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One Attempt to the K3 Modular Function I.

HIRONORI SHIGA (*)

0. - Introduction.

In this note the author reconstructs the Picard’s modular function as a

modular function for a family of algebraic .g3 surfaces with two complex
parameters.

In 1883 Picard has constructed an analytic function of two variables
analogous to the elliptic modular function (see [1]). He started from the
following integral containing two complex parameters x and y,

The function I(x, y) of x and y is a multivalued analytic function on the
domain A = {(x, y): xy (x - 1) (y - 1) (x - y) 0 0} in C2. This integral plays
a similar role as the following integral,

which induces the elliptic modular function A(C). This integral is a multi-
valued analytic function of x on C - {0, 1} and it is a solution of the fol-
lowing hypergeometric differential equation, .

(*) Department of Mathematics, Chiba University, Yayoi-cho, Chiba-shi, Japan.
Pervenuto alla Redazione il 7 Luglio 1978 ed in forma definitiva il 2 Novem-

bre 1978.
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Let w1(x) and cv2(x) be two independent solutions of (0.1). And let us
consider the ratio ’(x) = w2(X)/Wl(x), this is the s-function of Schwartz.

The inverse function x = I(i) of ’(x) becomes a single valued automorphic
function defined on the upper half plane. The fundamental region of Â(’)
is defined by the inequalities (’1 - 2 ) 2 + 2 &#x3E; 1 , ( 03B61 + 1)2 + ,: &#x3E; 4 and
2013il? where’ == ’1 + Ý -1’2. We note that Â(’) realizes the uni-
versal covering space of the domain C’ - {0, 11. Similarly the function

z = I(x, y) satisfies the following differential equation:

where we use the conventional notations p = az/ax, q = azlay, r = a2z/ax2,
s = a 2z/ ax ay and t = a 2z/ ay 2. And easily we can rewrite (0.2) in the form
of a total differential equation;

where Q is a matrix of rational 1-forms. The differential equation (0.2) is

the equation for the Appell’s hypergeometric function F,,(a, /3, fJ’, y; x, y)
(see [2]), in our case the parameters take the values (a, P, fJ’, y) = (1, 1, 1, 1 ).
And the equation (0.3) is completely integrable. Hence the dimension of

the solution space of (0.3) (and also of (0.2)) is equal to three.
Let mi, cos and Ws be the three independent solutions of (0.3). And let

us consider the ratios ’l(X, y) = W2/Wl and ’2(X, y) = WS/Wl. Also these are

multivalued analytic functions on A. And we obtain single valued holo-
morphic functions X = Pl(’l’ ’2) and y = P2(’1, C2), as the inverse mapping
of (’1’ ’2) = (Cl.(XI y), ’2(X, y)). If we choose Wi (i = 1, 2, 3) adequately,
then ggi (Cl, C2) (i = 1, 2) is defined on the hyperball f(C. I C2): 1’112 + IC2 12  1}.
In such a way Picard constructed his modular function. But unfortunately
the mapping (PI’ (2) does not realize the universal covering of the domain A.

We shall study this mapping. At first we shall translate the original
integral (0.0) to a double integral on an algebraic surface S(A, fl) containing
two complex parameters ((1.4) in the section 1). The surface S(A, p) is

defined by the equation
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where (u, v, W) is an affine coordinate of P3 and the parameters (2, It) move
on the domain A. It will be shown that the minimal nonsingular model
S(A, p) of S(A, p) is a K3 surface (in the section 2). Hence there is only one
independent holomorphic 2-form V on ig(A, ,u) and it does not vanish. And
the second homology group H2(9(A, p), Z) is a free Abelian group of rank 22
(see [4]). The surface 8(A, p) will be characterized as an elliptic surface

(X, p, 4 ) (in the section 2) satisfying the following conditions:

i) the base space 4 is equal to Pl,

ii) the general fibre p-1(v) (v is a point on L1 = Pl) is an elliptic curve
defined by the lattice {m. exp (2ni13) + n : m and n are integers), I

iii) there are five singular fibres p-1(Vi) (i = 1, 2, 3, 4) and p-l(voo).

The fibre p-’(vi) (i = 1, 2, 3, 4) consists of three rational curves intersecting
at one point. The singular fibrep-11(v f) consists of seven nonsingular rational
curves eo, ..., e6. And these components have the following intersection
multiplicities,

and any other intersection multiplicity is equal to zero.
The former singular fibre is of type IV and the latter is of type IV* according
to the study of Kodaira (see [3]), 

°

iv) the total space X has a holomorphic section.

Next we shall study the surface 8(A, p) and we shall obtain the fol-
lowing properties.

a) We find a subgroup A(S) of H,(S, Z) which is composed of algebraic
cycles with rank 16, and this subgroup coincides with the Neron-Severi
group (that is the subgroup of all algebraic cycles) for almost all (A, ,u) on A
(in the section 3).

b) We construct a basis system F1, ..., F22 of H,(Ag(A, ,u), Z) such that
Ti, ... , hg induces a generator system of the quotient group

(in the section 4) .

c) If we set
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there occurs a relation

for

( (4.1) in the section 4).

d) We construct the dual basis system Gl, ..., G22 of H,(Ig, Q) such
that Gir; = bij (1  i, 22) (in the section 3 and 4), and we determine
the matrix of the intersection multiplicities of this system (in the section 3).

e) We describe the generator system 31, ... 1 J. of the monodromy
transformation group of H2(S(Â, u), Z) induced from the fundamental group
n1(A) (in the section 5).

Finally we obtain the following results using the above consideration-

CONCLUSION:

1) The inverse mapping (A, u) == (qJl(Cl’ C2)’ ({J2(C1, C2)) of the period
mapping (Cl’ C2) = (n3(A ju)7 r5 (A, it)) for the family S(Â, u)
coincides with the Picard’s modular f unction stated above.

2) The defining domain Q for the f unction ggi (i = 1, 2) is determined

by the Riemann-Hodge relation ((4.8) in the section 4).

3) The generator system of the transformation group of S2 which cor-

responds to the automorphic f unctions ggi (i = 1, 2) is given as the table in the

part III of the section 5.

The author wishes to know whether it is possible to obtain other signi-
ficant analytic functions of several variables in the same manner.

1. - Translation to a double integral.

Here we reduce the integral (0.0) to a double integral. There are two

integral representation formulas for the Appell’s hypergeometric function
F1(fX, #7 P, y; x, y) (see [2]), I’1 is defined as the following

where (A, k) indicates the product



613

[Line integral representation formula]

If the parameters satisfy the condition Re a &#x3E; 0 and Re (y - cx) &#x3E; 0, we have

du

for any point (x, y) on the polydisk {Ixl (  1, IYI  1}, where r indicates the
gamma function.

[Double integral representation formula]

If the parameters satisfy the condition

and

then we have

for any point (x, y) on the polydisk {Ixl C 1, IYI C 1}, where A is a triangle
in the (Re U1, Re v,) -space defined by inequalities u, &#x3E;-- 0, vi &#x3E; 0 and

1 - U, - V, &#x3E; 0.

If we use the variable t’ = 1/t, then it follows that

By the formula (1.1) the right hand side of the above equality is equal
to - -P(113)F(213)F,(113, 1/3, 1/3, ]-; x, y). Then by the formula (1.2) we have

And if we set it follows that
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Here we consider the transformation:

After this transformation we obtain the following:

where D is a real 2-dimensional triangle defined by inequalities u/x &#x3E; 0,
( 1- u - v ) /y &#x3E; 0 and I - 2u -,uv &#x3E; 0. And also we have the following:

Hence we know that the Picard’s original integral is represented as the
double integral of the left hand side of (1.4). Then in the following we study
the property of this integral.

2. - Minimal nonsingular model of S (2, p) -

In this section we study the minimal nonsingular model of the algebraic
surface (1.5). We define the compactification of this surface in P X P2 as
follows:

where [03BEo, 03BE1’ 03BE2] is a homogeneous coordinate of P2 and we set v’ = 1 /v.
In the following the parameters (,1, p) move on A. We denote the surface (2.1)
by S(Â, It) or simply S. We use the following notations,

S: the minimal nonsingular model of S,

LJ: the compactified Riemann sphere of v-space,

p’ : the projection mapping from S to 4,

p : the projection mapping from S to 4,
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The fibre p’-1(v) is a nonsingular elliptic curve for every value v except
vi (i = 0, 1, 2, 3, 00). Hence S is an elliptic surface. The fibre p’-1 (vi )
(i = 1, 2, 3) is a rational curve with one isolated singularity which is locally
isomorphic to the singularity w3 - uv = 0. When we resolute this singularity
there occur two rational curves with self intersection number - 2, and the
self intersection number of the proper image of p’-1 (vi ) is also equal to - 2.
These three curves meet transversally at one point. Hence we get a singular
fibre of type IV as p-1 (vi ) (i = 1, 2, 3 ) (see [3] section 6). Next we con-

sider p-1(vo). The surface S has cusp singularity along this curve. When
we proceed the J-process along p’-1(vo) there occur three rational curves with
self intersection number - 3. Any curve of them intersects the proper

image of p’-1 (vo ) transversally at one point, and these intersection points
are different. The self intersection number of the proper image of p’-1(vo)
is equal to -1, that is exceptional. After the blow down process of this

curve we obtain a singular fibre of type IV as p-1 (vo ) .
The general fibre has the canonical form y2 = 4x3 - Ox - g3, hence the

invariant j = g’l(g3 - 27g3 ) of this curve is equal to 0. Consequently the
functional invariant J of the elliptic surface 9 is the constant function 0.
For the elliptic surface with the functional invariant constant zero there
are seven possibilities as its fibre:

the regular fibre of the invariant 0,

the singular fibre of type II, IV, I*, IV*, II* and

the multiple singular fibre of type mlo (see [3] section 9).
We note that the Euler number of these fibres are equal to 0, 2, 4, 6, 8, 10

and 0, respectively.
The surface (8, p, 4 ) has a holomorphic section L given by ($1 = 03BE2 = 0}

in (2.1). Namely R is a basic member. According to the calculation we know
that .L meets with every singular fibre on an irreducible component with
multiplicity 1. We can describe the singular fibre as the decomposition
with its irreducible components:

where 09i (i = 0, 1, 2, 3, oo) is the component intersecting L.
According to Kodaira we have the following canonical bundle formula

for a basic member (see [3] section 12).
THEOREM 2.1 (Kodaira). Suppose an elliptic surface (X, ø, L1) is a basic
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member. Then we have

(K indicates the canonical bundle) ,

where F is a certain line bundle on 4 with c(F) = - p. - 1.

According to this theorem we have ei = 0 for such a surface. Using the
Noether’s formula :

we obtain c2 - 0 (mod 12). For any elliptic surface X the Euler number X(X)
is equal to the summation of the Euler numbers of all singular fibres. Hence
we have

Already we have (p-1 (vi )) = 4 for i = 0, 1, 2, 3. Then p-’(v.,,) must be a
singular fibre of type IV*, consequently we obtain

Now we show that 9 is a .g3 surface, that is a minimal nonsingular
compact complex surface with g = 0 and the irregularity q = 0 (it is

equivalent with the condition b1 = cl = 0).

PROPOSITION 2.1. Suppose an elliptic surface (X, 0, d ) is a basic member.
Then X is a K3 surface if and only if C2 = 24 and L1 = P.

PROOF. (Necessity) Because .K = 0 we know p. = 1. According to the
Noether’s formula it follows c2 = 24. From Theorem 2.1 we know c(.F’) = - 2.
And e(Kd) is equal to 2g - 2, where g indicates the genus of 4 . Hence g
must be 0..

(Sufficiency) By the assumption c2 = 24 it follows Pø - q + 1 = 2.
We have c(.Ka - F) = 0 because of Theorem 2.1. Then the assumption
4 = P assures ge - .F = 0. This implicates K, = 0, consequently we
have q = 0.

According to this proposition we can conclude that 8 is a K3 surface.

CONCLUSION 1. The snrf ace Jl#(1, It) is an elliptic surface satisfying the
conditions (i)-(iv) in the section 0 and is a K3 sur f aee, where the parameters
(A, p) lie on A.
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REMARK. The condition (i)-(iv) induces unique homological invariant
which belongs to the functional invariant J = 0. Then it characterizes the
surface 9 as an elliptic surface.

Let us consider the 2-form V on 9 which is canonically induced from
the 2-form vW-2du"dv, the integrand of (1.4), on S. By the calculation we
can obtain that y is the holomorphic 2-form on /§. In the rest of this paper
we shall study the range of the integral (1.4).

3. - Basis of H2(S, Q).

In this section we construct a basis system of H2(SI Q). We consider
the fixed surface 3(- 2 , 2 ) till the end of this section. Because the Euler

N 

2 7 2 
IWr

number X(g) is equal to 24 and bl = 0, then H,(S, Q) is a 22-dimentional
vector space over Q.

(I) Transcendental cycles. Let v be a point on L1 different from vi

(i = 0, 1, 2, 3, oo). And let us consider a closed arc ai(v) which starts from v
and goes around the critical point vi in the positive sense (i = 0, 1, 2, 3, oo).
Then ai(v) induces a monodromy transformation (Ai ) of the first homology
group H,(p-11(v), Z) r’-J Z@ Z of the general fibre p-1(v). Let us choose a

basis system (7,(V)l 72(V)) of H2(p-l(V), Z) so that the intersection multi-

plicity )’l(V)Y2(V) is equal to -1 and so that we have

where cv is the Abelian differential on p-1(v). According to the study of
Kodaira (see [3] section 9) we know that (Ai) is determined as the following:

for

We note that these transformations are of order 3. Let us consider a line

segment Zi (i = 0, 1, 2, 3) connecting vi and Voo in the lower half v-plane.
8

We denote the open set 4 - U l, by 40. We can determine the basis
i=o

(yl(v), y2(v)) of H,,(p-’(v), Z) so as to vary continuously while v moves on do.
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If we determine the basis (yl(v), y2(v)) at one point, then for every value v
on L10 the basis (yl(v), y2(v)) is uniquely determined up to the homotopic
equivalence. We shall give a concrete construction of y,(v) and y2(v) in the
next section, then we leave them indeterminate for the moment. Now we
construct 2-cycles Gi (i = 1, ..., 6) of R with the following procedure.

Let us make an oriented Jordan arc «1 from vo to v1. And let us make

a closed oriented Jordan arc g, which goes around the line segment 1, in
the negative sense and intersects «1, l2’ 1, and Zo in this order. We denote the
intersecting point of g1 and a1 by rl. Let us take the 1-cycle Y2(r1) of the
fibre p-1(rl). And let us make a continuation of Y2(r1) along the arc gl till

arriving at the intersecting point with l2. According to (3.1) we can pro-
ceed the continuation taking - (yl(v) + y2(v)) from here. And we shall

arrive at the intersecting point with ls. Similarly we can proceed the con-
tinuation along g1 changing the 1-cycle according to (3.1). The arc gl in-

3

tersects U Zi exactly three times, then this continuation determines a 2-cycle
i=0

G1 in S. And we make other five 2-cycles in the same manner.
Let us make oriented Jordan arcs «i (i = 1, 2, 3) from vo to vi in the

upper half plane, where we suppose that these arcs do not intersect each
other. Next we make oriented closed Jordan arcs gi (i = 1, 2, 3) which

goes around Zi in the negative sense, where we make gi so that any one of
them intersects (Xj (j = 1, 2, 3) and Ik ( k = 0,1, 2, 3) at most one time.

We denote the intersecting point of gi and ai by ri . We define six 2-cycles
G1, ..., Gg as in the diagram (3.1), where always we define the orientation
of Gi as the ordered pair of the orientation of the base arc and the orienta-
tion of the 1-cycle of the fibre.

Diagram 3.1

(II) Intersection multiplicities of G,, ..., G6. At first we define some

notations. We denote the restriction of Gi to a fibre of one point * on a
base arc by Gi(*). And we denote the intersection multiplicity of two cycles C
and C’ at a intersecting point * by (CC’)(*).
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(a) We know that Gi GZ = 0 (i = 1, ..., 6) by changing the base arc gj
3

( j = 1, 2, 3) to a homologous one in 4 ’ = 4 - U vi - {Vex,}. And we have
i=o

Gi Gi+1 =0 (i = 1, 3, 5) by the same reason.

(b) The base arc g, of Gi and the base arc g2 of G3 meet each other at
two points a, and ac2. We have

On the other hand we have:

Hence we have G1 Gs = 1. And also we know the following by the same
reason;

(c) Also the base arc gl of G1 and the base arc - g2 of G4 meet each
other at two points al and a2 . Then we have:

On the other hand we have:

Hence we have G1 G4 = 2. By the same argument we have G3 Gg = 2.
In the same manner we can calculate all the intersection multiplicities

au = Gi Gj (1  i, j  6). Consequently we obtain the intersection matrix
A = (ail) as the following:
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(III) Algebraic cycles. We choose 16 divisors G7, ..., G,, on the fiber
space (8, p, P) as the following:
G7 = one of the general fibres, G,, = the global section L, G,, = Ðoo, G1o 00, 9
Gll 010 9 G12 = e,,, 7 G1a = Ð20, 9 G14 = Ð21’ 015 = 830’ G16 = 031, G17 19000 9
Gl8 - Ð001, 7 Glg = Ð002’ 7 G20 = 0003 ? 7 G21 = Ð004’ G22 ’- 0005. We note that we
eliminated every component of the singular fibres which intersects the

global section L. And W e have G 2 = - 2 for every i (i = 7, ...,22), because
they occur from a rational double singularities. We know the intersection
multiplicities Oi OJ (7  i, j  22) by observing their geometric situation.

Here we give the configuration diagram (diag. 3.2).

Diagram 3.2

Consequently we obtain the matrix B = (bii) of the intersection multipli-
cities bij = Gi+,,Gj+,, ( l  i, j  16 ) as the following:

(IV) Intersection matrix. We can easily show that the determinants
of A. and B are not equal to zero. Next we consider the intersection of tran-
scendental cycles 01, ...,06 and algebraic cycles G? , ..., 022. It is apparent
that the transcendental cycle does not intersect all algebraic cycles except Gs,
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the global section. Then we examine the intersection of Oi (i = l, ..., 6)
and Os. 

’

Let bj be a sufficiently small disk in the v-sphere which has the center
v, ( j = 0, 1, 2, 3, oo). Let v = c be a fixed point on d’, and let fli be a
positively oriented circle in 3; which goes around v; . Let us consider a

loop pj which starts from c and goes to the initial point of Pj and goes around vj
along flj and finally returns to c along the former path. Then the base

arc g, of Gl is represented as - PI - flm = Po + P2 + Pa. And also the

other gi can be represented as same. The restriction of the fibre space (8, p, P)
over do is biholomorphically equivalent to the trivial one. Then it is suffi-

cient to observe that the restriction of Gi over Pj does not intersect L. Ac-

cording to Kodaira (see [3]) all of p-1(6,) ( j = 0, 1, 2, 3) are biholomorphic-
ally equivalent, then we examine only the case when we have j = 0.

We have a following representation of (8]bo, p, bo), that is the restric-

tion of ig over bo:

where [170’ 171’ 172] is the homogeneous coordinate of P2. Set s = ?71li7o and
t = 172/170, then we obtain an affine representation

And we know that the correspondence between (3.5) and (2.1) is given by
setting ?7.1?7. = vE./E2, and ’YJ2!1]0 = vEo/e2 Hence L is given by 1]0 = 7ji = 0

in (3.5). Let us regard the fibre p-1 (v) in (3.5’) as a two sheeted Riemann
surface over s-sphere. 

__ __ __

Then we obtain four ramified points s = 0, ’V - v, co f- v and (o 2 f- v,
where w = exp (2ni/3). Here we define two circles y_1(v) and y_2(v) on the
s-sphere as follows:

We consider the closed Jordan arc on the Riemann surface p-1(v) which
has the projection y_i (v ) (i = 1, 2). We denote them by yi (v ) . Then we ob-

tain a canonical homology basis of p-1(v) because we have yl y2 = -1.
Now let u tend to zero by fixing the value v, then the value of w tends

to zero with the order w = O(Iul*). Remember that we determined s = uvlw
and t = vjw, then we know that the intersecting point of p -l(v) and the
global section L corresponds to a point at infinity (s, t) = (0, oo).
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Hence it is apparent that yi (v) does not intersect L for every v on

ði - {Vi}. Consequently we have

for and

Set X = (8(A, p) : (A, It) c Al. And let Ã be the universal covering space
of A. The fibre space X over A is topologically trivial. Because of this

trivialization we can define the basis system G,1(21 u), ..., I Gl."(A, u) of

H2(S(Â, ,u), Q) for every (§, u) on 4.
Because of (3.3), (3.4) and (3.7) we obtain the following.

CONCLUSION 2. A basis system of H2( S(Â, ,u), Q) is given by {G1, ..., G22}’
and the intersection matrix M = ( Gi Gj ) l s i, s 22 is the direct sum M = A EB B.

4. - Basis of H2(S, Z) and the Riemann-Hodge relation.

(I) In this section we construct the basis of H2(’91 Z) using the basis
G1, ..., G22 of H2(ig, Q). And for the moment we consider the surface 8(A, ,u)
with fixed parameters (Â,,u) = (- 2 , -1).

Let us consider the following automorphism oi of the surface S de-

fined by (1.5):

We can examine that oi can be extended to an automorphism (2 of 8. And o
is of order three on every simple component of the fibre and it is the iden-
tity on every multiple component of the fibre.

(II) Construction of transcendental 2-cycles. We consider a general
fibre p-1 (v) of the fibre space (8, p, P), where we suppose 0  v  1. We

regard this general fibre as a three sheeted covering Riemann surface over
u-sphere represented in (1.5). And we denote this Riemann surface by R(v).
We consider the following arcs di (i = 1, 2, 3 ) on u-sphere:

d1: the line segment connecting two points u = 0 and u = oo,

d2 : the line segment connecting two points u = 1 - v and u = oo,

d3 : the line segment connecting two points u = - 2 + v and u = oo.

When u satisfies the inequality 0  u  1 - v there are three different

values of
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and their arguments are 0,2;ri/3 and 4ni/3. We can define single sheet of
our covering Riemann surface by the continuation of one of these branches
of w over u-sphere - {d1, d2, da}. Then we define the first, second and third
sheets of the cut Riemann surface R(v) - {u-1(d1), u-1(d2), u-l(da)} as the

continuation of the value w which satisfies arg w = 0, arg w = 2ni/3 and
arg w = 4ni/3 over the open arc 0  u  1- v, respectively.

Next we choose a real valued continuous function s(v) defined on the

open arc 0  v  1 which satisfies the inequality

And we make following arcs P,, g1 and P2 on u-sphere:

gi : starts from 8 and goes to the end point 1- v - 8 along a straight line,

PI: goes around the origin according to the parametrization

#2: i goes around the point 1- v according to the parametrization
I - v - 8e""(O:- 99  2a). We denote the composite closed arc U1P2U-;lfJ-;1
by Cl. Let y,.(v) (y2(v)) be the lift of Cl to the Riemann surface .R(v) which
take the second (the first) sheet, respectively, along the arc gl. According
to the continuation along the base arc /?, (i = 1, 2) it occurs a permuta-
tion (1, 2, 3) of sheets of R(v). Hence we know that y,(v) and y2(v) are closed
arcs and that they have the intersection multiplicity yl(v) y2(v) = -1.

Here we consider the union

Let us examine that r; tends to one point when v tends to 0 or 1. In the

section 3 (IV) we already obtained a homology basis (y1(v), y2(v)) of a general
fibre p-’(v) of the fibre space (9, p, P) with respect to the local representa-
tion (3.5). Then we consider again the representation (3.5). Let p be a

point of Yi(V) (i = 1, 2). The point p is determined by v and the parameter 0.
According to (3.5) and (3.6) we have

where
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We know that s and t tends to zero as v tends to zero, because a(6)
satisfies the condition 1  ]a(0)  2. Hence yZ(v) (i = 1, 2) tends to the

origin of (s, v, t)-space when v tends to 0. Consequently yi (v) tends to one
point when v tends to 0. And this limit point is the intersection of three
components of the singular fibre p-’(O), those are eoo, Ool and eo.

By the same argument we know that y,(v) tends to the intersecting point
of three components of the singular fibre p-’(l) when v tends to 1.

Hence if we attach these two limit points to r;, we obtain a 2-cycle
on 9 which is homeomorphic to a sphere. We denote them by Fi (i = 1, 2).
By deforming the base arc 10  v:!&#x3E; 1} of 1-’Z we may consider that T, is

situated over the arc al defined in the preceding section. So we define the

orientation of Ti as the ordered pair of the orientation of a1 and the orien-
tation of yi (v).

Here we make following oriented arcs g2 , g,, #’ and fJa on u-plane :

g2 : starts from e - 2 + v and goes to the end point 1 - v - 8 in the
upper half plane along a Jordan arc,

g3: starts from 8 - 2 + v and goes to the end point - c along the
real line,

fl[: goes around the origin according to a parametrization - eei9
(o 2n),

fJa: . goes around the point - 2 + v according to a parametrization
- 2 + v + 8ei 0 (00 2yr).

The restriction of the fibre space (S, p, 4 ) over do is biholomorphically
equivalent to the direct product space. Then w e can define yi (v) uniquely
(up to the homotopic equivalence) for every value v on L10. By the same
procedure as the above we can define the following 2-cycles:

where ai is the arc defined in the section 3 (I). By the construction we have

for

Then it follows

for
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Let us examine the intersection multiplicity of hi and G, (1 s i, j  6).
The base arc (Xl of r1 and .r2 intersects the base arc g1 of G1 at one point rl.
We know the following:

Hence we obtain

By the same argument we obtain Fl G2 = 0 and F2G2 = 1. And it is easily
shown that FlGj = -PGj = 0 for j = 3, 4, 5, 6. We can discuss about

Fi (i = 3, 4, 5, 6) in the same manner. Consequently we have

where bij indicates the Kronecker’s delta.
Iv N

Let us consider the subgroup A(g) of H,(S, Z) which is generated by
G7, ..., G22 . The subgroup A (9) (D Q of B’2 (rS’, Z) is the one which is gener-
ated by G7, ..., G22 . And already we obtained the direct sum decomposition

Let C be an arbitrary element of H,(ig, Z) and put

where

According to (4.2) we obtain

for

Then C - C’ belongs to the orthogonal complement of G1, ..., Gg , namely
it belongs to A (9) @ Q. Since. C - C’ is an element of H,(S, Z) it must belong
to A (ig). Let F7, ... , F22 be a basis system of A (ig). By the above argument
we know that {Fi, ... , .hg , F77 ... 7 F22} is a basis system of H,,(S, Z).

(III) Now we consider the Riemann-Hodge relation. Set

for
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And we consider the cohomology group H2(S R) and we regard this group
as the cohomology group of real 2-forms by the de Rham correspondence.
So we choose the basis (ay, ... , 7 (022) of H2 (ig, R) so that

for

Let M’ be a matrix of Then we can write the

Riemann-Hodge relation as follows (see [4]):

where 4j = (n1’ ..., n22).
Let us consider the dual basis Gi , ... , G22 of H2(S, Q) such that

riG: = ð¿j, where G) = Gj f or j = 1, ... , 6. Then Wj is cohomologous to G)
as a current. Hence we have M’ = M. Since the period jy is equal to

_ 
D

zero for a divisor D on S, we have ni - 0 for i = 7, ..., 22. Consequently
we can write (4.5) using the matrix A of the section 3:

where q = (iy,, ..., rJ6).
Here we consider the universal covering space zi of the domain Il of

parameters. And let (A, [t) be a point on i which corresponds to the point
(A, It) on A. Then the totality of the surfaces 8(5, P) can be regarded as a
fibre space over !1 and it is topologically trivial. Then we can define the

homology basis Fl(1, fi), ..., 9 F""(I, fi) of H,(S(A, ,u), Z). When we make the
continuation of Pi (A, ¡.t) along a closed arc in A, it occurs a monodromy
transformation. Any how we obtained a basis system of H2(S(Â, II)i Z),
where (A, p) varies on A. And the intersection matrix if of their dual basis
does not depend on the parameters (A, p). Then we obtain the relation (4.6)
and (4.7) for every (A, It). From the relation (4.1’) we can reduce the rela-
tion (4.7) as follows:

Let (/1’ d2 and d3 be three eigen values of the matrix in this relation. Then



627

they are given as the solutions of t3 - 3t + 1 = 0, and they satisfy the
relation (11  0  (12  03.

If we consider [1]1’ 1]a, 1]5] as a homogeneous coordinate in P2, according
to (4.8) we obtain a domain Q in P2 which is biholomorphically equivalent
to a hyperball.

REMARK. Let NS(8) be the Neron-Severi group of S (that is the group
of all divisors under the algebraic equivalence). The rank of NS(8) is 16
for almost all (A, It) on A. And it exceeds 16 if and only if [1]1’ 1]a, 1]5] is a
rational point on P2.

From the argument of this section we obtained the following.

CONCLUSION 3. The period mapping [1]1’ 1]a, 1]5] for the family S(Â, u)
defines a multivalued analytic mapping from A to a hyperball Q in P2.

5. - Monodromy transformation and the reduction to the Picard’s mapping.

In this section we relate the monodromy transformation of H2(S(Â, ¡.t), Z)
which is induced from an element of n,(A). And we show that the mapping
1]I(Â, u), 1]a(Â, 9)1’ql(Al ,u)] coincides with the mapping- which is constructed
by Picard. And we give the generators of the transformation group of 92
which is induced from the monodromy transformation.

(I) Reduction to the original integral. From the construction of ri
(i = 1, 2) these 2-cycles depend on the function 8(V). But all of them are

homotopic. Hence the period

does not depend on 8(v). So we can consider the limit value of 77i as s(v)
tends to zero, and that value is also equal to ni. Here we consider a real

2-dimensional triangle D1 on S as follows:

This is the projection of the limit cycle of
Then we obtain

to the (u, v)-space.

where we take the first sheet of w, that takes a real value on Di, and
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m = exp (2ni13). Let us consider the other triangles as the followings :

The triangle D2 (D3 ) is the projection of the limit cycle of T3 and F4 (F5 and F6)
to the (u, v)-space, respectively. By the same argument we obtain

Because of the equality
in (1.5), it holds that

D is the original triangle

Hence we obtain the representation of the original Picard’s integral (0.0)
in terms of the period on S. Namely, according to (1.4) and (5.3) we have

where c is the gamma constant which appeared in (1.4).

(II) Monodromy transformation. Let po = (20, #0) be the point (- 2 , 2
on A. We consider the following loops ð1, ... , ð5 in A, where we suppose that po
is the initial point of every (i = 1, ..., 5):

ð1 goes round the point 2 = 0 in the positive sense on the hyper-
plane p = ,uo ,

6, goes round the point 2 = 1 in the positive sense on the’ same plane,

83 goes round the point at infinity in the positive sense on the hyper-
plane Z = 3y - 2,
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ð4 goes round the point I It,, in the positive sense on the hyper-
plane f-l = po,

6, goes round the point It = 0 in the positive sense on the hyper-
plane A _ Ao .

We regard Il as P2-{e complex lines}. And let H be a general hyper-
plane in P2. Then the generators of the fundamental group of H r1 A
are also the generators of n,(A), this is the theorem of Lefschetz. Hence

(ð1, ..., b.,) constitutes a generator system of a, (A). Every element 6 of

11. ) induces a monodromy transformation 5 of H,(9(207 ,uo ), Z). And

every divisor of A(S) is invariant under this transformation. Then we con-
sider the monodromy transformation of Fl, ..., F6 in the following.

(i) Transformation J,,. When the point (A, p) moves along the

loop ðl, the critical points vo, v, , v3 and Voo stay invariant and the point
V2 == (1 2013 2)/(/z - Â) varies along a loop mi which goes round v3 in the posi-
tive sense. This loop defines a Jordan region -R(coi) in the finite v-plane.
.Let 8(A, p; v) be a fibre over v of the elliptic fibre surface (19(A, p), P, P).
If v is a point on A- (,o,,, where L1’ == P - {Vl I VI I V2 7 VI 7 oo}, then 6, induces
a monodromy transformation 3[(v) of Hl(S(ÂO’ izo; v ), Z) . At first we study
this transformation.

A general fibr6 S(2, It; v) is realized as a covering Riemann surface by
considering the representation (1.5). We denote this Riemann surface by
B(A, p ; v). There are three triply ramified points over u = 0, u = ul =

= (1 - pv) /A and U == u2 = 1 - V on B(A, li; v).
Let us make three cut arcs ao , al and a2 on u-plane, they are line segments

which connect u = 0 and oo, u = ul and 00, U = U2 and oo, respectively.
Then we can determine the i-th sheet w, (i = 1, 2, 3) so that we have

W3 = exp (2ni/3)w2 = exp (4ni/3)w1. Here we consider an oriented arc on

u-plane which connects two points a and /?. We denote the lift of this arc
into the i-th sheet wi by Wi (ex, f3).

When a point (A, f-l) moves on A, the ramified points u = 0 and u = u2
are invariant and only u = u,(A7 It) varies. Let s, be a loop which is drawn

by U1 corresponding to 61. This loop negatively goes round the Jordan
region .R(s1) which is defined by s, in the finite u-plane. If u is an interior

point of R(sl), then 61 does not induce a permutation of the branches of

And if u is an exterior point of R(81), then the branch wi of w changes ac-
cording to the permutation (1, 2, 3).

If v is an exterior point of R(o),,), 81 goes round 0 and U2 in the negative
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sense. And the canonical basis system of H,(S(A,,, Po; v), Z) are given as the
following:

Then the projection of yi(v) is contained in R(s1). Hence in this moment

3[(v) is the identity.
And if v is an interior point of R(a).,), si goes round only one ramified

. point u = 0 in the negative sense. We consider the oriented line segment
connecting 0 and U2 in this direction.
We denote this arc by 8. Then 8 can be deformed to an arc passing through
the point u = v - 2. Then we obtain

By the direct observation we know

Hence we know And by the relation we obtain

In the following we denote - (yi + y2 ) by 7s? then we have

identity

if v lies inside of -R(coi) I

if v lies outside of R(W1) .

Now we study the transformation ð1. The base arc a1 of rl, it is the line
segment connecting v = 0 and v = 1, does not change as (A, p) moves
along 6,. And a1 is contained in the exterior part of Wl. Then 6’(v) is

identity for the value v on oci. Then it follows that 51 F,, = F, , Similarly
we have ðlr2 = r2. The critical point v2 goes round the critical point v3 in
the positive sense drawing the loop mi as (A, f-t) moves along ð1. Then the

base arc oc2 of .T3 moves following the loop Wl. Let vj and vk (0  j, k  3)
be two critical points, and we consider a Jordan arc a connecting vj and vk

in We denote the 2-cycle
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Then the following holds:

And also we have

If we regard the base arc a3 of F, as the composition of a2 and the arc
a3 - a2 , 1 we know that the former is invariant as (A, p) moves along 6, and
that the latter is also invariant. But we must notice that ocg - DC2 is con-

tained in the interior part of Cùl. Hence we obtain the following, using the
transformation (5.5):

Because of the relation (4.1) we obtain:

Consequently we can describe the transformation il,:

This transformation is of order three.

(ii) Transformation 32. When the point (A, ft) moves along ð2, the
critical points vo, vi , v3 and Voo are invariant. And v, moves along a loop W2
which goes round vo in the positive sense. This loop defines a Jordan region
R(w2) in the finite v-plane. By the same procedure as (i) we obtain the
transformations bf 2 (v) of H1(S(ÂO’ ,uo ; v), Z) which is induced from ð2, where v
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is fixed on

identity

if v lies on R(w2), y

if v is outside of R( W2) .

After the variation of the point (A, ,u) along O2 the base arc cei of F1 is
deformed to an arc which passes through v2. This deformed arc is the com-

position of two subarcs : the one starts from v,, and goes to v, and the other
starts from v2 and goes to VI. The former lies in R(co,) and the latter lies
outside of R(F2). Using (5.7) we have

After the variation of the point (A, p) along 6, the base arc a2 of Fa does not
change geometrically, but the argument increases by 2yr and this arc is con-
tained in R(w2). And by the same variation the arc aa is deformed to an arc
which passes through the points vo , V2’ ao in this order and ends at v3 ,
where ao is the line segment connecting vo and oo.

We regard this deformed arc as a composition of two subarcs. The first
starts from v,, and goes to v2, the second starts from V2 and goes to v3. The
former lies in R(w2) and this part changes the argument by 2n. The latter
lies outside of R(w2). According to (5.7) we have

Because of the relation (4.1) we obtain

Consequently we can describe the transformation ð2:

This transformation is of order three.
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(iii) Transformation ða. When the point (A, ,u) moves along ða, the
critical points vo , Vll V2 and oo are invariant. The critical point v, varies
along a loop Cùa which goes round vo in the positive sense. This loop defines
a Jordan region R(wa) in the finite v-plane. By the usual method we obtain
the transformation 6’(v) of H1(S(ÂO’ #0; v), Z) induced from ða:

if v lies on R( wa) ,

if v lies outside of R( (Va) .

If we use (5.9) we can describe the transformation ða by the same method
as (i) and (ii) :

This transformation is of order three.

(iv) Transformations 34 and ðs. When the point (A, It) moves along ð4,
the critical points vo, via, v, and oo are invariant. And v, goes around o0

in the positive sense. And when the point (A, Iz) moves along ðs, the critical
points vo, v, and oo are invariant. The critical point v, moves along a loop
which is homotopic to zero in J.’ The critical point v, goes around the

point oo in the positive sense.

By the similar way we obtain the monodromy transformation 64 and 6,
as follows:
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The transformation 6, and 6, are of order infinite.

(III) The monodromy transformation bi (i = 1, 2, 3, 4, 5) induces a
linear transformation (5? of the periods qj(A, p) (j = 1, 3, 5). According to
the results in (II) and (6.1’) we can describe them as follows:

The transformed value 6*(,qj(A, p)) is nothing but the analytic continuation
of nj(A, p) along the arc 6i - According to the local Torelli type theorem of
the period mapping for algebraic K3-surfaces (see [4]) qi(A, p), n3(A p) and
?7,(A, ,u) are linearly independent. And if we observe the transformations 6* y
it is easily shown that any n,(A, p) (j = 1, 3, 5) is obtained as a linear com-
bination of one period q(A, p) == f 1p for some 2-cycle 1-’ of /§ and its analytic
continuations. The function r

where A (A, p) = cf-t5/3(f-t- A)5/3(p_ 1_)4, of the right hand side in (5.4) is a solu-
tion for the differential equation (0.3) under the transformation of variables

Then are the three independent solutions for the
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equation (0.3). Hence the ratios

coincide with the Picard’s original mapping. Consequently we obtain the
following.

CONCLUSION 4. The period mapping [Qi(I, p), 1]a(Â, p), 1]s(Â, p)] for the

f amily of suriaces S(2, p) coincides with (Cl(X, y), C2(X, y)) under the trans f or-
mation (5.13). The inverse mapping (À, p) = (qi((1 , C2), J2(Cl’ C2)) is equal to
the Picard’s modular f unctions (up to a projective linear transformation). The

f unctions qi and tJ2 are holomorphic on Q which is determined by (4.8), and they
are automorphic functions with respect to the transformation group generated
by ð:, ..., 65*.
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