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Existence of Solutions of Nonlinear Hyperbolic Equations (*).

L. CESARI (**) - R. KANNAN (***)

1. - Introduction.

In this paper we consider the question of existence of solutions of ab-
stract equations of the form

where X is a Hilbert space, E is a linear operator with a possibly infinite .

dimensional kernel Xo and such that the partial inverse H of E on the
quotient space X/Xo is bounded, but not necessarily compact. Our theorems
therefore apply to quasi-linear hyperbolic partial differential equations and
systems, in particular wave equations.

Our purpose here is to point out how much of the recent developments
in the theory of nonlinear elliptic partial differential equations can be ex-
tended naturally to obtain existence of solutions of nonlinear hyperbolic
problems.

In the recent years there has been an extensive literature on the ques-
tion of existence of solutions to quasilinear elliptic equations of the type
Ex = Nx (E being a linear operator with a finite dimensional kernel, the
partial inverse g of E being compact, and N nonlinear) and we have already
shown [4, 5, 6, 7, 8] that in this situation suitably conceived abstract exist-
ence theorems essentially contain most of the results just mentioned for
elliptic problems.

It is therefore the purpose of this paper to state and prove analogous
abstract existence theorems for the present more general situation (here Xo
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is infinite dimensional and .g is bounded but not compact) and to show that
known and new specific existence theorems for hyperbolic problems can be
naturally derived from the abstract theorems. In particular we derive ex-
istence statements for specific problems of the forms Utt - Au = f(.,., u)
or utt - Au - /(, 7 *1 u7 ui, uae) will contain as particular cases results which
have been proved by W. S. Hall [11, 12] and H. Petzeltova [15] only for
f 8g, s a small parameter.

In another paper [9] we shall continue this programme showing, as in
the elliptic case, that most known specific results for the hyperbolic case,
and new simple criteria, can be derived from our abstract theorems.

The basic formulation of our abstract theorems for the hyperbolic case
is about the same as in the elliptic case. It appears therefore that some

unification has been brought about in a rather large variety of specific
situations.

2. - The auxiliary and bifurcation equations.

Let X and Y be real Banach spaces and let llxllx, Ilylly denote the norms
in X‘ and Y respectively. Let D(E) and R(E) be the domain and range of
the linear operator E: 9)(E) --&#x3E;- Y, D(E) c X, and let N: X - Y be an

operator not necessarily linear. We shall now consider the equation

Let P : X --&#x3E;- X, Q : Y - Y be projection operators (i. e. , linear, bounded,
and idempotent), with ranges and null spaces given by

We assume that P and Q can be so chosen that ker E = PX, JI(E) =
- Yi = (I - Q) Y. This requires that ker E and J3,(E) be closed in the

topologies of X and Y respectively. Then E as a linear operator from

5)(E) n Xi into Yl is one-to-one and onto, so that the partial inverse H:
Yi - O(E) r1 Xi exists as a linear operator. We assume that .H is a bounded
linear operator, not necessarily compact, and that the following axioms
hold: (i) .g(I - Q) E = I - P, (ii) EP = QE, and (iii) EH(I - Q) = I - Q.
We have depicted a situation which is rather typical for a large class of
differential systems, not necessarily self-adjoint. Let L be a constant such

that IlHyll,-Lllyll, for all y E Y. We have seen in [3] that equation (1)
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is equivalent to the system of auxiliary and bifurcation equations

If x* = Px E Xo, and ker .E = Xo = PX, then these equations become

Thus, for any z* e xo, the auxiliary equation (4) has the form of a fixed
point problem x = Tx, with Tx = x* --E-- H(I - Q) Nx.

For X = Y, a real Hilbert space, Cesari and Kannan [7] have given
sufficient conditions for the solvability of equation ( 1 ) in terms of mono-

tone operator theory.
Again, for X’ = Y a real separable Hilbert space, E self-adjoint and

.N Lipschitzian, Cesari (cf. [3], § 1, ns. 3-5) has shown that it is always pos-
sible to choose X and hence P, Y, Q in such a way that the operator T is
a contraction map in the norm of X, and thus the auxiliary equation
x = Tx has a unique solution in a suitable ball in JT by the Banach fixed
point theorem. McKenna [14] has extended the result to nonself-adjoint
operators E in terms of its dual E* and the self-adjoint operators EE*
and .E* .E. Recently, Cesari and McKenna [10] have indicated the set-

theoretic basis for the extension of the basic arguments to rather general
situations.

In general for E not necessarily self-adjoint and X, Y real Banach spaces
as stated above, Cesari and Kannan in a series of papers have considered
the situation where Y is a space of linear operators on X, so that the oper-
ation y, x&#x3E;, Y X X - R is defined, is linear in both x and y, under the fol-
lowing natural assumptions.

’or some constant K and ally

We can always choose norms in X or Y, or the operation y, x&#x3E;, in such
a way that K = 1. Furthermore we assume that:

for we have if and only if

As simple examples of the above situation we have the following. Here G
denotes a bounded domain in any t-space
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with usual norms

in .L2.

with L2 norm with norm and

then

with usual norm with norm

and then again

with usual Sobolev norm and then

3. - An abstract theorem for the elliptic case.

For the sake of simplicity we limit ourselves here to the. case of Hilbert
spaces.

Let X, Y be real Hilbert spaces, and let ( , ) denote the inner product in X.
Let us consider equation (1 ) in X with Xo = ker E of finite dimension,
and let H be compact, and P and Q orthogonal projection operators, hence
Il p Il =]-, !9!t ll =1, and let L = IIHII.

Thus, let w = (w.,, w,, ..., wm) be an arbitrary orthonormal basis for the
finite dimensional space Xo = ker .E’ = PX, 1 c m = dim ker E  co. For

m

X* E Xo we have X* ciwi, or briefly x* = cw, c = (c1, ..., cm) E Rm, and
i=1

then lei _ IIx*ll, where Icl is the Euclidean norm in B-. The coupled system
of equations can now be written in the form x = cw + H(I - Q) Nx, and
QNx = 0. Let a : Yo - Xo be a continuous map, not necessarily linear,
mapping bounded subsets of. Yo into bounded subsets of Xo, and such that
x-i(0) = 0. Thus, QNx = 0 if and only if aQNx = 0. The following ex-
istence theorem holds:

(3.i) Let X, Y be real Hilbert spaces, and let E, H, P, Q, N as in § 2.
Let Xo = ker .E be nontriviat and finite dimensional, let H be linear, bounded
and compact, and let N be continuous. If there are r, .R &#x3E; 0 such that (a) for
all x* E .Xo , xl E Xl, 11 x* 11  R,,, 11 x,, 11  r, we have IIN(x* -+- x.,) 11  E-1 r; and
(b) for all IIx*1I 11 = Ro, 11 x,, 11  r, we have (aQN(x* + Xl)’ x*) &#x3E;0 [or  0 ], then

equation Ex = .ZV’x has at least a solution II X // x  (R’ 0 + r 2)1.
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For a proof of essentially (3.i) and the variant above, we refer to Cesari
and Kannan [8, 9], and to Cesari [4, 5, 6] for extensions to Banach spaces
and other remarks. A topological proof of essentially theorem (3.i) may
be seen in Kannan and McKenna [13].

We present the theorem in the form (3.i) because no requirement is

made concerning the behaviour of N(x*-E- x,) outside the set = {(x*, si) E X,
l!x*11 Ro, 11 x. 11  r}, and thus it allows for an arbitrary growth for N(x) as
x 11 - ’o . If (a) IINxl1 Jo for some constant Jo and all x c- X, and (b’) for
some .Ro inequality (b) in (3.i) holds for all Ilx*1I &#x3E;Ro and II Xl II c .LJo , then
(a), (b) certainly hold for .Ro as stated in (b’) and r = LJo. In [4, 5, 61 we
discuss the determination of suitable constants R, r for various cases of

growth of IINxl1 p as p x p -&#x3E; 00.

4. - Preliminary considerations concerning the hyperbolic case.

Let E, N be operators from their domains 9)(E), 5)(N) in X, to 1J, both I
and 1J real Banach or Hilbert spaces, and let us consider the operator equation

as in §2. Its solutions x in 3C may be expected to be usual solutions, y or

generalized solutions according to the choice of 3C. We shall consider first
smaller spaces X and Y, say .X c X,, Y c 1J, both real Hilbert spaces, and we
shall assume that the inclusion map j : X --&#x3E;- 3C is compact.
We shall then construct a sequence of elements {Xkl, X, e X, which is

bounded in X, or 11 Xk llM. Then, there is a subsequence, y say still {xk}
for the sake of simplicity, y such that {jxkl converges strongly in 3C toward
some element C. On the other hand, X is Hilbert, hence reflexive, and we
can take the subsequence, say still [k], in such a way that Xk --&#x3E; X weakly in X.

Actually, C = jx, that is, C is the same element x E X thought of as an
element of 3C. In other words:

(4.i) If xk --* x weakly in X and jXk - i strongly in X,, then C = jx.

Indeed, j : X - I is a linear compact map, hence continuous (see, e.g. [2],
p. 285, Th. 17.1). As a consequence, Xk --&#x3E; Xweakly in X implies that

jXk -+ jx weakly in 3C (see, e.g. [2], p. 295, pr. no. 12). Since jXk
strongly in 3C, we have C = jx.

We shall assume that X, and .Xo contain finite dimensional subspaces
X1n, Xon such that Xln c X1,n+l c Xl, Xon c Xo,n+l c Xo, n = 1, 2, ..., with
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U Xln = Xl, U Xon = .Xo, and assume that there are projection operators
n n

R,,: i Xi - Xln, Sn: i Xo - Xon With Rn Xi = Xln, SnXo = Xon (cf. similar as-
sumptions in Rothe [16]). Since X is a real Hilbert space, we may think

of Rn and Sn as orthogonal projections and then IIR,,xllx lixli,, 118.x*il,,
c p x* p X for all z e Xi and x* c- X,,.

Thus, we see that in the process of limit just mentioned, Xk -&#x3E; x weakly
in X, jXk - js strongly in X, the limit element can still be thought of as
belonging to the smaller space X. This situation is well known in the im-

portant case X = ’WI(G), X = W2(G), 0 c n C N, Xc X, G a bounded open
set in some R", v &#x3E; 1. Then, the weak convergence x x in W2 (G) im-
plies the strong convergence jXk -+ jx in W2 ( G), and = jx is still an ele-
ment of the smaller space X.

Concerning the subspaces Xon of Xo it is not restrictive to assume that
there is a complete orthonormal system [VI’ V2, ..., vn, ...] in Xo and that
Xon = sp (VI’ I V2 ..., 9 Vn), n = 1, 2, ... We shall further assume that there

is a complete orthonormal system (U).I, (02,...7 (on 9 ... ) in Y, such that

Ct)i , v, &#x3E; = 0 for all i =A j. We shall take Yon = sp (COI, ... , wn) and denote
by S[ the orthogonal projection of Yo onto Yon. Then, S’QNX = 0 if and

only if QNx, vj&#x3E; = 0, j = 1, ..., n, and this holds for all n = 1, 2, ....
We consider now the coupled system of operator equations

We note that we have S’QNX = 0 if and only if QNx, x*) = 0 for all
x* E Non .

We may now define a map oc.: Yon ---&#x3E; Xon by taking

Then, we have 0 = S:QNx if and only if 0 = ce S§QNS. We conclude that
system (6), (7) is equivalent to system

(4.ii) (a lemma) Under the hypotheses above, let us assume that there are
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’constants R, r &#x3E; 0 such that

f or all we have

f or all we have

Then, for every n, system (6), (7) has at least a solution Xn E 9) (E) f1 (Xon X X1n),
Xn = X* +x S.PX,.=X* with -Ilx.11  M = (.Ro -f - r2)i, M indep endent o f n.

PROOF. If we consider the subset Cn of Xon+Xln made up of all

x = xon + X1n with 11 x* Ro, 11xlnll r, we see that

for all

for all with

In other words, the assumptions actually used in the proofs of (3.i) in [8]
and in [13], are satisfied with L-lr replacing J’o and the same .Ro . The

proofs of these statements can be repeated verbatim. Now the compactness
of the bounded operator .Rn g follows from the fact that R,,H has a finite
dimensional range, and the finite dimensionality of the kernel of E is now
replaced by the fact that the range of (XnS:QN is certainly finite dimen-
sional. The bound M = (.Ro + L’J’)l is now replaced by the bound

.lYl (R2 0 + r2)1, certainly independent of n.

5. - An abstract theorem for the hyperbolic case.

In order to solve the equation Ex = Nx we now adopt a « passage to
the limit argument. » We assume that both the Hilbert spaces X and Y
are contained in real Banach (or Hilbert) spaces and M with compact
injections j : X - X, j’ : Y --* "J. Actually we can limit ourselves to the con-
sideration of the spaces T and 1ï made up of limit elements from sequences
in X and Y respectively as mentioned in § 4. Hence, X, is identical to X

and ? is identical to Y, though they may have different topologies. We
shall write ‘ == jX, ’9 = j Y.

Analogously, we take X(, = jX(,, ’Yo==j’Yo, X1==jX1, ’Y1=j’Y1, and
the linear operators 9: a; Xo, 2: "J "J,, are then defined by f!JJx = x*
in 3C if Px = xo in X; 2y = y* in 9J if Qy = y* in Y.
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We now assume the following:

(C) Xn -+ X weakly in .X and jxn -+ jx strongly in 3C implies that NXn -+ Nx
strongly in 11, BnPxn -7 Px strongly in 3Cy and R,, x,, --&#x3E; x strongly in 3C.

By (4.ii) there are elements zn e Xn such that

where 11 x,,, 11  X for all n. Hence, there exists a subsequence, say still {xn}, 7
such that xn -+ X weakly in X and jxn 4 jz strongly in 3C. Then, by (10)
and (11), proceeding to the limit, we have

Indeed, as n --&#x3E;- oo, Sn converges to the identity I : Yo - Yo and an con-

verges to a homeomorphism a: Y,, --&#x3E; Y,, in the sense that 8,,,y -y,
,x,,y --&#x3E; y as n --&#x3E; c&#x3E;o. 

We now remark that, in 3C the operator E’ may have no meaning and
thus the concept of solution of Ex = Nx has to be properly understood.
However, x c- X, and thus, by § 4, x is still an element of X on which E is

defined. Further, as a consequence of the hypotheses on P and H, we have
QE = EP = 0 and EH(I - Q) = I - Q. Thus, from the above limit equa-
tion we have

We summarize now the hypotheses and the conclusions, concerning the
operator equation Ex = Nx, we have obtained.

(5.i) THEOREM. Let .E: O(E) --&#x3E; Y, D(E) c X c X, .E a linear operator,
N : X --* Y a not necessarily linear operator, X, Y real Hilbert spaces, X, ’Y

real Banach or Hilbert spaces with compact injections j : X --&#x3E; X, j’ : Y -+ ’Y,
with projection operators P: X - X, Q: Y --&#x3E;- Y and decompositions X =
= Xo -f - X., Y = Yo -f - Y,., Xo = PX = ker E, Y, = (I - Q) Y = R ange E,
Xo infinite dimensional, and let E have the bounded partial inverse H : Y,. --&#x3E; X,.
Let L = IIHII, let N : X --&#x3E;- Y be a continuous operator, and let P, Q, H, E, N
satisfy (i), (ii), (iii) of § 2. Let Y be a space of linear operators y, x), or
Y X X - Reals, satisfying (7r.1), (n2) of § 2. Let Xon, X1n, Yon be finite dimen-
sionalsubspaces of Xo, X,, Yo with orthogonal projection operators .Rn : Xl -+ .X, ,
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Sn: X, - Xo, S’: YO --&#x3E; Yo with RnXl = X1n, Sn X o = Xon, S Yo = Yon,
satisfying (C) of the present Section. Let an : Yon - lYon denote the map de-

f ined in § 4. If there are constants R, r &#x3E; 0 such that (a) for all x* E .Xo,
Xi c- Xi 11x*IIRo, IIxIIIr, we have 11 N(x* + x1))llyL-lr; and (b) for all

Ilx*11 11 = Ro, Ilxlll r we have (anQN(x* + xl), x*»O [or c 0], then the equa-
tion Ex = Nx has at least a solution Ilxllx (R§ + r2)1.

In this theorem (5.i) no requirement is made concerning the behavior of
N(x* + x1 ) outside the set S = I (x*, x ) E X, Ilx*11 Ro, 11 Xl II r},. and thus
it allows for an arbitrary growth for N(x) as )[s)[ 11 - + 00.

However, it is easy to see that, if (a) 11 Nx  Jo for some constant Jo
and all x E X; and (b’) for some .Ro the inequality (b) in (5.i) holds for all

Ilx* 11 &#x3E; B(, and Ilxlll LJo, then (a), (b) certainly hold for .Ro as stated in (b’)
and r = .LJo . We shall see in [9] that an analogous determination of Ro
and r can be made in cases of slow growth 11 Nx Jo + Jlllxll", 0  v  1,
and even of arbitrary growth JINx 11  11xl]), in particular IINxl1 Jo +
+ Jlll0153ll", v&#x3E;l.

REMARK 1. Also note that the bifurcation equation in the problem,
or a, 8.’QNx. = 0, can always be replaced by the equation

where Jn : Xon - Xon is an invertible operator. When this is done, we may
require that (b) holds with the inequality replaced by

The following corollary of (5. i) is of interest. Again L = [[ H [[ .

(5.ii) Let N: X --&#x3E;- Y be a continuous map, and there be monotone non-

decreasing nonnegative f unctions a,(R), fl (B), B &#x3E; 0, and that (i) x E X, 11 x 11 x  B
implies ii Nx [[ c a (.R ) ; (ii ) si , X2 c- X, [[ x1 [[ , IIx211 [[ c .R implies ii Nx, - Nx2 11 
peR) 11 x,, - x211. Let us assume further that (iii) there are numbers Ro, r &#x3E; 0 such
that La((R’+ r’)I)  1; and Bo+ LP(B’+ r’) I c r, and (iv) (oc. S I N(x*+x,,), x*) &#x3E; 0
[or c 0 ] for all IIx*11 [[ c .Ro and p x1 11  r. Then the equation Ex = Nx has at

least a solution x = x* + xL EB, B = ((x*, xl), Il0153*11 [[ c .Ro , 11 x. [[ c r ) .

PROOF. We proceed as for (5.i) where now we follow ([3], § 1, nos. 3-5).
Let Bn = I(x* , xln), x* E SnP.B, x1n E Rn(I - B) Bl. Under the hypotheses
of the theorem it can be proved that the truncated auxiliary equation
x = Sn Px + RnH(1 - Q ) Nx is uniquely solvable for each arbitrary but

fixed SnPx = x*. and that the unique solution xn is of the form xn = T (x on),
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PX. = x * where T is a continuous map from {x*lllx*1I  -R(,} into {(x*, xl) I
llx*ll-R., llxlllr}. The truncated bifurcation equation is then reduced
to cx.S.QNT(x* ) = 0. The inequality (iv) is now applied to obtain the
existence of a solution x* of this equation. Since 11 x* 11  -Ro and 11 x. II =
- II Z’(xon) II  (R§ + r2)1 and these bounds are independent of n, we can
now proceed as for (5.i) to obtain the existence of a solution of the equa-
tion Ex = Nx.

6. - Applications.

We first consider the existence of solutions u(t, x), periodic in t of

period 2a, of the hyperbolic nonlinear problem

Let I = [0, a] X [0, 2n], G = [0, n] X R. Let D denote the set of all real

valued functions u(t, x), 2a periodic in t, of class C°° in G and such that

D 2k 99 (t, 0) = D2kgg(t, n) = 0, k = 0, 1, 2, ... Let Ayn denote the completion
of D under the norm

Thus, A.m is a real Hilbert space with inner product

where (,) denotes the inner product in .L2(I ), and thus Ao = L2(I ). Let E

denote the operator defined by Eu = uii + uxxxx · For g E Am we shall con-
sider the linear problem Eu = g. Then, we say that u is a weak solution of
this problem with boundary conditions (15), (16) if u E Am and (u, Erp’ ),,, =
= (g, CP)m for all 99 E D. Then, both equations Eu = g and boundary con-
ditions (15), (16) are understood in the weak sense. A complete ortho-
normal system in A,, = .L2(I ) is

whose elements can be indexed by as
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usual. A complete orthonormal system in Am is

It is easy to see that any element u e Am has Fourier series E aklek) with
 akz  + o, as well as, z ak (k2m + l4m)  + 00. ka

kl k Tl
From Sobolev type imbedding theorems (Aubin [1]), as well as by

direct estimates on Fourier series and Young-Hausdorff theorems, we know
for instance that:

(a) If uEAl, then u E C, ua;ELq for any q C 6 (at least), ui , uaeaeEL2,
and lIulloo, lIuaellLq’ lIutIlL" 11 "ss ll Li  y 11 " 11 J for U E A2, then ’11, up "s ’ ua;ae E 0,
Utae, Uaeaeae E Lq for any q  6, Utt, utxx, uxxx, Uaeaeaeae E L2, and II U II 00’ II Ut II 00’
lIuaelloo, lIuaeaelloo, IIUtaellLa’ IIUaeaeaellLq’ lIuttllLI’ IIUtaeaellLI’ lIuaeaeaellLs,11 Il uaeaeaeaeIlLIrlluII2’
where y is a constant independent of u, and analogous relations hold for
any m&#x3E;l (see [9] for details).

As a consequence we have the following:

(A) If f (t, x, u) E O(G xR) is a given continuous function in G X R,
periodic in t, and u e A1, say II U /II  b, then u is continuous, F(t, x) = f (t, x,
u(t, x) ) = f o u is continuous in G, 2n-periodic in t, and IIF/loo:c, hence
II F II LI  d, where c and d can be made to depend solely on b.

Analogously, if f (t, x, u, ux) E C2(G X .R2), 2n-periodic in t, and ’11 E A2,
say IluII2b, then u, Uae are continuous, F(t, x) = f (t, x, u(t, x), ua;(t, x)) = f o u
is continuous and IIFlloo o.

From (A) and the expressions of .Ft, Fae, Fxx it can be shown that Fx
is also continuous, that Ft, I’xx E L2(I ), and that IIFlloo, IIFaellooc, IIFtIILI’
II F aeae II LI  d, where c and d can be made to depend solely on band f.

Also, if f(t, x, U, Ut, uae) E 02(G XR2), 21-periodic in t, and U E A2, say
IluII2b, then u, ui, ux are continuous, F’(t, x) = fou is continuous, Ft, Fa;,
Faeae E L2(I), (Faeae as a distributional derivative), and IIFlloo 0, p Ft p L$ , IIFaeIILI’
IIFaeaeIlL2d, where again c and d can be made to depend solely on band f.

In each space Am we denote by Amo the subspace generated by the ele-
ments ek7) with k2 = l4, the kernel of E in Am, and we decompose then Am
in a direct sum Am = Amo + Ayni. Before we proceed we note that if

g E Ami for some m, (m &#x3E; 0), then g = ! akle7) where gj ranges over all k
kl

with k2 # l4, or ordinary Fourier series

with
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Let us prove that u = Hg == ! gkz(k2 - Z4) -1 eko) belongs to Am+1. Indeed,

for
kG

we have

and all we have to prove is that I Q,,, I  1. Indeed, (14 - k 2 ) 2 = (12 - k)2.
.(l2 + k)2 &#x3E; (12 +I k1)2&#x3E;14 + k2 , and hence le,,Il for all k = 0, ± 1, :f: 2, ...,
1 = 11 21 ... I k 2 =A 1,1. We have proved that I/ullm+1 == 11 Hg ll,,,+,,  Ilgl/m for g E Am.

(B ) If we take X = A1, Y = Ao = L2, then .Xo = A io , Yo = Aoo,
and we take for P: X --&#x3E; X, Q: Y --&#x3E; Y the orthogonal projections of X

onto Xo, and of Y onto Yo respectively. Then X., = (I - P) X = A,,,,
Y1 = (I - P) Y = Aoi. Then for the operator H defined above we have
H : Yi - Xl . If we denote by D(E) the range of .H in X, , then 3)(-S) c X 1
and E maps ’:D(E) n Xl one-one onto Yi. The hypotheses (i), (ii), (iii) of

Section 2 obviously hold, and 11 Hv 11,  11 v 11 o for all v E Y1.
A.nalogously, we could take X = A2, Y = A1, and assume with Petzel-

tova [15] that for every u E X and F = fou, we have F(t, 0) = F(t, yc) = 0
for all t. Then, what we have proved in (A) shows that for u E X = A2
we have FEY = A1. Then, any element v E Y1 is mapped by H into .X1.
If we denote by 3t(E) the range of H in X1 then, as before, E maps 3t(E) r1 Xl
one-one onto Y,, (i), (ii), (iii) of Section 2 hold, and  Hv 11 2  11 V 11 11 for all

v E Yl . For cases with X = Am, m &#x3E; 3 , we refer to [9].
To see how artificial is Petzeltova’s condition F(t, 0) = F(t, n) = 0

we consider problem (14)-(16) with f = 1, or f x, whose elementary solu-
tions are respectively

and

while
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are analytic in G but do not belong to A1 since they do not satisfy Petzel-
tova’s condition. Petzeltova’s condition is not needed, however, as we are
going to show.

To this purpose let X = A2, and take Y = .A.1 + WI, with A1 as above,
and Wi the set of all functions of the form vo(t, x) = f 1(t) + xI2(t), 0  x  n7
~jRy /iy f, 2n-periodic in t and of class C in .R. Then, Y is contained in
the real Hilbert space Y of all functions V(t, x), (t, x) E G, 21-periodic in t,
V E L2(I ) and inner product .

Now if f (t, x, u, ut, ux) is of class C2 in G X .R3, 21-periodic in t, and

u E A2, then .F(t, x) = f ou may not be in A,. However, f 1(t) = F(t, 0),
f 2(t) = 7r-l(F(tl n) - F(tl 0)) are 2n-periodic in t and of class C’ in .R,
and if we take Fll(t, x) = f 1(t) + Xf2(t), and F1(t, x) == F(t, x) - F,,(t, x),
then Fi(t, 0) = Fl(t, n) = 0 and we have the decomposition F = Fo + Fix
with 14’1 E Ai, Fo E W1 and F e ?. Let P: X ---&#x3E; X, Q : Y - Y denote the

orthogonal projections of X = A2 onto A20, and of Y = A1 + W1 onto Alo,
and take .Xo = PX = A2o , Yo Q R A,,,, Xl = (I - P) x, Yi = (I - Q) Y.
Note that any function F = f ou = Fo(t, x) + F1(t, x), I’o E W1, F1 E A1,
has Fourier series

and we define by taking

with the convention that the double series ranges only over those ki 1 with

(21- 1)4 =A k2, or 14 # k 2, respectively.
We have proved in [9] that u belongs to A2, and thus H : Y1--+X = A2, ,
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and moreover IIH(I - P)Fll yllFll,. Again we take 5)(E) c X as the

image of g: fl-¿.Xl, and then E is one-one and onto from 5) (E) n X1 to Yl.
We shall now consider the elements y E Y as linear operators on X by

taking, as linear operation the inner product in L2, or (y, x) =fyxdtdx.
I

In each of the cases considered above the operation (y, x) satisfies the as-

sumptions (nl)’ (n2) of no. 2.

For the sake of simplicity, y we shall refer to the case X = A2, m = 2
and corresponding elements. We shall omit the upper script in the ele-

ments ekm) when obvious.
We now define the finite dimensional subspaces Xon of Xo as follows:

Xon is the subspace of Xo in X generated by e,,, k2 = 14, 1 ..., n. Then
let .Xln be the subspace of Xi generated by ekz, k2 - A 14, 1 = 1, 2, ..., n,
k = 0,:1: 1, ...,::1:: n. Let .Rn , 8,, be the appropriate orthogonal projections
given by .Rn : Xi - Xln and Sn : Xo - Xon . Let Yon be the subspace of Yo
in Y generated by ek z , k 2 = 14, 1 = 1, 2, ..., n. Then S., can be defined as
the orthogonal projection of Yo onto Yon in Y.

We can now define the map an : Yon -&#x3E; Xon by taking

Clearly S[QNU = 0 if and only if (QNu, U*)LJ = 0 for all u* e Xon and
further an QNu = 0 is equivalent to S[QNU = 0.

Finally let J: Xo - Xo be the linear operator defined as follows : for

any U E Xo, U == ! UkZ ekz, where! ranges over all k, l with k 2 = Z4, take
J = gj k-i uklekl is obtained by ekl replacing cos kt by sin kt, and sin kt

by-cos kt. Then J is an isomorphism. Further (Ju)i == u, and we take
Jn = J in (12) and (13). Since any U E Xon is a solution of the homoge-
neous problem, also uii = - uxxzz. · Hence, for any u, v E Xo ,

In order to state our result we shall now note that the results in (B) above
can be summarized by saying that there is a monotone nondecreasing posi-
tive function y(.R), B &#x3E; 0, such that, u c- X, 11 u 11  R implies FEY, /IF [[ c y(.R).
We shall, however, take into consideration only the case m = 2, X = A2.
Moreover, let .L = IIHII.

(6.i) Let f(t, x, u, U,, ux) C C2(G X R3) and let y(R) the corresponding f unc-
tion above. Let us assume that there are constants Ro, r such that (a) for
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all we have

and that (b) L(.R) c r where R = (R’ 0 -E- r2)1. Then, the quasi linear hyper-
bolic problem (14)- (16 ) has at least one solution u(t, x) E A2 with Ilu 112  R.

We shall only show that theorem (5.i) applies. Thus, we have to verify
hypotheses (a) and (b) of (5.i). Actually, by Remark 1 of § 5, it is enough
to verify that

for all and Note

that here

since Ja. S’QNU and u* belong to Xo. Now we have

where * denotes any sum extended to all k, 1 with l c Z c n, k2 = l4. Thus

and in conclusion

for all hence

The two remarks above, together with theorem (5.i), show that the
truncated coupled system of equations have a solution un = U* + uln,
u: E Xon, Uln E X1n, and further Ilunllx is bounded independently of n.

Proceeding as in Section 5, we now introduce the space X. For I we
choose C, the space of continuous functions on G = [0, yr] x -B, 2n-periodic
in t. Then IlUnlix are bounded and since lul, lutl, luaelR, any bounded se-
quence funj in X generates sequences funl, f(Un)ll, ((un)x) which are equi-
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bounded and thus the sequence un is also equi-Lipschitzian. By applying
Arzela-Ascoli’s theorem we obtain that any weak limit element u of {un}
in X is a strong limit in 3C. Proceeding to the limit in the coupled system
of equations we obtain that u E X is a solution, in the weak sense, of the
original problem.

Here the solution is Lipschitzian, Ut, Ux exist in the strong sense (a.e.)
and are bounded; the other derivatives utt7 utx, uxx, uxxx, uxzzx exist in L2
in the distributional sense and they satisfy the original equation in the
weak sense (a.e.) (in fact they satisfy pointwise a.e.).

We conclude this section with the following remarks. If the nonlinearity
involves a small parameter, i.e., f is of the form sg(t, x, u, ux, ut) then y(R)
is replaced by ey(R) and Condition (6). of (6.i) can always be satisfied by
taking s sufficiently small.

Let us prove now that the conditions of (6.i) hold under the hypotheses
considered in [15], namely f = Eg(t, x, U, ut), s &#x3E; 0, g of class C2, and there
are constants a, fJ, ,u such that

Indeed, for we have

On the other hand, for Ilu:/1 11 = .Ro , Ilu1nlrxr and 7: = Sup,, I gUt I =
= max {17:+I, 17:-I}, A = SupG Igul, we have

and we prove below that

This last relation is a consequence of the following simple remark con-

cerning L-integrable functions : if 99 E L1(I) and j jqdtdz = 0 then, for every
I
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we have

Indeed, if and then

and

This is the second inequality (21). Analogously we can prove the first in-

equality (21). Now by force of inequalities (19) and (20), we see that (18)
becomes

and by taking r &#x3E; 0 sufficiently small we have

REMARK. If we take In = J4 in (12) and (13), then we obtain a sta-
tement analogous to (6.i) with the main inequality replaced by

Indeed we have here

Further choices of Jn are considered in [9] leading to a number of simple
criteria for existence.
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7. - Another application.

We consider here the problem of the periodic solutions u(t, x) of the

hyperbolic equation

where p &#x3E; 1 is any integer, f is a given function in R3 periodic of period 2n
in t and x. Let X be the real Hilbert space of all functions u(t, x) periodic
in t and x of period 2n with distributional derivatives ut , u til Dxp u all in

L2(I ), I = [0, 2n]2 , and inner product (u, v)x = (u, v) + (utt, vtt) + (D7:u, D 2,V)
where (, ) is the usual inner product L2(I ).

A complete orthonormal system in .L2(I ) is generated by the functions

ekz(t, x) = exp (ikt) exp (iZx). From Sobolev imbedding theorems we know
that there is a constant y such that llull,,.,yllullx, and also Ilu2, llUtl12l
JIU-112, lluxxll,yllullx. The kernel X of E in X is now the subspace of X

generated by the elements ekl with k2 = l21J.
Let Xo, Xl, Y = L2(I), Yo, I Y1 be defined as in no. 6, let y, x) denote

the inner product in .L2(I), and let Xon, X1n, Yon, Yln, Sn, Rn, Snan be
defined as in no. 6. Finally, y let J : Xo - Xo be the linear operator defined
as follows: for any let

Then, J is an isomorphism. Further (Ju) tt = u, and since any u e Xon is

a solution of the homogeneous problem, we also have Utt = D"u. For

any u, v E Xo, then

Proceeding as in no. 6 we obtain the following result.

(7.i) Let f be of class 01, and there are positive constants .Ro, r, C such

that, for (t, x) E D and lulyR we have lflC with CZ c r and R= (R’ 0 +r’)I.
Let us assume further that, for all u* E Xon, U1 E x1n , lIu*lIx = -Ro and

lIu1!lxr, we have 

and this holds for every n. Then, the nonlinear hyperbolic problem (22) has
at least a solution u(t, x) such that 11 u(t, x)/IxR.
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We shall only show that theorem (5.i) applies. Thus, we have to verify
hypotheses (a) and (b) of (5.i). In particular we have to prove that

(Joe. S’QNU, n u*)x&#x3E; 0 for all u* E Xon, 1 u* = Ro, and U == u1 + u*, Ul E X1n,
llulll r.

Note that here by force of (23) and by integrations b.y parts we have

Now

Thus

Note that the solutions whose existence are guaranteed in (7.i) are

Lipschitzian functions u, periodic in t and x of period 2n, with first order
derivatives Ut, ux almost everywhere in the strong sense and bounded, while
the other derivatives u utx, u D,u7 T2p, all exist in the distributional
sense and are .L2-integrable functions.

It remains now to prove that the conditions of Theorem (7.i) hold under
the hypotheses considered in [11, 12], namely f = 8g(t, x, u), s &#x3E; 0, g of

class C’, and there are constants a &#x3E; 0, ,u &#x3E; 0 such that

Indeed, for we have

On the other hand, for
we have

and.
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Hence,

and the last expression is certainly &#x3E;2-1 spR§ for Ro sufficiently large and
r sufficiently small. 
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