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Regularity in Elliptic Free Boundary Problems.

II. Equations of Higher Order.

D. KINDERLEHRER (1) (*) - L. NIRENBERG (1) (**)
J. SPRUCK (1) (***)

dedicated to the memory of Guido Stampacchia

1. - Introduction.

In part I [8] we demonstrated the regularity of free boundaries which
occur in some problems involving second order elliptic equations on one
or both sides of a « free » hypersurface h in Rn, subject to overdetermined
boundary conditions on F. In this paper we take up higher order elliptic
equations. As before, our aim is to prove optimal regularity of r and of the
solution of the equations up to T, assuming some initial degree of regularity.
Our results are local; we consider real equations for real functions in a small
ball B about the origin, which lies on F, and we denote by S2± the two com-
ponents of B separated by jT. We always assume h to be at least C’ and the
unknowns in our equations to have a certain initial regularity in Qx U F.
At the origin, the positive Xn axis is taken normal to .h, pointing into 92+.

This paper treats several model problems, for which some of the results
have been announced in [4, 6]. It still remains to establish corresponding
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results for general elliptic systems and we hope to return to this at some later
time. To illustrate the kind of problems treated we now describe two results.

THEOREM 1. Let u E 02m(Q+ U F) satisfy a nonlinear elliptic equation
in Q+ of order 2m

and the boundary conditions

on

If F is analytic (000) in all its arguments, then r is analytic (000) and so is u
in D+ u h near the origin.

Here we have used the notation a alax,, OX = a’ll ... £n, and also

the notation Vi to represent all derivatives of order j. Observe that the

boundary conditions consist of the usual homogeneous Dirichlet boundary
conditions plus one more condition: an n = 0 on T. This result is a special
case of Theorem 4.1 in section 4. For m = 1 the result was proved in [5]
where it was shown how the problem arises in connection with an obstacle
problem for a membrane.

Let us consider the corresponding problem for a plate constrained to lie
above an obstacle. Let w(x) and 1p(x) denote the heights of the plate and the
obstacle respectively above a point x in a bounded domain G in .R2. Assuming
w = Igradwl = 0 on aG, we seek to minimize energy I[w] under the re-
straint that w &#x3E; v in G, _

Let us suppose that y is regular, and that  0 on G and y &#x3E; 0 some-

where in D. The existence of a solution has been proved by Stampacchia [13]
and it has been shown by Frehse [3] that it is of class H3(G) i.e. has square
integrable third derivatives. Very recently, y Caffarelli and Friedman [2]
have shown that the solution is of class C2 when n = 2.

Typically two cases arise. The plate may coincide with the obstacle
in a region of space whose projection onto G is bounded by a curve h. In

this case let us denote by Q+ a region of G bounded partly by T where w &#x3E; y.
We then have

and in

while

on
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so Theorem 1 applies. On the other hand, in some cases one finds that the
plate touches the obstacle just along a curve y. If h denotes the projection
of y in G then (locally) on both sides S2± of .T we have

and in

while

on

and the second derivatives of u are continuous across F. Thus

in

It is natural to ask whether r is smooth. Assuming some further regularity
which up to now has not been established, we can answer in the affirmative :

’ THEOREM 2. In the preceding situation assume F is of class 01, that

U E C2(,Q+ U F U D") n C4(S2+ U F) n C4(D- U F), and that

on

I f u satisfies (1) in Q-1- with 1p analytic ( C°° ) in Q+ U r u SZ- then r is

anatytic ( C°° ) and so is u in Qx U T.
The conditions u = Igrad u = 0 on r are just Dirichlet boundary con-

ditions for u in both S2±. The additional boundary condition is the assump-
tion that the second derivatives of u are continuous across T. Theorem 2

is a special case of Theorem 6.2.
As in [5] and [8] our results are proved with the aid of suitably constructed

mappings which flatten .f. In the new independent variables we introduce
new dependent variables satisfying transformed elliptic equations-to which
elliptic boundary regularity may be applied. In section 2 various proce-
dures for attempting this are described but in the end a different procedure
is used. In section 3 we transform our given elliptic equations to highly
overdetermined elliptic systems (i.e. more equations than unknowns). We
are then in a position to use regularity results for overdetermined systems
and boundary conditions. Results of this kind concerning 000 (and finitely
differentiable) regularity are due to Solonnikov [11], [12]. A corresponding
analyticity result is needed and it is described in the Appendix here.

The principal results are in sections 4 to 7. In section 4 we treat a rather
general nonlinear problem in ,S2+. In section 5 we present a generalization
of a result of Lewy [9]; this is based on Lemma 5.2 which is also used in
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section 6 and is of independent interest. Sections 6 and 7 are concerned

with problems for functions defined in both SZ+ and Q-. In section 8, as
a first step in studying general elliptic systems, we present a special result
for first order systems. Finally, in the Appendix we describe an analyticity
result at the boundary, for general nonlinear overdetermined elliptic systems
and boundary conditions.

This paper is dedicated to the memory of our close friend Guido Stam-

pacchia. His fundamental work in free boundary problems, and his ideas,
continue to have a strong influence on our work in the subject.

2. - Remarks on higher order « hodograph » and « Legendre » transforms.

In part I [8], and in [5], we proved regularity with the aid of suitably
constructed mappings x F-+ y of S2± into a region U, in yn &#x3E; 0, which map-
ped -P into the hyperplane Yn = 0 on a U. The partial differential equa-
tions in Q± transformed into other equations in U, and the boundary con-
ditions on h into conditions on yn = 0. In U we then applied known reg-
ularity theorems for elliptic equations up to the boundary to obtain the
desired results. The mappings from Q+ were of the f orm x H y =

- (x, ..., x.-,,, yn) where yn was one of the functions w or - a,, w, accord-
ing as w vanished to first or second order on T. With the aid of our « zero »
of « first » order Legendre transforms any equation satisfied by w transformed
into a new equation for the corresponding  partial Legendre transform » of
zero or first order.

In dealing with higher order problems we encounter functions w (in
Q+ say) vanishing to order p &#x3E; 2 on jT. For example, in Theorem 1, p = m + 1
and u = w. Supposing a"’ w  0 on T, we introduce the mapping

which is locally 1 - 1, maps Q+ into the region y,, &#x3E; 0 and T into 8 in

yn = 0 . This leads to the following:

QUESTION. Is there an analogue of the partial Legendre transform i.e.
some function, or functions, of y in terms of which one may express all the

x-derivatives of w and such that an elliptic equation for w is transformed
to one (or a system) for the Legendre transform?

A reasonable choice is the first order partial Legendre transform of Ô:-lW: .
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Then we have (see [5], [8]),

and

Here the derivatives of f (denoted via subscripts) are all with respect to the y
variables. However, one cannot express all x-derivatives of w in terms of
derivatives of f.

Next one might attempt to introduce the following system of functions:

Note that gpw = f. In terms of the gk and their y-derivatives one may ex-
press all x-derivatives of w ; in fact for derivatives of order p:

and

for r + k  p, r &#x3E; 1, ai C n. All higher derivatives of w can be computed
from these with the aid of (2.3)-(2.5). We remark also that

We shall not prove these identities here since we will make no use of them:

we do not see how to transform an elliptic equation for w into an elliptic
system for the e. Consider for example the following special case of

Theorem 1.

in

on
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Here the subscript v denotes normal differentiation to r (into {J+). With

p = 2 we may perform the mapping

and introduce the functions as above:

Recall gn = - 2 fn’ If one computes all the derivatives of w in terms of g
and f one finds

lower order terms in g and f , y for

We see that the term Wnnnn in 4 2 w involves only third order derivatives
of f while the terms w",oøux, cc  n involve fourth order derivatives of f.
It appears therefore that this equation 4 2 w = 0 does not transform into

an elliptic system for g, f.
We have not found a very satisfactory answer to our request for a

suitable analogue of the Legendre transform. Instead, in the domain U

in the y-space we introduce (in the next section) in addition to f(y), essentially
all partial derivatives of w up to order p, as new unknown functions. Cor-
responding to an elliptic equation for w we construct an enormous over-
determined elliptic system for these functions. Boundary conditions for w
then become conditions on yn = 0.

Before proceeding, we would like to describe an alternative approach
to the problems considered here of regularity of free boundaries. This in-

volves a different way of mapping S2’ to U and avoids consideration of
overdetermined systems. For definiteness let us return to the situation of

Theorem 1 and suppose an +1 w(o) &#x3E; 0. Consider the mapping of S2+ to

y n &#x3E; .

Then

Introduce as an unknown function in U the zero order Legendre trans-
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form ([5], [8]),

Denoting all y differentiations of 1p by subscripts we find

Thus

and hence

We see that we can compute any x derivative of w in terms of derivatives
of y(y) ; therefore any differential equation satisfied by w transforms into
a differential equation for ip-but a singular one as we approach yn = 0.

For example, if we take m = 1 and suppose that w satisfies

then satisfies

in

What about a boundary condition on yn = 0? It is, simply, that w is
somewhat regular as yn - 0 and w. =A 0. Under these conditions if ac is

analytic one should be able to conclude that is analytic in y,,&#x3E; 0. How-
ever no regularity result of this kind seems to be known for nonlinear de-
generate elliptic equations. (We note that if m = 2 and w satisfies

then, in U, 1p satisfies an elliptic quasilinear equation whose leading terms
have a factor of y/j, and so on for higher order).

We have described the mapping (2.l ) of {J+ into U. In case Q- is involved
we use a reflection as in Part 1 mapping U U S to SZ- u r given by
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where C is a constant greater than f nn. A simple computation yields the
transformation laws:

In section 6, example 6.1 we illustrate the use of this reflection in a problem
analogous to Example 3.2 of Part. I [8]. This is somewhat complicated:
if v satisfies an elliptic equation of order 2m in Q-, it is necessary to intro-
duce all derivatives of v of order c p as new unknowns via (2.6) and then
use the transformation laws (2.7).

3. - Construction of overdetermined elliptic systems.

We consider a real function u(x) E CL-(DI U T) satisfying a nonlinear
elliptic equation

of order 2m, and the boundary conditions on h:

where, we recall, the positive xn axis is normal to r at the origin and points
into S2+. We have denoted differentiations of order j by VJ. As described

in § 2 we map a neighborhood of the origin in Q+ U r into y,, &#x3E; 0 by the
mapping

The image of SZ+(1’) is denoted by U(S). Our purpose is to associate with

the eq. (3.1) for u an overdetermined system of equations in U for deriva-
tives of u up to order p. (In section 7 of [4] we treated a special case in
which we were able to construct an associated determined elliptic system.)

First, let us review the definition of ellipticity for a general overdetermined
system defined in a neighbourhood U of 0 in a half space (y = (yi, ..., Yn)
y,,, &#x3E; 0}. We use the notation $ = ..., $,,) for the dual variables, and we
employ summation convention.

DEFINITION 3.1. A system of linear equations
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in the unknowns ul, uiv 9 M &#x3E; N, where the L,j (y, (1 /i) a) are linear dif-

ferential operators with complex valued coefficient, is said to be elliptic
with weights SI’ ..., 8M’ 7 max sk = 0 and tl , ... , tN , integers, provided

order

and the principal symbol matrix (L);(y, $)) has rank N for 0 # $ e R" and
y E U. Here L;;(y,;) consists of terms which are precisely of order 8, + t;.
It is understood that Lr; = 0 if Sr + tj  0.

A nonlinear system in the u 1, ..., UN of the form

is elliptic (at the solution) if cpr is at most of order sr + tj with respect to
the and

is elliptic in the sense just described.
The condition of ellipticity is an open condition; when verifying it

locally, y it suffices to do so only at the origin.
We now return to (3.1) and the transformation (3.3). We will restrict

ourselves to p in the range 2  p  2m - 1. The cases p = 0 or 1 are simpler,
and were treated in [8] using transformations of order zero or one respect-
ively. In each of those cases the appropriate Legendre transform satisfies
a single nonlinear elliptic equation of order 2m. As we shall see in the next
section, the cases pm are the most interesting.

In U U 8 we now introduce new unknown functions of y in addition to
the function of (2.2), 

°

almost all the derivatives of u of order cp. For set

The length of a is la = r. We must point out that the use of the multi-
index oc differs from the usual one and we will employ the notation
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in either x or y variables and $’ = - ... ar for  E Rn. This differs
from our earlier notation. We will use the symbol 0 for the empty
multi-index.

We consider the Wl,k as functions of y, and symmetric in the indices

Xi, ..., a,.. Note that we have not introduced as new unknowns in U those

derivatives of order p of the form an u, aa an-1 u, Lx  n; the first is simply
- yn and, by (2.4), the remainder are tOt. For convenience in presentation we
will sometimes use the representations

for and for

for example in (3.11) below.
Note that we always have k  p - 1 in Wx,k oe 0 0. In the following,

Greek letters a, -c vary from 1 to n - 1.

Being x-derivatives of u, the Wa,k satisfy the following compatibility
relations-obtained with the aid of (2.3)-(2.5). First, those for derivatives
of order p:

Here if then (ocy z) is obviously

For lower order derivatives, we have

In addition to these compatibility conditions we must represent our

original equation (3.1). In .F we replace, x by (y’, f.), here y’ - (Y1, .",Yn-1), I
and the derivatives of u of order cp by the corresponding Wo,,k. Consider

8"8§ u with [ce[ + k &#x3E; p. If k &#x3E; p - 1 then, according to (3.8) and (2.3)-(2.5)
we may represent this derivative in terms of derivatives of f, and we replace
it by this expression in F. If k  p - 1 we write a- Z)k U = afl(a,, ak U) where
jyj is as large as possible consistent with the restriction 1,,/ + k = p. We
may then express this in terms of e,k and f. This choice is certainly not



647

unique but this will not be important. Equation (3.1) now takes the form

where f appears with derivatives to order 2m - p + 1, the Wx,k, lal -f- k = p
appear to order 2m - p, and the WfJ,7c to zeroth order for 1,81 + k  p.

To this huge system (3.9)-(3.12) we now assign the following weights:

for equations (3.9), (3.10)

for equations (3.11), (3.12).

Observe that the weights are consistent and have the crucial property that
the w-6,1 for 1,81 I + k  p are  invisible &#x3E;&#x3E; in eq. (3.12) in the sense that they
will not appear in the principal part of the system.

We can now prove the main result of the section.

THEOREM 3.1. The system (3.9)-(3.12) is elliptic with the choice of
weights (3.13).

PROOF. In checking ellipticity it suffices to consider the principal part
of the system linearized at the origin. This calculation is greatly simplified
by observing that Wcx,B a"Wo,,k for im --E- k = p, and f_, 7:  n all vanish

at the origin. We thus obtain the linearized system:

where
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and the dots represent the remaining terms 8Y811u with k&#x3E;p and jyj +
-f- k = 2m as in our discussion above. 

n

The ellipticity of the above system is checked by passing to the symbol
level (that is replacing a by I$) and showing that the corresponding algebraic
equations have only the trivial solution for $ # 0 in .Rn. For simplicity we
may assume f nn(o) = 1. Using the same symbols to represent algebraic
quantities we must study the following equations:

Recall

We can conclude immediately from (3.20), (3.21) that all Wa,k = 0 for

loci + k  p. The ellipticity of our system will follow easily from

LEMMA 3.1. - For Joel -f - k = p let wa,k be symmetric in a and satisfy
(3.18), (3.19). Then Wa,k is of the form

for some number

PROOF. Observe that (3.18), (3.19) imply

and

so that (3.23) holds for lal = p - k = 1. We prove (3.23) by induction

on loci. More precisely, assume the desired result for locl = r, i.e. that sym-
metric tensors ïif’l,...,tXr satisfying the identities



649

necessarily satisfy 1JjfXl...fXr = fXl ... a,iv. This clearly holds for r = 1. We
wish to establish it for loci = r + 1. So suppose a symmetric tensor
wal,.··,ar+i of rank r + 1 satisfies

Multiplying by E,, and summing on r we. find

But

the contraction of the tensor 10""..""’+’ , is a tensor of rank r which clearly
satisfies (3.25). Hence, by induction, wXz,...,iXr+1 = Ea$ ". x,+i w so that by (3.26),

and the lemma is proved.
Returning to the proof of Theorem 3.1 we distinguish two cases.

CASE 1. $,, = 0, E’ # 0. Then (3.18), (3.19) imply 1 = wcx,k = 0 for
k &#x3E; 0, la I + k = p, while w«&#x3E;° = $«all°, lot = p, by Lemma 3.1. Substitu-

tion into (3.22) gives

By ellipticity of F (i.e. the nonvanishing of the symbol at $’ of the linear-
ization), the coefficient of all° does not vanish. Hence ’11;0 = ’I1;a,O = 0.

CASE 2. $,,=A 0. Then (3.18), (3.19) imply

Substitution into (3.22) yields

or
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The coefficient of f in (3.27) is precisely the full symbol of the linearization
of the equation F = 0. Hence by ellipticity of this symbol, f = wa,k = 0
and the theorem is proved.

4. - Free boundary regularity for a single higher order elliptic equation.

In the previous section we associated with a single nonlinear elliptic
equation of order 2m in Q+ U h an overdetermined elliptic system locally
in a half space U u S. We now investigate the problem of determining
boundary conditions on u in addition to (3.2) that lead to the regularity
of T. This depends on knowing which boundary conditions for our over-
determined system lead to regularity. The relevant notion is given in the
following

DEFINITION 4.1. A set of linear boundary conditions B,j (y, (1 /i) a) ui ==cpq
in yn = 0, q = 1, ..., fl is said to be covering for the overdetermined system
of differential equations (3.2) in y,,&#x3E;O provided

(i) the system (2.1) is elliptic,

(ii) there exist integers rq, q = 1, ... , ,u such that the order of

Bqj(Y, (1 /i) a) is at most rq+ tj and if B’ (yO, (lli) 8) denotes the homogene-
ous part of order r q + tj (with coefficients frozen at yo (y’, y 0 0))
in Bqj, the homogeneous boundary problem

has no nontrivial exponential solution of the form uj =- exp [iy’- $’]u"(yn),
E# 0 which decays as yn -+ oo.

Similarly, a set of nonlinear boundary conditions xq(y, (-1 8)"u) = 0,
q = 1, ..., f-l is covering for the system (3.3) if xq is at most of order r, + tj
in ul and the system of linearized boundary conditions

is covering for the linearized system (3.5).
The covering condition, y like the ellipticity condition is an open condi-

tion and we need only verify it at the origin. Our basic references for
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regularity results for overdetermined elliptic systems are two papers of

Solonnikov [11], [12] where much of the linear theory analogous to that
of [1], [10] is worked out. However this is not quite sufficient to treat our
problems, y and in the Appendix we describe a regularity theorem for non-
linear systems of sufficient generality for our purposes.

We now return to the question of determining boundary conditions

for solutions of

which together with (3.2) :

are covering boundary conditions for our overdetermined elliptic system
(3.9)-(3.12). If we look for decaying exponential solutions of this system,
we are led to the following system of ordinary differential equations in

yn &#x3E;0 corresponding to equations (3.14)-(3.17) (here a, r range from 1 to

n - 1- and we have set y,,, = t) 9

recall

Observe that (4.6) immediately implies wa,k = 0, loci + k  p.

Using (4.3), (4.4) and Lemma 3.1 we obtain the relations
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Substitution of these into (4.7) then yields the equation

That is, iv° satisfies the equation

where .L’ is the principal part of the linearization of (4.1) at the origin.
Moreover since ( (1 /i f nn( o ) ( (d/dt)) k ivo --- ivk, 7 k = 0,..., p - 1 and u satisfies

(4.2), the Wx,k which represent derivatives of u of order p vanish on yn = 0,
and thus so does wk; therefore

This gives p boundary conditions of Dirichlet type for K9 and provides a
significant reduction of our problem, which we state for future reference
in the following way :

PROPOSITION 4.1..Let u satis f y (4.1), (4.2). Then w° (which is related

via (4.8) to the linearized system of ordinary differential equation. (4.3)-(4.7)
for the elliptic system (3.9)-(3.12)) satisfies

and (4.11), where L’ is the principal part of the linearization of F = 0 at the
origin. Moreover, a set of boundary conditions for the Wa,k and f are covering
i f and only if they imply w° = 0 for each $’ E R’-’BO.

Note that Û;° is simply determined by the conditions

for and (4.11),

where f(t) (or exp [i$-y’]I(t)) is the linearization of f in (2.2).
In case p &#x3E; n1 the conditions (4.2) are already sufficient and we need no

additional boundary conditions :
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. THEOREM 4.1. Let u E 02m(Q+ U F) n OP+l(Q+ u r) satisfy the nonlinear

elliptic equation F(x, u, ..., 82mu) --- 0 in 92+ and the boundary conditions

on

where p&#x3E;m. If F is analytic ( C°° ) in all its arguments, then r is analytic (000).

PROOF. Assume first that m  p  2m - 1. Then our construction of the
associated overdetermined system (3.9)-(3.12) is valid and we take as

boundary conditions f = Wx,k = 0 with the obvious choice of weights. Then
these boundary conditions are covering, for according to Proposition 4.1 Wo

’ satisfies (4.10) with the boundary conditions (d/dt)i wo== 0, j = 0,..., m - 1
which are just Dirichlet boundary conditions, and imply kO = 0. Thus

Theorem A of the appendix can be applied and we conclude that f is ana-

lytic ( C°° ) in U u S. Since xn = f n ( y’, U ) parametrizes F, and 0 0, v is
analytic (000) .

Suppose now that &#x3E; 2m. Then (4.1), (4.2) imply that a’- "F(x, 0, ..., 0) == 0
and 0:-2m+l F(x, 0,..., 0) =I=- 0 onF which follows easily by differentiating ( 4.1 )
with respect to xn and using (4.2)’. Applying the ordinary implicit function
theorem gives the desired regularity.

Theorem 4.1 is a generalization of Theorem l’ of [5] which corresponds
to the case p = m = 1. Before taking up a more general result, it is worth-
while to consider another special case which corresponds to Theorem 2 of [5].
We will assume m &#x3E; 2.

THEOREM 4.2. Let U C C2-(Q+ U F) satisfy the nonlinear elliptic equation
F(X, ..., V2-U) = 0 in D+ and the boundary conditions

where r is noncharacteristic for g at at

and g are analytic ( C°° ) in all arguments, then T is analytic ( C°° ) .

PROOF. We apply our construction of the overdetermined elliptic system
(3.9)-(3.12) with p = m - l (assuming for convenience that f nn(O) = 1).
It must be shown that (4.12) corresponds to covering boundary conditions
for this system. The boundary conditions on y. = 0 corresponding to

(4.12) are

and
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where in the last arguments, lix I + k = m - 1. This last condition is ob-
tained from the condition g(x, V-u) = 0 by observing that the m-th de-

rivatives of u may be written in the form 
’

The linearized boundary conditions corresponding to (4.13), (4.14) are:

on yn = 0,

where

and the ail b({J,a),k are real and an =1= 0. Since 1Jja,k == 0 on yn = 0 for la +
-f-- k = m - 1 and fl  n, we may replace (4.16) by

on

According to Proposition 4.1 the covering property of the boundary con-
ditions (4.13), (4.14) is equivalent to the assertion that any solution of

the problem

on

on

which decays as y,, ---&#x3E;- + 00 is trivial. Since J7 is elliptic, and has real coef-
ficients, the characteristic polynomial of .L has exactly m complex roots

1’1’ ..., Tm with Im1’i&#x3E;O and all° is a solution of the m-th order equation

in
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Combining (4.19) and (4.21) this expression simplifies to

on

Since i I a,, ,, is purely imaginary and - i Y rk has strictly positive real
Mn

part we conclude from (4.20 ), (4.22) that

on

These relations together with (4.19) obviously imply 11;0 == 0 so our con-
ditions are covering. Appealing to Theorem A of the Appendix, we conclude
that f is analytic (C’) and therefore T is analytic (C°°).

In order to prove a more general result we first clarify what we mean
by general boundary conditions for a free boundary problem since, in the
natural Cartesian coordinates x, normal and tangential boundary operators
implicitly involve still higher order differentiation of the unknown u (the
relations an u = 0, a’ " u o 0 on r, determine jT).

We will use natural tangential and normal boundary operators on

r, A,,, op, associated with the parametrization of T as a graph: sn = cr(x’)
in fact, cr = I.,,(x, 0). Here x= (xl , ... , xn-1) . In terms of this rep-
resentation the unit normal to I’ pointing into Q+ is

and

is a basis for the tangent space to r. We set

In the following we will consider a class of first order operators of the form

Note that we allow the aa to depend on the tangent plane to h but the coef-
ficient an of a, is permitted to depend only on position. For this reason
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n

I -yi(x) (alaxi) is independent of the last two terms in (4.24) and cannot be
i = 1

expressed in their form. More precisely, y

where

so that an clearly depends on the tangent plane.

DEFINITION 4.2. (i) Let u satisfy (4.1), (4.2). A first order analytic (000)
free boundary operator is an expression of the form (4.24) where the

coefficients yi(x), aa(x, Va), an(x) are analytic (C°°) in all arguments. Simi-

larly an 1-th order analytic ( C°° ) free boundary operator is a finite linear

combination of products X = X’-... - X’ with X i of the form (4.24). By
an analytic ( C°° ) free boundary condition X(u) = 0 we mean a boundary
condition where X is an analytic ((7°) (possibly nonlinear) function of a

finite number of such products X - XI ... XJ, j  1; then X is said to be

of order 1.

(ii) A set of free boundary conditions Xq(u) = 0, q = 1, ..., It, is cover-

ing for equation (4.1) if, assuming r known, that is -a = I.,,(x’, 0) given,
they are covering in the ordinary sense of Definition 4.1. The boundary
condition is to be interpreted in the following way. After differentiating
out all the terms X = X, ... Xin, jl the terms having as factors deriva-
tives of u of order p are to be omitted.

Now that we have given a meaning to our free boundary conditions we
can state the main theorem.

THEOREM 4.3. Let u c- C’(92+ u F) satisfy the nonlinear elliptic equation
F(x, ..., V2-U) = 0 in Q+ and the boundary conditions

where the xa are analytic (000) free bo2cndary conditions, F is analytic ( C°° )
in all arguments and N is the maximum o f 2m and the orders of the xa : i If the

boundary conditions (4.25), (4.27) are covering, T is analytic (000).
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PROOF. We need only consider the cases 2 c p  m; the case p &#x3E; m fol-

lows from Theorem 4.1 while the cases m = 2, or p = 0, 1 are elementary
-one may use the simple transformations of order zero or one as in [8].
To prove the theorem we construct our overdetermined elliptic system, as
in Theorem 3.1 with boundary conditions f Wo,,k = 0, lal -f - k = p (weights
p - 2m - 1, p - 2m respectively) corresponding to (4.25), (4.26) and with
« transformed » boundary conditions corresponding to the conditions (4.27).
That is, using relations (4.23) our boundary conditions can be expressed
in the original x variables and then represented in terms of f and the Wrx,k

just as we did in the construction of our system in section 3. Without loss
of generality we may assume in (4.27) that the order of X, is at least p + 1
for otherwise by (4.25), (4.26) it is vacuous. If Xq is of order I&#x3E;p + 1 we

assign its corresponding transformed boundary condition jjq(u) = 0 the weight
Z - 2m. We will show that these weights are consistent and that if (4.25),
(4.27) are covering for I’ = 0 the transformed boundary conditions are

covering for the overdetermined system (3.9)-(3.12). Consider one term

of an 1-th order boundary operator applied to u

which might appear in X,,(u). The coefficients a’ implicitly contain terms
fnp(x’,O) (since a = f n(x’, 0)) which might lead to difficulties if. these coef-
ficients are differentiated too often. However since all derivatives of u of

order c p vanish on r, at most t - p - 1 derivatives can act on a’ and
this transforms to at most l- p + 1 derivatives of f. Since 3y and A« are

given by (4.23) a similar argument applies to the terms fnp(x’, 0) contained
in these operators. Finally using the procedure of section 3 to transform
derivatives of u, it is easily seen that derivatives of u of order I&#x3E;p + 1
transform to derivatives of Wy-,k , loci +k=p, of order at most I-p and to
derivatives of f of order at most Z - p -f- 1. Therefore our choice of weight
1- 2m for xq(u) = 0 is consistent.

Next we consider those terms in X,(u) which may contribute to the
linearization at the origin of the principal part of Xq(u) = 0. We first observe
that terms where the aa are difterentiated 1 - p - 1 times do not contri-
bute, for a typical such term is of the form (a-"-’a4(x, V(1(x’))). 8?A«u
vanishes at the origin (since only the pure derivative an + 1 u is nonzero

at the origin). Similarly terms of top order arising from the coefficients

f np(x’, 0) in the operators A« and av also do not contribute to the linear-

ization. Hence for the purpose of considering the linearization at the or-

igin we may consider Aex, ay equivalent to axy an respectively and consider
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only terms in which all derivatives fall on u. Consider a typical term (ignor-
ing the coefficient) a’a’u, Joe I + k = l. Arguing as in section 3 the trans-
form of 8"8§u can be written

where the dots represent inessential terms which do not contribute to the
linearization at the origin. In order to check the covering property we apply
Proposition 4.1. Using relations (4.8) we see that the linearization of

a’a’u corresponds to the term

This shows (since il£xla corresponds to ax) that our transformed boundary
conditions are covering if the original boundary conditions (4.25), (4.27)
are covering for F(x, ..., a 2m u) = 0. Appealing to Theorem A of the ap-
pendix we conclude that f is analytic ( C°° ) and therefore h is analytic ( C°° ) .

REMARK. The form of the boundary operator (4.24) is sufficiently gen-
eral to handle all applications that we have encountered. More general
boundary conditions can be studied in the same way but have the unpleasant
feature that the equivalence of the covering property for the original and
transformed system is destroyed. Hence each case must be treated in an

ad hoc way. ,

The virtue of the class of boundary conditions we have used is that it

gives an algebraic criterion in the original variables for free boundary reg-
ularity ; thus complicated calculations and transformations are unnecessary.

5. - An extension of a Theorem of Lewy.

We defer our study of free boundary problems for another look at the
theorem of Lewy in [9] regarding systems. In Theorem 4.1 of part I we gave
a simple proof of this theorem for elliptic equations of arbitrary order. In

this section we will extend that result to other boundary conditions. As

always, the result is local.

Let L be an elliptic operator of order 2m with analytic ( C°° ) coefficients
in a neighborhood of the origin in .Rn. Let u, v E C2m in xn &#x3E; 0 (near the
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origin) satisfy

where A, f l, f 2 are analytic (000) in a full neighborhood of the origin and
).(0) 0 0.

THEOREM 5.1. Under the conditions above, if u and v satisfy the boundary
conditions for some 1, 0  I  m :

on

then u and v are analytic (000 ) in x.,, &#x3E; 0 (near the origin).

Observe that (5.2), (5.3) constitute 2m conditions. For I = 0, in which
case (5.2) is vacuous, this corresponds to Theorem 4.1 of part I. The idea of
the proof is the same as that of the earlier result: by rewriting the system
in terms of u and w = v - u we show that, with suitable weights, (5.1) and
the boundary conditions (5.2), (5.3) form a coercive system. On the face of
it this seems far from obvious and in fact the proof of Theorem 5.1 involves
considerably more work than that of the earlier result.

PROOF. For u and w the system takes the form

in

while on we have

We assign the weights t. = 2m, tw = 4m, and s = 0, s = - 2m respect-
ively to equations (5.4), (5.5). The boundary conditions are then assigned
the’ obvious weights. If M is the principal part of L then the principal part
of this system is

Since A =A 0 this is elliptic. The main point to be verified is that the

boundary conditions are coercive. To show this at the origin we have to

study the following system of ordinary differential equations; here
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in

with boundary conditions

Writing x,, = t, we have to prove that u = w = 0 is the only solution of
this system in t &#x3E; 0 decaying as t - 00. Fixing $’ we simply write the

equations for u, w as

After dividing by a constant we may suppose that M(z) is a monic polynomial,
and, since the coefficients of L are real, we have

where z,,, ... , zm lie in the complex upper half plane. The boundary con-
ditions are still

Since u, w decay as t - oo we see that they satisfy

and hence

and consequently
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In addition, since Â( 0) =1= 0, 113 satisfies the boundary conditions:

We will prove that w = 0 ; from (5.8) it follows that u = 0 and the proof
will be finished. For convenience in the remainder of this section we will

drop the bars over w.

LEMMA 5.1. The only function wet) satisfying (5.11) in t &#x3E; 0 and the

boundary conditions (5.12) is w = 0.

Lemma 5.1 is based on the following algebraic lemma which is proved
later in the section.

LEMMA 5.2. Let P,(z), P2(Z) be monic polynomials of the degree m + k,
0  k  m, such that zl, ..., Zm in the upper half plane are roots of Pl while
Zl,...,Zm are roots of P2 . Then Pl - P2 has degree &#x3E; m - k - 2 .

PROOF OF LEMMA 5.1. The general solution of (5.11) has the form

where A is an arbitrary polynomial of degree 2m - 1 and the contour en-
closes all the roots of M+. If .A has degree c Z - 1 then the function w
satisfies the boundary conditions

for

and, if we integrate over a circle Izl ( _ .R and let B --&#x3E; oo we see that the

integral tends to zero. Conversely if w(t) in (5.13) satisfies (5.14) then

deg A c Z -1. For we have

Suppose A(z) = arzr + lower order terms, with r &#x3E; t - 1 and a, 0 0. We may
then choose k = 2m - r - 1 in (5.15). Integrating once more over iz _ .R
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and letting R-+oo we see that the integral in (5.15) tends to 2ni.ar-
- contradiction.

Thus we know that our w has the form (5.13) with deg A. c Z - 1. The

remaining boundary conditions in (5.12) assert that

i.e.

We may write

where Q is a polynomial and .R is a polynomial of degree m - 1. The preced-
ing condition then means

for

By the preceding argument we see that is then necessarily of degree
m-1-1. We then have

has degree  m - l- 1. If A fl 0 we may suppose it is a monic polynomial
of degree k c Z - 1. Then Q is necessarily also a monic polynomial of the
same degree, y while deg B  m - 1 - I  m - k - 2. But this contradicts

Lemma 5.2. Hence A =- 0 and w - 0. Lemma 5.1 is proved.

PROOF oF LEMMA 5.2. For any polynomial P(z) we shall denote by
15(z) the polynomial with its coefficients replaced by their complex con-

jugates.
Suppose the result is false for some m and k, i.e. for some monic poly-

nomials A, B of degree k the polynomial

has degree  m - k - 2. Taking complex conjugate of (5.16), with z real,
we obtain the following-which then automatically holds for all complex z-
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Taking half of the difference of this from the preceding we find

having degree c m - k - 2. We may write this in the form (with a new R) :

having degree  m - k - 2. If some of the zi are real let us divide by the
corresponding (z - zi) Which must factor .R. We then obtain, again with
a new R, and some r  k

having degree  m - r - 2, and where no 7:i is real. Thus the product

satisfies

For z real the absolute value of f (z) is 1 and f ( oo) = 1. As z goes from - oo

to + 00 on the real axis f (z) moves on the unit circle and its winding number
around the origin is exactly equal to the number of roots of f in the upper
half plane minus the number of poles. This is at least m - r. It follows

that f (z) - 1 has at least m - r - 1 roots on the real axis - oo  z  oo.

However R has degree  m - r - 1 so this is impossible.
The proofs of the lemma, and of Theorem 5.1 are complete.

REMARK. Lemma 5.2 need not hold if Pl and P2 are merely required
to have at least m roots in the upper and lower half planes respectively.

It is natural to ask what happens in Theorem 5.1 if the functions u, v,
and the coefficients in the equations (5.1) are allowed to be complex? (It is
clear that the result still holds if the coefficients of the highest order terms
are real.) Let us assume that the corresponding polynomial M($’, $,,),
V$’c- B"-’BO has m roots $,, in the upper and m in the lower half planes (this
is automatic if n &#x3E; 2). For general I &#x3E; 0, we do not know if the result still
holds. However for special values of 1 it does.
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THEOREM 5.1’. Theorem 5.1 holds in the complex case (under the pro-
viso above) if 1 = 1 or m.

PROOF. The case 1 = m is obvious for in this case the conditions (5.2)
are simply the Dirichlet boundary conditions which are coercive for either
equation in (5.1). So suppose 1 = 1. Following the proof of Theorem 5.1 we
are led to the system (5.7), (5.8) and the boundary conditions (5.9). For

convenience we drop the bars over u and w. Factor

where the zi and ), are in the upper and lower half planes respectively.
Since u, w decay as t -+ 00 they satisfy as before

and w satisfies the boundary conditions (5.12) with ?=1:

Thus the Cauchy data of w for equation (5.17) is zero at the origin except
possibly for at m-17,v(0). To show that w = 0 we have only to show that
this derivative is also zero at the origin. This follows easily with the aid
of the remaining condition in (5.18). Using it and the equations (5.17) we
see that

It follows that

where a is the coefficient of
- M+(z)), i.e.

in

This has positive imaginary part and hence at m-1 w(o) = 0. Consequently
w = 0, and also u = 0, and the proof is complete.

REMARK. Lemma 5.2 has as corollary a simple generalization of the

classical fact that a monic polynomial of degree n with real coefficients has
at most [n/2] roots on either side of the real axis. Namely we can assert
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COROLLARY. Let P be a monic polynomial of degree n. Suppose that P - P
has degree d. If P has m roots on one side of the real axis, then necessarily

6. - Examples.

To illustrate the applicability of our methods we present several

examples of free boundary problems and regularity results.

EXAMPLE 6.1. Let u, satisfy

in

on

where b, c are analytic (0’) in a neighborhood of .T.

Case

Case and

on

REMARK. The special case b == 0, c = A(x) v, A 0 0 was given as an

example in Part I (Example 4.1 ) . Notice that in this case the conditions
of Case (2) follow from the conditions u = v = 0, uv = vs, =A 0 on .f.

For Case (1) the proof of regularity of T follows as in Theorem 4.2
of [8] so we shall only treat Case (2). As in Part I, we set w = v - u c-
E C2+"(Q+ U jT) and rewrite the system as

in

in

on

on

We claim first that WE C4+"(Q+ U F), which justifies our writing con-
dition (6.3). To see this observe that any first derivative w i of w is a Cl+a
weak solution of an equation of the form L1Wi == 11, E C1+a and w2 = 0
on Te C2+o,. It follows from elliptic regularity theory [1], [10] that
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wa E C2+rx(Q+U T) , hence WE C3+"(Q+ W r). Repeating the argument once again
with any second derivative wij gives W E C4+01(D+ U r). With this regularity
we can apply the d operator to both sides of (6.5); using (6.4), (6.5) we find

in

where h is analytic (C°°) in all arguments. We now use (6.7) to introduce
new independent variables

and transform functions:

The system (6.4), (6.8), (6.6) transforms to the following overdetermined

system for the unknowns (6.9):

and, with
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with boundary conditions

on

To the system we assign the weights

to equations (6.10), (6.11), (6.14), (6.15)

to equations (6.12), (6.13) .

To check ellipticity of (6.10)-(6.15) we linearize at the origin and observe
that equations (6.11)-(6.15) yield a linear system of the type discussed in
section 3 (in which 99 does not appear) corresponding to the equation
4 2w = 0. Thus we obtain on linearization (assuming as usual fnn(0) = 1):

(6.19) The elliptic system (3.14)-(3.17) in 1, wrxfJ, 9 wi, wo corresponding to
j2 and p = 2 .

This is clearly elliptic. We claim the boundary conditions (6.16) (with the
obvious weights) are covering for this system. This is clear since the con-

ditions f = fiP* = 10’ = w° = 0 cover the system (6.19) by Proposition 4.1,
and then ip == 0 covers (6.18) (since /==0 at this point). Therefore we

have constructed an overdetermined elliptic system with covering boundary
conditions. By Theorem A of the appendix / is analytic (000). Hence r

is analytic (C’) - -
It is clear from the proof that we may replace the L1 operator by any

second order linear elliptic operator L and we see therefore that the fol-
lowing more general result holds:
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THEOREM 6.1..Let satisfy the system

in

in

on

where L = I aij ai aj + ! bi ai is elliptic, aij, bi, b, c analytic (000) in all

arguments in a neighborhood of T. If (u - v) ... 0 0 on T, r is analytic (000).

Here is a related result for a triple of functions ; we confine ourselves
to a very simple (but curious) example.

THEOREM 6,I’. Let satis f y

in

and

grad u = grad v = grad on r.

If a is analytic (000) in a f utt neighborhood of the origin then r is analytic ( C°° )
near the origin.

Proof. Setting v = u + fl, w = u + y the system takes the form in [2+:

hence

and on

Following the analysis in Example 6.1 one establishes first that fl, V -;
E C3+"(Q+ U _V). Since ac(o) =1= 0 we may apply an earlier regularity result
for free boundaries, Theorem 1 [5] using (6.1)’ and infer that Te C4+,X.
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Repeating the earlier analysis one finds that fl, y E C4+,x in 92+ U r near

the origin. Applying Theorem 1 of [5] once more we conclude that r E Cb+«,
Differentiating (6.1 )’ one finds that the first derivatives of y - 2# are in
C5+«. Hence y - 2fl E C6+a(S2+ U T). Since fl has zero Dirichlet data on T
for the equation (6.1)" we see also that fl E Cs+«. Thus fl and y E C-5+-. Once
more by Theorem 1 of [5] we infer that r E Ce+«, and so on. Thus one may
conclude that T c- C’ and f3, y E C°°(SZ+ u T). We still have to prove ana-

lyticity in case a is analytic.
Setting y - 2# = 6 we have from (6.1 )’,

in

in

and on r:

grad

Ehminating fl we find

in

on .T. The desired result then follows with the aid of Theorem 4.3 or Propo-
sition 4.1. Indeed, in the case at hand, the equation transforms with p = 1
to a single equation for f of sixth order with f subject to three boundary
conditions which are derived from the first, third, and fourth conditions on 6.

PROBLEM. Can one prove a similar result for such systems with variable
coefficients? or for nonlinear systems’?

EXAMPLE 6.2. Consider

equations
satisfying elliptic

in

in

on

and assume

THEOREM 6.2. Let u satisfy the hypotheses of example 6.2 with F, G

analytic (C°°) in all their arguments. (i) I f p = 0 or p &#x3E; m - 1, then r is
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analytic (C°°). (ii) If F and G are semilinear, i.e., the leading parts are linear,
and i f these linear operators are the same, then, tor any p &#x3E; 0, r is analytic ( C°° ) .

PROOF. We may suppose av+’u(O) = - 1. If p&#x3E;m the result is already
contained in Theorem 4.1. So we shall suppose p  m - 1. Introduce the

change of variables y = (x’, - a’ u) which maps Q+ into U+ c fy. &#x3E; 01, T into
a flat boundary S c fy.,, = 0}y and Q- into U-C{YnO} in a locally 1-1

way. We apply the construction of section 3 to both equations I’ = 0

and G = 0 in U+, U- respectively to obtain systems of the form (3.7)-(3.12)
in the unknowns f +, W+,x,k in U+ and f -, w-",k in U- with boundary condi-
tions f+ = ?,U+a,k = t- = W-lX,k = 0 on S. We then « reflect» the system de-

fined in U- across (yn = 0} to a system defined in U+ by the usual rule

In this way we obtain two uncoupled elliptic systems in U+ in the unknowns
f+, W+iX,k, f, WiX,k and these unknowns vanish on S. This system is clearly
elliptic. We obtain additional boundary conditions from our assumption
u E 02m-p-l across F. Namely

Reflecting these conditions we obtain the boundary conditions

To check the covering property of our boundary conditions is equivalent by
Proposition 4.1 to showing that the system of ordinary differential equations

in

has no nontrivial solutions which decay as yn - oo. Here L’, P’, are the
principal parts of the linearizations at the origin of F, G respectively.
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We shall argue as in section 5. Fixing $’, and dividing by the coeffi-
cients of ô;m, we may write

where

where the z2 and Q, lie in the upper half plane. Setting yn = t we see that
Zv+, 2u are solutions of

for

Suppose p = m - 1. According to (6.20), (6.21) we have at t = 0:

Inserting (6.23) in (6.22) we find at t = 0:

or, from (6.24)

Subtracting these last two equations we find since Im
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Thus for equations (6.22) w+ and w have zero Cauchy data at the origin and
therefore both vanish identically.

Consider p = 0. On t  0 define

Then w-(t) satisfies

and the boundary conditions at t = 0

Thus w- and w+ together form a function (v of class C2"-1 on the real axis

decaying as Itl-+ oo. On the other hand w(t) is a solution of the equation
of order 2m

From this equation and the fact that all E C2m-1 it follows that iv E 02m. on
the real axis and satisfies the equation everywhere. Since it decays as

t --* ± oo it can only be zero. Thus Theorem 6.2 (i) is proved.
Turning to (ii) for 0  p  m - 1, we now have ’j = z; . As in the pioof

of Lemma 5.1 we see that

where the contour encloses all the Zj and £; and A, B are plynomials of degrees
c m - p - 1. According to (6.21) we have

As in the proof of Lemma 5.1 this implies that the polynomial R= AL_ - BL+
whose degree is at most 2m - p - 1 has in fact,

Namely, y if the degree of R is actually r &#x3E; p we set k = 2m - r - 1 in the

last integral identity and integrate over a large circle about the origin.
Letting the radius of the circle tend to 0o we obtain a contradiction. On
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the other hand, by Lemma 5.2, (6.25) is possible only if A - B 1 0, and
the theorem is proved. 

7. - Another example.

THEOREM 7.1. Let

satisfy

in

in

on

where and g is analytic (C’) in all arguments. If

at the origin then r is analytic (C’).

It will be seen from the proof that the theorem holds if the equa-
tions LJmu:l: = 0 are replaced by a general nonlinear elliptic operator
I’(x, u±, ..., a-u±) = 0 in D±. Since the proof is long we describe it for the
simpler case, omitting some details which are similar to some of sec-

tions 3 and 4.

We may suppose a’u’(0)  0 and we introduce the change of variable

and also the elliptic system defined in t7 constructed in section 3 ( p = m - 1)
corresponding to the equation dmu+ = 0 with the weights (3.13). We will
also introduce a system corresponding to the equation 4"u-= 0 via the
reflection of section 2. More precisely, y define unknowns v’,’(y) = a’a’u-(x),
Joe I + k  m - 1 where y and x are related by (2.6). Using (2.7) and imitating
the construction of section 3, the v’,’ satisfy a system of the form (or, T
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vary from 1 to n - 1) :

The last equation corresponds to J - u- -- 0. As in section 3 we have

chosen some way to express the derivatives of u of order &#x3E; m - 1 in terms
of derivatives of Vl,, k, lcxl+ k=m-1 of order at most m + 1 while the
derivatives of u- of order c m - 2 are the corresponding Vrx,k, Ixl + k
 m - 2. These are assigned the weights:

to to for

to equations to equations

We combine this system with the system in f and wx’k; observe that these
two systems are linked through f and that the weights we have given
(tf = m + 2) are consistent. The linearization of equations (7.2)-(7.5) at

the origin (principal part only) takes the following form:



675

A word of explanation is in order about equation (7.9). It is easy to

see from (7.5) that the terms in f arise with a coefficient ;k(O) and these
are all zero except possibly for vo.,’-’(O). It is then easy to check that if

LvO,m-l is the part of the linearization of (7.5) corresponding to vo,m-l, then
- a,u-(O)Ll. is the part of the linearization of (7.5) corresponding to f.
These combine to give L(vO,m-l- ’ðr:u-(O) f n).

Our big system is easily seen to be elliptic. Indeed the subsystem in f
and the W,,k is elliptic, which means that it is sufficient to show that the sub-
system (7.6)-(7.9) with f = 0 elliptic for the i5ak’*’. But this follows as in

the proof of Theorem 3.1.
Boundary conditions for the unknowns f , w"’k, v"’k are obtained by

transforming the boundary conditions on u+ as in section 4. Following
section 4, in particular proposition 4.1 and Lemma 4.1 we reduce the cover-
ing property of these boundary conditions to a corresponding property for
a system of ordinary differential equations in the unknowns all° (correspond-
ing to d m u+ = 0 ) and tO (corresponding to Jn u- = 0). The function WO

is subject to the conditions of proposition 4.1 while (by the same analysis
based on equations (7.6)-(7.9)) VO and the Ul,k, loel+k=m-1 are

related by

Hence the covering condition is equivalent to the assertion: all° == 00 = 0

is the only decaying solution as yn --&#x3E; + o0 of the system of ordinary dif-
ferential equations in yn&#x3E; 0

satisfying at



676

Formula (7.14) is obtained from the condition vO,m-l = 0 at yn = 0 with
the aid of (4.8) and (7.11). Formula (7.15) in turn is obtained from the
linearization of the relation

Using (4.8) and (7.11) we obtain (7.15).
. Since WO and v° decay as yn -&#x3E; oo it follows from (7.12) that they satisfy

(for convenience we set 1$’l = 1) the differential equations

From the boundary conditions (7.13) it follows that at

Combining these with (7.14) we obtain

at yn = 0. From this and (7.15) we see that our boundary conditions are
covering if and only if

by (2 5) this is condition (7.1).

8. - A first order elliptic system.

The elliptic systems which we have treated involve only a few functions
and are rather special in nature. We are still far from being able to treat
general elliptic systems.
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As a first step in attacking such systems we consider in this section a

first order (possibly overdetermined) elliptic system with rather simple
boundary conditions.

We consider a system of N real functions

in satisfying a first order system

Here u and f are N and M column vector valued functions respectively, y
and B(x) is an M X N matrix, and A is the first order elliptic differential

operator

whose coefficients Aj(x) are M x N matrices {Aj"1, r = 1,..., M, k = 1, ..., N.
The system is assumed to be elliptic as in section 3 with weights: all

sr = 0 and all tj=l.
We shall now require that at each point of F, u is to satisfy m linear

relations or boundary conditions. At each point x near the origin let P(x)
be an N X N projection matrix whose range R(x) is m + 1 dimensional.

We impose the boundary condition

QUESTION. Assume P(o) u,,,(O) 0 0 and suppose that P, f and the coef-
ficients in (8.1) are analytic ( C°° ) in a full neighborhood of the origin. Under
what conditions is h necessarily analytic (GOO)’

We shall present a result in this direction. First of all there is no loss

of generality in supposing that the boundary conditions Pu = 0 on .T take
the form

on

and the condition the form

We may use a zero order partial hodograph transformation
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mapping SZ+(1’) near the origin into a neighborhood U(S) of the origin in
set

A familiar calculation shows that in U these satisfy the M equations, here «
is summed from 1 to n - 1 and j from 1 to N -1,

r = 1, ..., M and on yn = 0 the boundary conditions

CLAIM. The system (8.4) is elliptic.
We have only to check this at the origin, where 1p(X = 0 for a  n.

There, the linearized equations for w-)’, V are (here j is summed from 1

to N - 1),

For the N-column vector v(x) :

and

after yn is replaced by ip,,(O) y,,, the system takes the form

which is clearly elliptic. The claim is proved.
Next we have to see whether the boundary conditions (8.5) are covering

for (8.4) at the origin. If they are, then, by applying the regularity theorem
in the appendix, we may conclude that F is analytic ( C°° ) . For convenience

we denote the stretched yn variable, V.(O)y,, by t. For any vector

$1 E Bn-lBo we have to consider the system of ordinary differential equations
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subject to the conditions at t = 0:

for some constant c (if c is eliminated this comes to m conditions). These

boundary conditions follow from (8.5) and (8.6), with c = - 1jj(0).
These conditions mean: at t = 0

for some constant c, 9

and we consider solutions of (8.8) and (8.9) which are decaying as t - oo.

If this condition is covering then we conclude that c = 0, i.e. 1jj(0) = 0
and hence l0’ = Q - 0. We have therefore proved

THEOREM 8.1. Let u E 01({J+ U r) be a solution o f (8.1) satisfying the

boundary conditions Pu = 0 on T with P(0) un(0) 0 0. Assume that P, f,
and the coefficients in (8.1 ), are analytic ( C°° ) in a full neighborhood of the
origin. Then V is analytic ( C°° ) provided :

for the ’ system Lw = g the following boundary condition is cover-

(8.10 ) ing at the origin : .

Pw is a multiple of Pun(O) .

REMARKS. (i) Condition (8.10) is rather unusual. We had expected to
obtain the regularity result under a different condition:

For some projection operator Q(x) having m-dimensional range
(8.11) 1 contained in the range o f P(x), the boundary condition Qu = 0

on F is covering for (8.1).

We have an example with M = N = 2m = 4, in which this condition is

satisfied but (8.10) is not. Whether (8.11) is sufficient for regularity is

not known. 
_

(ii) It is clear that the theorem holds also for a general overdetermined
nonlinear elliptic system in place of (8.1) provided it has weights : sr = 0
and all tj = 1. ,

(iii) Since every elliptic system may be rewritten as an overdetermined
first order system it might be thought that many of our earlier results fol-
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low simply from Theorem 8.1. This is not the case since in Theorem 8.1

the overdetermined system has very special weights. It’s worth remarking
that the argument extends to a first order system with nontrivial weights
satisfying rather special conditions. We state the result for a linear system
though it applies as well to a nonlinear one. Consider a (possibly over-
determined) first order system (8.1) with weight sr attached to the r-th
equation, and weight tj attached to uj. We assume no equation is identically
zero. As in Theorem 8.1 suppose u c- CI(S?+ U F) is a solution of (8.1)
satisfying the boundary conditions on T:

grad

with weight r7, attached to the k-th such condition.

THEOREM 8.2 . Assume that the coefficients in (8.1), f, and the functions
bj’ , ggk are analytic (C) in ac full neighborhood of the origin. Then T is analytic
(C’) provided

max

(iii) for the system Lw = g the following boundary condition is covering
at the origin :

for Rome multiplier c.

Appendix. Regularity for overdetermined elliptic systems.

Consider a nonlinear overdetermined elliptic system (3.4)

for a system of N functions u(y) = (u1 (y), ..., uN(y)) in Yn’&#x3E;O near the origin
and satisfying a system of covering boundary conditions, as on page 24,
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with all weights as described in those sections. With

max

we suppose that UjE Ol+ti in y,. &#x3E; 0. All our considerations are local, near
the origin in y,, &#x3E; 0, and we will not bother to restate this.

The regularity result on which we have relied throughout this paper is
the following. It was described in broad terms in the Remark on

page 289 in [7].

THEOREM A. Under the preceding conditions, if the f unctions 99r7 Xai are

analytic ( C°° ) in their arguments then the solution u is analytic ( C°° ) in y,,&#x3E;O.

It is proved by combining a number of known results and standard
procedures and which we now describe briefly. The core of the proof con-
sists of the estimates in L, and Holder norms for corresponding linear over-
determined systems of Solonnikov [11-12]. To state these briefly (his
results are still more general), consider solutions of linear equations (3.2)

satisfying linear boundary conditions as in Definition 4.1,

on

with in

(i) If the coefficients of Lj belong to OZ-8r in y. &#x3E; 0 and those of Bqj
to 0’-q then there is an estimate for the Zp norm, 1  p  oo, of aa u 3 for

im I  I + ti, i = 1, ..., N in &#x3E; 0 in terms of suitable norms of L,j u
and of the gq:

(ii) If for some 0153, 0xl the coefficients of Lj belong to Cl-$r+"
in yn&#x3E; 0 and those of B,,j to Ca-rQ +", and if uj c C’ I " " in yn&#x3E; 0 then there
is an estimate for the O,+tJ+fX norm of Uj in y,, &#x3E; 0 in terms of suitable Holder
norms for the f rand ga .

These estimates are generalizations of the corresponding well known
estimates for determined systems, i.iB. X = N and 2/z = Y- (si + ti).

The 000 assertion in Theorem A follows easily from these estimates by
a standard procedure as in [1], [10]. Taking difference quotients of the

equations (A.1) and (A.2) at two points on the boundary, distance h apart,
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one obtains linear looking equations for the difference quotients of u. The

estimates of (i) then yield estimates on the E, norms, of the corresponding
derivatives of the difference quotient independent of h. Letting h - 0 one
finds that for j = 1, ..., N, u j has derivatives of order 1 + tj + 1 in E,
(Yn&#x3E;O). For p large this implies that uj E Cl+t’+" (y.,, &#x3E; 0) a C 1. Applying
the same difference quotient technique and the estimates of (ii) one obtains
bounds for the C’+tJ" norms of the difference quotients of uj independent
of h. It then follows that ujc- C’+tJ+’+’. One then differentiates the equa-
tions and uses the difference quotient procedure and the estimates of (ii)
to show that Uj C Cl+tj+2 + " and so on.

Finally for analytic data, one has to show that the solution u is analytic
in Yn&#x3E; o. That this is true in y,, &#x3E; 0 follows from the known analyticity
result for solutions of determined nonlinear elliptic equations ([10], Theo-
rem 6.8.2). For u is a solution of the determined elliptic system:

where L;j is the formal adjoint of the operator with constant coefficients

This simple device does not work at the boundary. In [7], however,
there is a proof of local boundary analyticity for second order nonlinear
elliptic equations (parabolic equations are treated there but the results

apply of course to elliptic equations by considering time independent func-
tions). Analyticity is proved by establishing L2 estimates for all the deriva-
tives of u. As pointed out there in the Remark on page 289, the proof is
based entirely on a single .L2 coercive estimate up to the boundary for
linear equations. It applies equally well to equations of higher order, and
to overdetermined systems. The appropriate estimates are available, they
are those of (i) above with p = 2. We thus consider Theorem A as proved.
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