing on the interval [t, + oo), N satisfies .
Hence

and finally

which proves theorem II.

The following statement is easily proved by means of theorem II above
and theorem 4 in [4].

THEOREM III. Let 0 and 8 be fixed, (1/2)  0  1, and let

For any 6 satis f ying (7), let 9,1 be the set of the numbers a for which (6) holds.
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Then

where fl denotes the Lebesgue measure. ,

We conclude with the proof of the following :

THEOREM IV. The Dirichlet problem (1)-(5) is stable if and only if cx

is irrational. Moreover,, i f a is irrational then lim (Diam To) = 0 uniformly1 6-0

in 99 and 1p.

Let cx 0 Q. By corollary 9 of [4], there exist a function f(b) such that

and, for any sufficiently small 6, a number $ 0 Q satisfying (21) and (22)
for all N&#x3E;1(6). The same argument given in the proof of theorem II

(with Kb-° replaced by f(b)) shows that

where g is defined by (25), i.e.

By (26), this yields

If « E Q, a = p/q, (p, q) = 1, let E = 1, and let 99 and 1p be identically zero.
Then To contains all the eigenfunctions of the form

sin nqx sin nqt ,

with Hence

Diam

and the Dirichlet problem is not stable.
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