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Diophantine Approximation in Short Intervals.

C. VIOLA (*)

1. - Introduction.

A simple consequence of some basic inequalities in the elementary theory
of continued fractions is that

or that

(see [2]), if and only if $ is a o badly approximable » irrational number,
i.e. one having bounded partial quotients in its continued fraction expansion.
Similar bounds frequently occur e.g. in Fourier analysis, and one may need
conditions ensuring the existence of such $ satisfying suitable additional

assumptions. Clearly the best possible constant implied by the C-symbol
in (1) will be obtained, for any sufficiently large Q, when $ is equivalent to

under a unimodular transformation, i.e.

(*) Istituto di Matematica, Universita di Pisa.
Pervenuto alla Redazione il 29 Settembre 1978 ed in forma definitiva il 22 Mag-

gio 1979.
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For any fixed « E R and any 6 &#x3E; 0, the interval (« - 6, « + 6) contains
infinitely many such and it is natural to expect that there will be at

least one satisfying

with the appropriate constant C independent of $, as soon as

provided the function f(3) of the length of the interval tends rapidly enough
to infinity as 6 - 0.

The problem of finding suitable a E R and functions f( 3 ) of suitable growth,
such that for every 6 in some range 0  6  L1 there exists $ = $(3) as

above, seems not to have been stated so far, and is the object of the present
paper. This arises in a natural way in the formulation of the Dirichlet pro-
blem with approximate data for the vibrating string equation ([5]).

2. - Definitions and statement of results.

Let 0  4  oo and let f(3) &#x3E; 0 be a function in the interval 0  6  L1

such that

DEFINITION. V(I, d ) = !7(f( ð), d ) is the set of real numbers a satisfying
the following condition :

For any ð, 0  6  4, there exists $ such that

for all integers

Here 11 x 11 denotes the distance from the real number x to the nearest
integer. Thus

. 

max (sin (nq$)) -2 = (sin (a min 11 q$ 11 ))-2 .
1-a-Q 1aQ 

’

From the theory of continued fractions (inequality (4) below) one sees
that the constant (3 - Ý5)/2 is best possible, and corresponds to a suitable
choice of $ in the equivalence class of (Ý5 + 1)/2. Replacing (3 - A/6)/2
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by some smaller positive constant in the above definition would allow one
to take $ in other equivalence classes, but would not affect the set /7(/, 4 ).

If Lll  Ll2, then obviously

Similarly, if f(6)  g(6) then

The set Y(f, L1) is clearly defined modulo 1. In other words,

for every integer m.
Our theorem 1 is:

We must therefore analyse the structure of Y(f, Zt) when /(!) = o(1/6)
(6 - 0). Theorem 1 is in fact essentially best possible if one requires
!7(f, A) = R, for we prove (corollary 1) that

For any d &#x3E; 0 and any function /(!) = o(llb) (6 --&#x3E; 0), every number

cx,e is irrational.

This result is obtained as a corollary of a fairly general statement
(theorem 2), from which we also derive (corollary 2):

Let X f# Q and let co &#x3E; 1. If there exist infinitely many p/q E Q such that

then, for any L1 &#x3E; 0 and any function we have

In the opposite direction we prove (theorem 3) :

If
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for some constants H &#x3E; 0, (o &#x3E; 1 and for all p /q E Q, then

For convenience we introduce the following

DEFINITION. Let oc 0 Q. The type of DC is the upper bound SZ of the set
of ro satisfying

f or infinitely many plq E Q.

If a has type Q, then 1  S2  c)o. By Roth’s theorem, every algebraic
irrational number has type 1. Also, by well known results in the metric
theory of continued fractions ([4]), or as a simple consequence of corollary 3
and theorem 4 below, we have that almost all numbers (i.e. all except a set
of measure zero) have type 1.

From the above results we immediately obtain (corollaries 3 and 6):

I f a has type Q &#x3E; 1, then f or any
have

and any K, d &#x3E; 0 we

If oc has type then for any there exists

such that

The latter statement shows that the sets g(Kb-O, c)o), where -1  0  1,
are « large ». However, since the dependence of the constant K(o, ot) on x
is highly erratic, it is desirable to evaluate the measure of Q(K6-6, 00) for
fixed 0, K. We have (theorem 4) :

For any 0 such that 2  0  1 and any .K &#x3E; 0, the Lebesgue measure of
the set

exceeds

In particular, for any fixed 6, 2  8  1, and any 8 &#x3E; 0, the above

measure exceeds 1- e provided K &#x3E; C(O) (1 Is) 1-0.
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It is plain from the above results that 0 = 2 is a critical value for the
sets S°(K6-°, L1). In this case we prove (corollaries 5 and 7) :

If ot has unbounded partial quotients in its continued fraction expansion
then, for any K, L1 &#x3E; 0,

This implies in particular that Y(Kb-il J) is a set of measure zero for

every K, 4 &#x3E; 0 (see [4]).

If 0153 f# Q has bounded partial quotients a;A, then

with

On combining these results we have (corollary 8):

U Y(Kb-17 oo) is the set of irrational numbers with bounded partial quotients.
.g &#x3E; o

The method of theorems 2 and 3 applies also to numbers a of infinite
type. In this case, the definition of type can be naturally modified by
introducing any positive, continuous and decreasing function 17(x) of the

real variable x &#x3E; 1 satisfying 11 qa 11 &#x3E; 77 (q) for all integers q &#x3E; 1, and IIqncxll 11 
 27 (q,,,) for infinitely many integers qn&#x3E;l. We let 1p(x) = 77 (x) Ix and denote
by 1p-l the inverse function.

The following is again an immediate consequence of theorem 2:

Let a 0 Q, let V(x) &#x3E; 0 be a decreasing continuous f unction of x&#x3E; 1, and
let pn/qn E Q be a sequence satisfying

Then, for any L1 &#x3E; 0 and any f unction f(ð) = o(l/ð1p-l(ð)) (b ---&#x3E; 0), we
have

On the other hand, an argument similar to the proof of theorem 3 yields
(theorem 5):

Let q (x) &#x3E; 0 be a decreasing continuous function of x&#x3E;l satisfying
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for every integer q:&#x3E; 1, and let V (x) = q (x) Ix. Then

This gives (corollary 9):

For every a 0 Q there exist and such that

3. - Notation.

Vinogradov’s symbol « indicates inequality containing an unspecified
positive constant factor.

As previously stated, llxli is the distance from x to the nearest integer.
We denote by [a, b] the closed interval a  x  b or b c x c a, by (a, b)

the corresponding open interval, and similarly for [a, b). As usual, the simple
continued fraction

where the partial quotients ao, al , a2 , ... are integers satisfying ai &#x3E; I for i &#x3E; 1,
is denoted by

We follow Cassels’ tract [1] for the notation of convergents: if

we let

and

so that the convergents to ; are



709

Also, we denote by $; = [ai, ai+1, ...] the complete quotient of the con-
tinued fraction (3) corresponding to the partial quotient ai.

We shall use in the sequel several elementary results about continued
fractions and Farey sequences, without quoting them explicitly. They can
all be found e.g. in [3], [4].

4. - Proofs.

LEMMA 1. Let plq, rls E [0, 1] be fractions satisfying ps - qr = ± 1.
Then there exists $ E (p/q, r/s) such that

for all integers Q &#x3E; max fq, s}.

PROOF. If q = s = 1, so that we take

The sequence (qi) of the denominators of the convergents to $ is the

Fibonacci sequence ql==q2:=l,q,=2,.... For any integer Q&#x3E;max{q,8}=l
there exists i &#x3E; 2 such that qi  Q  qi+l - Then

min and

Hence

If assume and let

where

(If q  s, we should define and proceed similarly).
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Then rls and p/q are two consecutive convergents to $, whence $ c- (plq, rls),
and, for a suitable m&#x3E;2,

where

The sequence (qi) for $ is now such that 81 q. = q. Hence for any
integer Q &#x3E; max fq, sl = q = qm there exists i &#x3E; m such that qi  Q  qi+1. Again

and (4) follows.

LEMMA 2. Let a E [0, 1)..F’or 0  6  d let n = n(b) be the least integer
&#x3E; f(6), :Fn the Farey sequence of order n, and let pjq and rls be two succes-
sive terms of :F n such that

If

for every then

PROOF. We have and

If $ is as in lemma 1,

and for any integer Q &#x3E; f(6) we have Q &#x3E; n &#x3E; max fq, s), whence, by lemma 1,
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THEOREM 1:

PROOF. By (2) it suffices to prove that every xe[0yl) belongs to

Y(1-16, oo ) . We apply lemma 2 with L1 = oo, f(b) = 1/6. If n, p /q and r /s
are as in lemma 2, we have

for if q = 1 then s = n, if s=l then q = n, and otherwise q&#x3E;2, s&#x3E;2,
qs&#x3E;q + s &#x3E; n. The theorem follows from lemma 2.

THEOREM 2, Let a E R and f (b) be such that there exist sequences 6,, -7 0
and p n /qn E Q satisfying

Then, for any

PROOF. We will show that for any constant C &#x3E; 0 and any sufficiently
large n, if

then Q min Ilk11  C for some Q &#x3E; f(6n). By (5) and i) we obtain

If we let

then, by i) and ii),

Hence, for any integer Q satisfying
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we have by (6)

COROLLARY 1. For any L1 &#x3E; 0 and any function f satisfying
we have

PROOF. We take in theorem 2, and choose

for all n. The assumptions of theorem 2 are then verified for any sequence
3n - 0. Hence p Iq 0 :7(f, d ).

COROLLARY 2. Let oc 0 Q and let co &#x3E; 1. If there exist infinitely many
p /q E Q’v uch that

then, for any d &#x3E; 0 and any function we have

PROOF. Let be a sequence satisfying
We may apply theorem 2 with the choice since

and

COROLLARY 3. If a has type Q &#x3E; 1, then tor any
any constants K, L1 &#x3E; 0 we have

and

PROOF. By corollary 2 with 1  co  D such that

COROLLARY 4. Let .
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have unbounded partial quotients ai, let (ain) be a subsequence of (ai) such that

and let (qi) denote the sequence of the denominators of the convergents to a.

I f f( ð) satisfies

then, f or any

PROOF. We have whence

Since for all i, we may apply theorem 2 to the sequences
and

COROLLARY 5. If Lx 0 Q has unbounded partial quotients then, for any
constants K, L1 &#x3E; 0,

PROOF. We apply corollary 4 to the function The above

condition becomes

and follows immediately from (7).

THEOREM 3. Let If

for some constants and f or all then

PROOF. As in the proof of theorem 1 we may assume ex E (0, 1). We
now apply lemma 2 with If n, p /q and r/s
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are as in lemma 2, we have and

On multiplying by we obtain

By Holder’s inequality,

Therefore

whence

and the theorem follows from lemma 2.

COROLLARY 6. If a has type Q  c&#x3E;o, then tor any
exists K = g ( o, a ) &#x3E; 0 such that

there

PROOF. By theorem 3 with 0 = a)/(l + w), so that cv &#x3E; SZ, and .K = 2°H.

COROLLARY 7. If

has bounded partial quotients, aiA, then

with

PROOF. For we have
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We may therefore apply theorem 3 with cv =1 and Hence

with

COROLLARY 8.

partial quotients.
I is the set of irrational numbers with bounded

PROOF. By corollaries 1, 5 and 7.

THEOREM 4. For any 0 such that -1  0  1 and f or any K &#x3E; 0,

where I" denotes the Lebesgue measure.

REMARK. It is clear from the following proof that the constant Of(20 - 1 )
occurring above could be replaced by

where C is the Riemann zeta-function.

PROOF. Let D be the set of those 6 &#x3E; 0 that are either rational or such

that f(3) = K3-° is an integer. D is countable and dense in (0, o). For

any 6 &#x3E; 0, let Eð be the set of irrational $ satisfying

for all integers Clearly

Therefore g(f,c5o) n [0, 1) is a Borel set and hence is Lebesgue-measurable.
On writing

we have to show that, for any w &#x3E; 1 and any H &#x3E; 0,
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By theorem 3, if a E [0, 1) and there exists

such that

Hence

Trivially

and (8) follows.

THEOREM 5. Let be a decreasing continuous function
of x&#x3E; 1 satisfying

f or every integer and let Then

PROOF (*). We may assume 0153 E (0, 1). We apply lemma 2 with d =
= V(1), f(6) = 2/by,-1(6). If n, plq and r/s are as in lemma 2, with q,&#x3E;s,

then q + s &#x3E; n and q &#x3E; n/2, whence

We have

(*) I am indebted to D. Zagier for some remarks which led to the present proof
of theorem 5.
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and therefore

Since q is decreasing, this yields

whence

and again the theorem follows from lemma 2.

COROLLARY 9. I’or every (x 0 Q there exist and

such that

PROOF. By theorem 5.
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