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Some Regularity Results
for a Family of Variational Inequalities (*).

ALESSANDRO TORELLI (**)

1. - Introduction.

In a recent paper Brezis and Stampacchia [3] have studied the regularity
of the solution for some fourth order elliptic variational inequalities. To

describe more precisely the result of [3], let Q be a bounded and sufh-

ciently « smooth » open set of Rn and

where a and @ are « smooth » functions defined in Q such that:

We may state the result of [3] as follows :

if u E Kl (resp. K2) satisfies the variational inequality: :

where f ELp(Q) (p &#x3E; n), then dn e W1,OO(Q) (resp, LJu e W§g§°(Q) ) and u e W3,Q(Q)
(resp. u e W)j§(Q)), with q C + 00. In [3J Brezis and Stampacchia have
shown that this regularity result is maximal, in the sense that (in general)
’1ft rt W§j§(Q) .

(*) Work supported by the Laboratory of Numerical Analysis of C.N.R.
(**) Istituto di Matematica dell’Università di Pavia.
Pervenuto alla Redazione il 12 Luglio 1978.
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It is well known that, for a wide family of second order variational in-
equalities, the optimum level of regularity is of the type W2,v (p  + oo).
Similarly for the fourth order variational inequalities studied in [3], the
optimum level of regularity is of the type -W’,’ (p  + oo). During a lec-
ture at the Laboratorio di Analisi Numerica (C.N.R.) of Pavia, prof. Stam-
pacchia put the following question: for a variational inequality of order 2r
is the maximum level of regularity of the type Wl+’,"?.

The present paper answers affermatively to this question for a special
family of variational inequalities (see for instance Theorem 4.1). The

generalization here considered consists mainly in replacing the operator d
with an elliptic operator, the scalar product in L2(S2) with more general
ones (see in particular the example 5.7), the convexes Ki with more general
ones. The method used to obtain these results is based on the ideas of

Brezis-Stampacchia [3] and on some new remarks. An important role will
be played by an « abstract regularity result » for some variational inequalities
(see Lemma 2.1 and the subsequent Remark 2.1) and a « representation
lemma » for a special class of functionals defined in Z°°(2) (see Section 3).
In section 4 we describe some concrete examples in which the theory here
considered may be useful.

Since this paper resulted from a suggestion of prof. Guido Stampacchia
I would like to dedicate it to his memory.

2. - Preliminaries.

We state now the main result of the present section:

LEMMA 2.1. Let X be a linear topological space, X’ its dual, M a linear
manifold of X, j a convex proper functional on X, A an operator defined in X
with vaclues in X’. Assume that:

in ac neighborhood of which j is bounded above.

Let X be a solution of the following problem:

Then there exists z E MI (that is z belongs to the subspace of X’ orthogonal
to Mo, where Mo is the parallel subspace of M), such that :
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REMARK 2.1. The interest of Lemma 2.1 is that, if for the variational
inequality (2.3) is known a regularity result and if .ZVlo is a « regular » sub-
space of X’, then it follows that x is o regular &#x3E;&#x3E;.

The hypothesis (2.1 ) is very restrictive: this obliges us to choose
X = LOO(Q) in the most part of the concrete examples here considered

(see the section 4). This means that .lt2o is a subspace of (LOO(Q))’ and then
M/ does not look a « regular » space. We avoid this difficulty proving
that, in several concrete cases, the elements of .llTo have locally a representa-
tion as « regular)} distributions (see the subsequent section 3).

REMARK 2.2. - We shall now outline a proof of Lemma 2.1 based on
a result of Rockafellar (see [4], Theorem 20). In any case different proofs
can be considered using other techniques, for instance employing the geo-
metric form of the Hahn-Banach theorem.

First of all we prove a variant of Lemma 2.1:

LEMMA 2.2. Let X be a linear topological space, X’ its dual, M a linear
mani f old of X, j a proper convex functional on X. If the hypothesis (2.1 ) is
fulfilled and if a e R acnd x’ E X veri f y the following relation

then there exists z E M’, such that:

where m is an arbitrary element of M.

PROOF. Let 1M be the indicator function of M, that is

Let also I M the conjugate function of 1M (for the definition of the conjugate
of a proper convex function see [4]). Then we have (y’E X’) :

The relation (2.4) can be equivalently written as

Using the over mentioned result of Rockafellar it follows that (recalling
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also the hypothesis (2.1)):

If z E X’ minimizes the right member of (2.8), we have (by (2.6) and (2.7)):

that is the relation (2.5).

PROOF oF LEMMA 2.1. The second relation (2.2) can be written as

If we put:

it follows (by Lemma 2.2 and by the fact that x E M)

where z E 11l-;. Recalling the positions (2.11) we obtain soon the relation (2.3).

REMARK 2.3. Already when dim (X)  + oo, the hypothesis (2.1) is

necessary for the validity of Lemma 2.1. Indeed if we put

where IK is the indicator function of the following convex set of R2:

then the point x = (0, 0) is a solution of problem (2.2), but does not exist
z E MJ. = {(Xl’ x2) E R2: X, = 01 such that z verifies the relation (2.3).
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3. - A representation remark.

Let Q be an open set of Rn and 11. a strongly elliptic operator with in-
definitely differentiable coefficients in Q. Put now:

where supp (g) is the support of g. Let now 3(A) be the subspace of (L-(D)) I
so defined: T E (LOO(Q))’ belongs to 3(A) if 3ZT E Z(A) such that

that is 3(A) is the subspace of T E (L°’(Q))’ which admits (locally) a re-
presentation in Z(A).

LEMMA 3.1. - 3(A) is closed in the w*-topology of (LOO(Q))’.

PROOF. Thanks to a lemma of Banach (see for instance [5], Lemma 2,
§. 4 Appendix to chapter V) it is sufficient to prove that: if B c 3(A),
B strongly bounded in then the w*-adherence B* of B is contained,
in 3(A).

Let now T E B* : we must prove that T E 3(A). Since B is strongly
bounded, there exists a generalized sequence TA E (L°’(Q))’, such that:

(3.4) TA --&#x3E;- T in (LOO(,Q))’ weakly*

(3.5) T). E 3(A), VA,

(3.6) ITal belongs to a bounded set of (LOO(Q)), .

By the definition of 3(A), there exists a generalized sequence zt E Li(Q),
such that:

(3.7) T)., g) = g, z).) , , Vg E -L’ (Q) ,

(3.8) z,, E Z(A), 

(3.9) (zi) belongs to a bounded set of L’(S2)

Let now C be a compact set of S2. Since Azi = 0, it follows (thanks to [1]) that

(3.10) (zi) belongs to a strongly bounded set of Cl( 0) , , -



502

hence

(3.11 ) {z;.} belongs to a strongly contpact set of C°(C) .

Let now H the adherence set in C°(C) of the generalized sequence z),, that is

where HA tz,: it &#x3E; 21. The relation (3.11) implies that

Let now Yi E H (i = 1, 2). By (3.7) we have

(3.13) f Y 1 g dm (r-),T, g) Loo, g E L°°(SZ) such that supp (g) c C .
c

where m is the Lebesgue measure. This implies that yl = y2 , that is the

generalized sequence 7,A has exactly one adherence point. This means that

3z, c- CO(C) such that

strongly.

We can now define a function z E eO(Q) such that

(3.15) zi - z a.e. in Q and uniformly on any compact of Q.

Recalling also (3.9) we have

By (3.4), (3.7) and (3.15) we have

that is T E 3(A). The Lemma is then completely proved.

An immediate consequence of Lemma 3.1 is

COROLLARY 3.1. The w*-adherence of Z(A) in (L’(0))’is contained in 3(A).
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4. - Applications.

a) Let

(4.1) Q be a bounded open set of Rn, n&#x3E;2.

Let also .E be a Banach space such that (all the embedding being con-

tinuous) :

where m is a positive integer. Put also

(4.3) 1L1 is a strongly elliptic operator of order 2m.

We assume that, for sake of simplicity, Al has C’(D) coefficients and that

(4.4) Al (E) is closed in LP(D) .

We have that

that is Al is a linear and continuous operator between the spaces E and LP(S?).
Let also

(4.6) A, be an operator defined in LP(S2) with values in EP’(S2),
.

where p’= pl(p - 1 ). Let us consider two functions « and (3 in C-(D)
such that

Put now

Let now u be a solution of the following variational inequality:
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where f E E’ and (.,.) denotes the duality between LP’(S2) and Lp(SZ ) . We
assume that:

(4.12) c-

where ll.i E £.(LP’(Q), E’) is the transposed operator of AI.

In the present section, if A (resp. B) is a subspace of LP(S2) (resp. LP’(S2)),
we denote by A1 (resp. 1B) the subspace of Lp’(S?) (resp. Lp(Q) ( ortho-

gonal to A (resp. B). Similarly if A (resp. B) is a subspace of L’(s2)

(resp. (LCC(Q))’), we denote by AT (resp. TB) the subspace of (L-(D)), 
(resp. L’(S2)) orthogonal to A (resp. B).

LEMMA 4.1. Under the hypotheses (4.1)-(4.4), (4.6)-(4.9), and (4.12), i f u
is a solutions of the problem (4.10) and (4.11), then there exists T in the Zu*-ad-
herence in (LCC(Q))’ of N(Ili) (where N(lli) is the kernel of A’) such that :

where U = A,u and A’F == f.

PROOF. We can verify easily that

The relation (4.16) can be equivalently written as 

(4.17) (A, U, V - U) + 1,, (V) &#x3E; I,,,( U) + (F, V - U) ,V V c- A,(E) ,

where IK is the indicator function of K. If p  + oo, we can not apply
directly Lemma 2.1 since the interior .K of K in L((Q) is empty. We
remark that

Since U c- K c L’ (S2), it follows that:
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where the dualities are between (L-(.Q))’ and Z°°(D). If we put j(V) =

1,(V) - .F’, VB we can apply Lemma 2.1, since the identically zero
. 

function belongs to

Hence there exists T E (’(N(A’)))- (= w*-adherence of N(Ili) in (L°’(Q))’)
verifying the relation (4.14). The Lemma 4.1 is completely proved.

b ) Let us now introduce the following condition of regularity

where N(A,) is the kernel of A,. Hence the relations (4.4) and (4.19) imply
the relation (4.12). Put also:

THEOREM 4.1. Under the hypotheses (4.1)-(4.4), (4.7)-(4.9), (4.19) and (4.20),
if u is a solution of Problem (4.10) and (4.11 ), then lllu E W§gl"(Q) and
u E -W,.,-, 2 +’,r(S?) (Vr  + oo). We have also that this result of regularity is

maximal in the sense that (in general) u 0 -WI2(-+I),r(f2).
PROOF. - Using Corollary 3.1, it is easy to prove that the functional T

(of Lemma 4.1 ) belongs to 3(A*), where Ag is the formal adjoint of AI.
Then there exists a function z such that

Recalling (4.19), we can see that the function F (in (4.14)) satisfies the

relation: ATF = f. Then

Let now C be a compact set of Q. Put also

Then we have
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This means that for every compact C of Dy we have

Recalling that F and z are locally « regular » in Q (see the relations (4.21)
and (4.23)), y we can conclude the proof of the theorem.

REMARK 4.1. The local regularity result of Theorem 4.1 may become a
global regularity result in some special case. Indeed if:

and if

then the proof of Theorem 5.1 says that Aiu E Wl,’(S2). Moreover if the

space E is « smooth » enough, we have that U e W2m+l,r(Q) (r  + 00) (see
Examples 4.2 and 4.4). Also here, this result of regularity is maximal.

REMARK 4.2. Lemma 4.1 and Theorem 4.1 consider only the case in
which the convex functional j of Lemma 1.1 is of the form:

where IK is the indicator function of a convex set and f is a linear and

continuous term. We could consider a more general situation employing
more general functionals provided that the condition (1.1) be again fulfilled.

c) Now we shall describe some examples related to the theory over

explained. Unless otherwise stated, Lx and are « regular» functions veri-
fing (4.7).

EXAMPLE Put also:

With this position the compatibility condition contained in (4.19) disap-
pears, because the kernel of d in Ho(SZ) is {01. Let now u be a solution of
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the following problem:

Then 4 u E TV’,-(f2) and u E -VVI,V(.Q), p  + 00. This is the result stated

in Theorem 2 of Brezis-Stampacchia [3].

EXAMPLE 4.2. Let (,,Q sufficiently « smooth »):

In this case if f E -Lq(,Q) (q &#x3E; n), if u is a solution of the problem (4.29), then
(applying Theorem 4.1 and Remark 4.1) we have that: 4u e -W’,’(,,Q) and
U C -W3,p(,Q), p  + 00. This is the result stated in Theorem 1 of Br6zis-

Stampacchia [3].

EXAMPLE 4.3. Suppose Q « smooth » and:

In this case if f E _Lq(S2) (q &#x3E; n) is orthogonal to the space

then a solution u of problem (4.29) satisfies the following relation of regu-
larity : 4 u E -W’,’(D), u E -W’,’(D) (p  + 00). ·

EXAMPLE 4.4. Suppose D « smooth » and

If f E Lq(D) (q &#x3E; n) is orthogonal to every constant then du E Wl,CO(Q) and
u E TV3,p(_Q) (p  + 00), where u is a solution of problem (4.29). In this

case the condition (4.7) may be weakened assuming that a (resp. (3) has
average strictly positive (resp. negative). Indeed in this case we have that

1f n ill =A 0 where 

K = {v E LOO(Q): oc  v  fll lVl = {v c- L’(D): v has average zero i1t Ql.

Let us now consider an example in which the operator A,, has order 4.
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EXAMPLE 4.5. Put:

If f E Lq(D) (q &#x3E; max (n/3, 1)), then a solution u of the following problem

satisfies the following condition of regularity: ] 2U E Wl,’(,Q), u E W§j§(Q)
(p  + -).

EXAMPLE 4.6. By a slight modification of Theorem 4.1, we can adapt
the theory to convex set of the type:

where m is not a linear subspace of W2-,p(n) , but only a linear manifold.
Let us now consider an example of this situation. Let v E C-(Q). We as-
sume also that the functions oc and f3 are in C’(D) and verify the following
inequalities:

Put

Let now u be a solution of the following problem:

where f E L(,(S2) (q &#x3E; n), f orthogonal to the space defined in (4.30). If we

put U = L1u and 

it follows :

where F is a solution of the problem
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Adapting the proof of Theorem 4.1, we obtain again that:

d) We can consider also some example in which the scalar product
between EP(.Q) and E2"(S2) is replaced by a different one. We now outline
a very easy example of this situation.

EXAMPLE 4.7. We choose (,Q sufficiently « smooth ») :

Let u be a solution of the following variational inequality (f E -L’(,Q),
p &#x3E; max (n/2, 1)):

(graddu, grad 4 v - u)) &#x3E; (f , v - u&#x3E; , Vv E k .

If we put U = d u, it follows 

where F E W2,P(Q) (c OO(Q)) verifies the relation :

Thanks to a result of Brezis and Stampacchia [2], the relation (4.31) im-
plies that U = 4u E -W2,.Z(S2) and then E W4.q(Q) (Vq  + oo).
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